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An increasing amount of evidence supports the notion that cytotoxic effects of amyloid-β peptide (Aβ), the main constituent of
senile plaques in Alzheimer’s disease (AD), are strongly associated with its ability to interact with membranes of neurons and
other cerebral cells. Aβ is derived from amyloidogenic cleavage of amyloid precursor protein (AβPP) by β- and γ-secretase. In the
nonamyloidogenic pathway, AβPP is cleaved by α-secretases. These two pathways compete with each other, and enhancing the
non-amyloidogenic pathway has been suggested as a potential pharmacological approach for the treatment of AD. Since AβPP,
α-, β-, and γ-secretases are membrane-associated proteins, AβPP processing and Aβ production can be affected by the membrane
composition and properties. There is evidence that membrane composition and properties, in turn, play a critical role in Aβ
cytotoxicity associated with its conformational changes and aggregation into oligomers and fibrils. Understanding the mechanisms
leading to changes in a membrane’s biophysical properties and how they affect AβPP processing and Aβ toxicity should prove to
provide new therapeutic strategies for prevention and treatment of AD.

1. Introduction

The senile plaque composed of neurotoxic amyloid-β peptide
(Aβ) is a pathologic characteristic of Alzheimer’s disease
(AD) [1–6]. Aβ is derived from the cleavage of a type
I membrane protein, (AβPP), by β- and γ-secretases [7].
Alternatively, AβPP can be cleaved by α-secretase to produce
a neurotrophic, neuroprotective α-secretase-cleaved soluble
AβPP (sAβPPα) through a nonamyloidogenic pathway [8].
These two pathways compete with each other, and increasing
sAβPPα has been suggested as a potential therapy for AD
[9]. The cleavage of AβPP by β-secretase (BACE), the
primary step to produce Aβ [10, 11], occurs mainly in lipid
rafts, which are highly ordered membrane microdomains
enriched in cholesterol, sphingolipids and saturated phos-
pholipids [12–17]. On the other hand, the activity of α-
secretases is favored in nonraft domains [18]. Therefore,
AβPP processing can be altered by manipulating membrane
lipid composition, such as removal of cholesterol and

sphingolipids [19–22]. Since AβPP, α-, β-, and γ-secretases
are membrane proteins, AβPP processing can be also affected
by the biophysical membrane properties such as membrane
fluidity and molecular order [19–26].

Amyloidogenic cleavage of the AβPP leads to the produc-
tion of Aβ peptides of different length [27]. An increasing
amount of evidence supports the notion that cytotoxic effects
of Aβ are strongly associated with its ability to interact with
membranes of neurons and other cerebral cells, astrocytes,
microglial, and cerebral endothelial cells. Aβ peptides in
different forms can directly bind to membrane molecules
and alter biophysical membrane properties [28–33]. Aβ can
also indirectly affect membrane properties by binding to
membrane receptors and triggering downstream signaling
pathways. Moreover, there is evidence that Aβ1−42 oligomers
can accelerate the amyloidogenic processing of AβPP by
changing membrane physical properties and interacting
with lipid raft-related ganglioside GM-1 [25]. Membrane
properties and composition, and the presence of metal ions,
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in turn, play critical roles in Aβ cytotoxicity associated with
its conformational changes, aggregation into oligomers and
fibrils, and ability to interact with membrane molecules [34–
40].

In this paper, we summarize the effects of membrane
composition and properties on AβPP processing and inter-
actions of physiologically relevant Aβ1−40 and Aβ1−42 with
membranes studied in membrane models, cell cultures, and
in vivo. Understanding the mechanisms leading to changes
in a membrane’s biophysics and how they cause changes in
AβPP processing and Aβ toxicity should provide insights into
new therapeutic strategies for prevention and treatment of
AD.

2. Role of Physical Membrane Properties in
AβPP Processing

2.1. Cholesterol on Physical Properties of Membranes and
AβPP Processing. Cholesterol is an essential component of
the cellular membrane and plays a vital role in the regulation
of membrane functions. Distribution of cholesterol within
the plasma membrane is not even: the highest level of
free cholesterol inside the plasma membrane is found
in cytofacial bilayer leaflet [41, 42]. The exofacial leaflet
contains substantially less cholesterol, and it is mostly
condensed in lipid rafts, which are more tightly packed
than nonlipid raft domains due to intermolecular hydrogen
bonding involving sphingolipid and cholesterol [43]. This
asymmetric distribution of cholesterol is altered by aging: it
is significantly increased in exofacial leaflet with increasing
age [42, 44]. Membrane cholesterol levels can also be
modulated by specific inhibitors of the cellular biosynthesis
such as statins (3-Hydroxy-3-methylglutaryl coenzyme A
reductase (HMG-CoA) inhibitors), or it can be selectively
extracted from plasma membrane by methyl-β-cyclodextrin
(MβCD) [41]. The percentage of cholesterol in phospho-
lipid bilayers affects many biophysical parameters of lipid
bilayers, such as thickness, thermomechanical properties,
molecular packing, conformational freedom of phospho-
lipid acyl chains and water, molecular oxygen permeabil-
ity, membrane hydrophobicity, membrane excitability in
neurons, internal dipolar potential, and membrane fluidity
[45–51].

It has been shown that intracellular cholesterol home-
ostasis regulates AβPP processing [52]. A model of mem-
brane compartmentalization has been suggested for AβPP
present in two cellular pools, one associated with the
cholesterol-enriched lipid rafts, where Aβ is generated,
and another outside of rafts (i.e., nonraft domains),
where α-cleavage occurs [13]. It has been reported that
membrane cholesterol depletion decreased the content of
AβPP in cholesterol and sphingolipid-enriched membrane
microdomains and subsequently inhibited the amyloido-
genic pathway to produce Aβ [19, 53]. In contrast, cholesterol
accumulation in Niemann Pick type C (NPC) model cells
has been shown to shift AβPP localization to lipid rafts [54].
Exposure of cholesterol to astrocytes, primary neurons, and
glial cultures inhibited the secretion of sAPPα and reduced

cell viability [55–57]. It has been demonstrated that choles-
terol decreased the secretion of sAPPα by interfering with
AβPP maturation and inhibiting glycosylation of the protein
[56]. Furthermore, some studies showed that cholesterol
levels in the membranes were positively correlated with
β-secretase activity [58], while lovastatin enhanced the α-
secretase activity [55].

The results of another study showed that the cholesterol
transport inhibitor, U18666a, increased sAβPPα secretion
and intracellular AβPPα levels and reduced secretion of
Aβ1−40 in N2aAPP “Swedish” cells [59]. Inhibition of intra-
cellular cholesterol transport also altered presenilin localiza-
tion and AβPP processing in neuronal cells [60]. Similarly,
inhibition of Acyl-coenzyme A:cholesterol acyltransferase
(ACAT) modulated AβPP trafficking and reversed diffuse
brain amyloid pathology in aged AβPP transgenic mice [61–
63]. Nevertheless, lowering cholesterol by treatment with
statins was found to reduce [13, 21, 64] or enhance Aβ
generation, depending on the condition of the study [65].
One possible explanation for the controversial results is
that moderate reduction in cholesterol is associated with a
disorganization of detergent-resistant membranes (DRMs)
or lipid rafts, allowing more β-site AβPP cleaving enzyme
(BACE) to contact AβPP and resulting in increased Aβ
generation, whereas a strong reduction of cholesterol inhibits
the activities of BACE and γ-secretase, resulting in a decrease
in Aβ generation [14]. On the other hand, in the low-dose
statin treatment conditions [65], enchanted Aβ production
could be a result of feedback upregulation of HMG-CoA
mPNA and increased cholesterol level.

Consistent with the membrane compartmentalization
model, cellular cholesterol depletion results in an increase
in membrane fluidity, a parameter which characterizes an
average lateral motion of phospholipid molecules within the
lipid bilayer [19, 66–69]. On the other hand, an increase
in membrane fluidity has been demonstrated to shift AβPP
processing to nonamyloidogenic cleavage by α-secretase
[54–56, 65–68]. It has been reported that the removal of
cholesterol with methyl-β-cyclodextrin or treatment with
lovastatin increased membrane fluidity, which resulted in
higher expression of the α-secretase and impaired inter-
nalization of AβPP [19]. At the same time, cholesterol
enrichment has been shown to reduce membrane fluidity
[70, 71]. Cholesterol enrichment that impeded membrane
fluidity may lower sAβPPα production by hindering the
interaction of the substrate with its proteases [72]. Interest-
ingly, substitution of cholesterol by the steroid 4-cholesten-3-
one induces minor change in membrane fluidity and reduces
sAβPPα secretion, whereas substitution of cholesterol by
lanosterol increases membrane fluidity and sAβPPα secretion
[19]. These results suggest reversible effects of cholesterol on
the α-secretase activity depending on membrane fluidity.

Many studies support the notion that Aβ production
occurs in endosomes [22, 73–77]. Since AβPP is a transmem-
brane protein, its internalization from the plasma membrane
is regulated by key regulators of endocytosis, such as Rab5,
and this process has been found to enhance AβPP cleavage by
β-secretase leading to increased Aβ levels [78]. In contrast,
AβPP, lacking its cytoplasmic internalization motif, can
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accumulate at the plasma membrane and undergo cleavage
by α-secretase [10, 11]. Cholesterol has been demonstrated
to increase clathrin-dependent AβPP endocytosis in a dose-
dependent and linear manner [79]. There were also studies
demonstrating that alterations in cholesterol transport from
late endocytotic organelles to the endoplasmic reticulum
had important consequences for both AβPP processing and
the localization of γ-secretase-associated presenilins [60]. It
has been suggested that cholesterol increase in AD could
be responsible for the enhanced internalization of clathrin-,
dynamin2-, Eps15-, and Rab5-dependent endocytosis of
AβPP and the ensuing overproduction of Aβ [79]. Alterna-
tively, AβPP internalization could be reduced by lowering
cholesterol, which leads to an increase in membrane fluidity,
AβPP accumulation on the cell surface, and increased
sAβPPα secretion [19].

2.2. Fatty Acids on Membrane Physical Properties and AβPP
Processing. Fatty acids are other essential components of
the cellular membranes. They are important ingredients
in various dietary sources and play a central role in the
normal development and function of the brain [80–83]. For
example, long-chain polyunsaturated fatty acids (PUFAs)
of the ω-6 and ω-3 series, the major polyunsaturated fatty
acids in the central nervous system [84], are essential for
prenatal brain development and normal brain functions
[83, 85, 86]. Animals specifically deficient in dietary ω-3 fatty
acids have been demonstrated to have reduced visual acuity
and impaired learning ability [86, 87]. Diets enriched in
long-chain ω-3 PUFA (DHA) have been shown to modulate
gene expression for brain function, improve synaptic and
neurotransmitter functions of neurons, enhance learning
and memory performances, and display neuroprotective
properties [86, 88–90]. Arachidonic acid (AA), another
abundant fatty acid in the brain, is a second messenger
[91] and a precursor for the synthesis of eicosanoids
[92]. The presence of PUFAs in neuronal cells influences
cellular function both directly, through effects on membrane
properties, and indirectly by acting as precursors for lipid-
derived messengers [93, 94].

In fact, the disturbed metabolism of fatty acids is
associated with AD [95]. For instance, lower levels of DHA
have been reported in serum samples taken from AD patient
[96], while greater consumption of DHA has significantly
reduced the likelihood of developing AD [97]. Dietary ω-
3 PUFA depletion has been shown to activate caspases and
decrease NMDA receptors in the brain of a transgenic mouse
model of AD [98]. DHA and curcumin have been shown to
suppress Aβ-induced phosphorylation of tau tangles and the
inactivation of insulin receptors in primary rat neurons [99].
Recently, reduced expression of the neuronal sortilin-related
receptor SorLA/LR11 (LR11), a sorting protein that regulates
APP trafficking to β- and γ-secretases, was identified as
a probable genetic risk factor for late-onset Alzheimer’s
disease [100]. DHA, in turn, has been found to increase
LR11 expression in primary rat neurons, human neuronal
line, and aged nontransgenic and DHA-depleted APPsw AD
transgenic mice [101]. In 15-month-old AβPP/presenilin-1

mice, DHA supplementation improved spatial memory,
decreased Aβ deposition, and slightly increased relative
cerebral blood volume, indicating that a DHA-enriched diet
can diminish AD-like pathology [102].

Dietary fatty acids may integrate into cell membranes to
change their physical properties and subsequently alter cell
functions. The ability of fatty acids to modulate membrane
properties and functions [90, 94, 103–109] depends both
on the saturation degree of the fatty acids and the trans/cis
ratio of the unsaturated fatty acids [110–113]. For example,
diets enriched in unsaturated PUFAs, DHA, and AA have
been shown to increase membrane fluidity of neurons and
other cells [71, 89, 114, 115]. DHA has been also capable
of counteracting cholesterol-induced decreases in platelet
membrane fluidity and modulating platelet hyperaggrega-
tion [71]. Similarly, cis-polyunsaturated linolenic, α-linoleic,
and eicosatrienoic fatty acids increased membrane fluidity
[110]. In contrast, membrane incorporation of saturated
acids led to decreased membrane fluidity [109, 112, 116].
PUFAs have also been shown to affect many other membrane
properties, such as molecular order, compressibility, perme-
ability, fusion, and protein activity [117, 118].

Since AβPP, α-, β-, and γ-secretases are membrane
protein molecules, AβPP processing can be altered by manip-
ulating the membrane lipid composition. It was mentioned
before that an increase in membrane fluidity has resulted
in an increase in nonamyloidogenic cleavage by α-secretase
to produce sAβPPα [19, 25]. At the same time, enrichment
of cell membranes with PUFAs increases membrane fluidity
and, consequently, promotes nonamyloidogenic processing
of AβPP [113]. It has been shown that a typical Western diet
(with 40% saturated fatty acids and 1% of cholesterol) fed to
transgenic AβPP/PS1 mice increased Aβ, while diets supple-
mented with DHA decreased Aβ levels compared to regular
diet [119]. Similarly, DHA has been shown to decrease the
amount of vascular Aβ deposition [120] and reduce cortical
Aβ burden [121] in the aged Alzheimer mouse model. In
this model, DHA modulated AβPP processing by decreasing
both α- and β-AβPP C-terminal fragment products and
full-length AβPP [121]. DHA has also been shown to
stimulate nonamyloidogenic AβPP processing resulting in
reduced Aβ levels in cellular models of Alzheimer’s disease
[122]. At the same time, the study of the effects of fatty
acids on cell membrane fluidity and sAβPPα secretion in
relation to degrees of unsaturation has suggested that not all
unsaturated fatty acids, but only those with 4 or more double
bonds, such as arachidonic acid (20 : 4), eicosapentaenoic
acid (20 : 5), and DHA (22 : 6), increased membrane fluidity
and led to an increase in sAβPPα secretion, while oleic acid
(18 : 1), linoleic acid (18 : 2), and α-linolenic acid (18 : 3) did
not [113]. Moreover, the results of another experiment have
indicated that treatment of PSwt-1 cells with oleic acid and
linoleic acid increased γ-secretase activity and Aβ production
[123].

2.3. Phospholipases A2 on Membrane Physical Properties and
AβPP Processing. Phospholipases A2 (PLA2s) are ubiqui-
tously distributed in mammalian cell enzymes that catalyze
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the hydrolysis of fatty acids from sn-2 position of phos-
pholipids. PLA2s are classified into three major families:
calcium-dependent cytosolic PLA2 (cPLA2), secretory PLA2

(sPLA2), and calcium-independent PLA2 (iPLA2). These
enzymes are responsible for maintenance of phospholipid
homeostasis in the cell membrane. They are also important
in production of lipid mediators, such as arachidonic acid.
Activation of PLA2s has been implicated in diverse cellular
responses such as mitogenesis, differentiation, inflamma-
tion, and cytotoxicity, and changes in PLA2s’ activities
occur in many neurodegenerative diseases, including AD
[124–136].

It has been shown that immunoreactivity of cPLA2

(group IIA and IVA) increased in reactive astrocytes in severe
AD patient brains [124–126]. Upregulations of sPLA2-IIA
and PLA2-IVA were reported in the hippocampus of AD
patients [126, 137, 138]. The levels of activated cPLA2-
IVA were also increased in the hippocampus of hAβPP
mice [138]. Furthermore, Aβ has been shown to activate
cPLA2 in primary rat and mouse brain endothelial cells,
astrocytes, cortical neurons, and in PC12 cells [139–143].
Contradictory, both increased and reduced PLA2 activity has
been reported in platelets of AD patients [144, 145]. At the
same time, PLA2 activity was significantly decreased in the
parietal and, to a lesser degree, in frontal cortex of AD brains.
Lower PLA2 activity correlated significantly with an earlier
onset of the disease, higher counts of neurofibrillary tangles
and senile plaques and an earlier age of death, indicating
a relationship between abnormally low PLA2 activity and a
more severe form of the illness [146].

PLA2s play key roles in modulation of membrane
properties under pathological and physiological conditions.
For instance, in immortalized rat astrocytes (DITNC cells),
cPLA2 mediated the Aβ-induced membrane molecular order
increase (biophysical parameter which characterizes molec-
ular packing of lipids and water in lipid bilayers) [147]. In
primary rat cortical astrocytes, ROS induced by menadione,
a redox active agent, also altered astrocyte’s membrane
molecular order through activation of cPLA2 [148]. PLA2

activation has been shown to affect lipid membrane fluidity
and AβPP processing as well [149, 150]. In AD brains, there
is evidence for reduced membrane fluidity coupled with
decreased PLA2 activity [146, 151, 152]. Similarly, inhibition
of PLA2 activity in rat hippocampus has been shown to
reduce membrane fluidity and impair the formation of
short- and long-term memory [150, 153]. Arachidonic
acid (AA), PLA2-hydrolyzed product, increased fluidity of
membranes in cultured cerebral endothelial cells [154, 155]
and hippocampal neurons in vivo [114]. Secretory sPLA2-
III and AA have been shown to increase membrane fluidity
and sAβPPα secretion and decrease levels of Aβ1−42 in SH-
SY5Y cells [156]. Another hydrolyzed product of PLA2,
DHA, has also been demonstrated to increase membrane
fluidity and sAβPPα secretion in HEK cells and in neuronal
SH-SY5Y overexpressing AβPP cells [157]. In addition, it
has been reported that nonspecific PLA2 inhibitor par-
tially suppressed muscarinic receptor-stimulated increases in
sAβPPα secretion in SH-SY5Y [23]. Since PLA2 increases
membrane fluidity and nonamyloidogenic cleavage of AβPP,

PLA2 activity modulation can be considered as a potential
target for AD treatment.

3. Role of Membrane Physical Properties in Aβ-
Membrane Interaction and Aβ Cytotoxicity

3.1. Aβ-Membrane Interactions Studied in Membrane Models
and in Cell Cultures. Cleavage of AβPP leads to the pro-
duction of Aβ peptides of different length, of which Aβ1−40
is the major species and Aβ1−42 is the most fibrillogenic
and toxic component in AD plaques [27]. Numerous studies
have demonstrated direct interaction of Aβ1−40 and Aβ1−42
with components of the plasma membrane, which conse-
quentially disrupts the membrane properties [28–33, 158–
160]. There are several suggested types of Aβ-membrane
interactions. Aβ peptide can be retained in a membrane
upon AβPP cleavage, thus being prevented against release
and aggregation [161]. It also can be released as soluble
monomers into the extracellular environment and then be
removed [161, 162]. On the other hand, Aβ can reinsert
into a membrane and form ion-conducting pores or bind to
a membrane surface by undergoing accelerated aggregation
and form nonspecific structures, which causes thinning and
deformation to the membrane [161, 163–166].

Aβ1−42 has been shown to reduce membrane fluidity and
accelerate the amyloidogenic processing of AβPP [25, 33,
167–172]. In vivo, a decrease in membrane fluidity of synap-
tosomes isolated from frontal and hypothalamic neurons of
3-month-old mice, administrated with Aβ, has been demon-
strated [171]. By using in situ atomic force microscopy
and fluorescence spectroscopy, randomly structured Aβ1−42
has been reported to decrease membrane fluidity of planar
bilayers composed of total brain lipids, and this effect is
cholesterol-content dependent: the most dramatic effect has
been seen for cholesterol-enriched samples [168]. DPH (1,6-
diphenyl-1,3,5-hexatriene) fluorescence study has shown a
similar effect of Aβ1−40 on membrane fluidity of unilamellar
liposomes with a strong correlation to Aβ aggregation state
and pH [170]. It has been reported that unaggregated
peptides and pH 7 do not affect membrane fluidity, while
aggregated Aβ at pH 6 or 7 decreased membrane fluidity
in a time- and dose-dependent manner [170]. Studies of
SH-SY5Y human neuroblastoma cells have shown some
contradictory results. In this observation, Aβ1−42 monomers
increased fluidity of cell membranes, and Aβ-Aluminium
complex promoted even a greater effect [172]. Differences in
effects of Aβ on fluidity could result from the tissue source
and preparation, whether Aβ is soluble or aggregated, and
the age of the organism. The differences in effects of Aβ on
fluidity could also be the result of differences in the location
of the fluorescent probes in the membrane environment and
the lifetime of the fluorescent probes.

The fluorescence microscopy of a membrane with the
environmentally sensitive probe Laurdan has demonstrated
the ability of Aβ1−42 oligomers to affect the membrane
molecular order [147, 173, 174]. It has been shown that
an interaction of Aβ1−42 with artificial membranes made
them molecularly disordered (more water molecules were
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partitioned into the membrane core) due most likely to
the insertion of the peptide into the bilayer and the direct
alteration of membrane lipid packing. In the same study, the
effect of Aβ1−42 oligomers on immortalized rat astrocytes
(DITNC cells) membranes was opposite. DITNC mem-
branes become more molecularly ordered upon incubation
with Aβ in a time-dependent manner, and it was consistent
with activation of cPLA2. At the same time, in the presence
of NADPH oxidase inhibitor, the membranes of the cells
remained molecularly disordered. These results suggested an
indirect effect of Aβ through the signaling pathway involving
NADPH oxidase and cPLA2 [147].

The study of the interaction of Aβ1−42 with unilamellar
lipid vesicles has demonstrated increased vesicle fusion and
a thinning of the lipid bilayer and enhancing of these
effects at pH 7 and at a high Aβ/lipid ratio [175]. The
micropipette manipulation of giant unilamellar vesicles has
shown the ability of Aβ1−42 to affect the membrane lysis
tension depending on artificial membrane lipid composition.
It has been found that neither Aβ1−42 nor Aβ1−40 changed
mechanical properties of glycerophospholipid-cholesterol
vesicles, while partial substitutions of cholesterol with 7β-
hydroxycholesterol that contained additional dipole of oxys-
terol led to a dramatic reduction of the lysis tension upon
Aβ treatment. The results of this experiment strongly suggest
that a negative bilayer surface charge is required for Aβ-
membrane interaction [176].

The Aβ-membrane interaction may also be followed by
the incorporation of Aβ into the membranes and formation
of cation-selective channels, which lead to alteration of mem-
brane permeability and electrical conductance [31, 177–
186]. The study of the effects of soluble Aβ1−42 oligomers
on planar lipid and tethered lipid bilayers has indicated
that Aβ oligomers were inserted into the hydrophobic
core of the bilayer, affecting both membrane leaflets and
significantly increasing membrane ion current [31, 178]. It
has been demonstrated that Aβ-induced ion conductance
was different from ion transfer through water-filled pores
and depended on peptide concentration and membrane
lipid composition [178]. Similarly, Aβ1−40 caused a dose-
dependent increase in the Na+, Ca2+, and K+ influx in the
lumen of liposomes formed from the acidic phospholipids
but did not change cation conductance in a case of liposomes
formed from the neutral phospholipids [179]. There was also
evidence that Aβ induced an increase in membrane conduc-
tance, which was dependent on the area compressibility of
the lipid bilayer. Membranes with a large area compressibility
modulus were almost insensitive to Aβ1−42 oligomers, while
membranes formed from soft, highly compressible lipids
were very sensitive to the presence of oligomers [31].

In vitro, after Aβ1−42 treatment, the membranes of
human neuronal hNT cells and neuron-like differentiated
PC12 cells depolarized and exhibited enhanced membrane
permeability [183, 186]. Patch-clamp studies of a cell
line derived from hypothalamic gonadotrophin-releasing
hormone GnRH neurons have demonstrated spontaneous
formation of Zn2+-sensitive channel pores upon Aβ1−40
monomers treatment [184]. Similarly, Aβ1−40 aggregates
induced perforation of hippocampal neuronal synapses,

causing an increase in membrane conductance, intracellular
calcium, and ethidium bromide influx [185]. It has been
suggested that Aβ-induced membrane depolarization and
increased ions influx in neurons was not just due to forming
of cation-selective pores but rather was a consequence of
events resulting from downstream pathways with involve-
ment of metabotropic glutamate receptor and G-proteins
[186].

3.2. Membrane-Associated Conformational Modifications and
Aggregation of Aβ. In a previous section, we discussed the
ability of Aβ to alter biophysical properties of membranes
and the dependence of these processes on membrane envi-
ronment. These studies suggest that membrane property and
composition, in turn, play a critical role in conformational
changes and aggregation of Aβ. The aggregation of Aβ is a
complicated multistep process consisting of several phases:
monomers → soluble oligomers (clusters of small numbers
of peptide molecules without a fibrillar structure) →
protofibrils (aggregates of isolated or clustered spherical
beads made up of ∼20 molecules with β-sheet structure) →
mature fibrils [187]. Although the mechanism which initiates
Aβ aggregation is not fully understood, it has been shown to
be modulated by several factors, including concentrations of
monomers and their conformational transitions, sequential
changes in the Aβ primary structure, and interactions with
metal ions and membrane molecules [35, 37, 40, 169].

In vitro studies have demonstrated that Aβ monomers
can exist in three major conformation forms: α-helix, β-
sheet, or random coil depending on physical properties and
chemical composition of the environment [188, 189]. Since
the toxic Aβ mostly consists of β-sheets, even though the
original hydrophobic component of Aβ is a part of a trans-
membrane α-helix of AβPP, the conformational transition
of Aβ from α-helix or random coil to β-sheet is most likely
the very first step in the formation of oligomers and fibrils
[190]. Multidimensional NMR spectroscopy and circular
dichroism (CD) studies have demonstrated that alterations
in the membrane structure and biophysics can trigger the
conversion of soluble α-helical monomeric Aβ1−40 into the
oligomeric β-sheet conformation [161, 189]. It has been
shown that, in an ordered membrane system, Aβ adopted
a single α-helical confirmation, while in disordered micelles
Aβ rather adopted soluble β-sheet oligomeric conformation
[189]. At the same time, study of the neutral and negatively
charged bilayers showed an increase in β-sheet content as the
negative charge on the lipid membrane increased [161, 191].

In situ atomic force microscopy and total internal
reflection fluorescence microscopy studies have indicated
that the size and the shape of Aβ1−40 and Aβ1−42 aggregates,
as well as the kinetics of their formation, depended on
the physicochemical nature of the surface [192, 193]. For
example, on hydrophilic surfaces (mica) Aβ1−42 formed par-
ticulate, pseudomicellar aggregates, while on hydrophobic
surfaces (graphite) Aβ formed uniform, elongated sheets
with dimensions consistent with the dimensions of β-sheets.
The results of this study suggested that Aβ fibril formation
may be driven by interactions at the interface of aqueous
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solutions and hydrophobic substrates, which occurs in
membranes and lipoprotein particles in vivo [192]. Similarly,
Aβ1−40 fibril growth was especially prominent on chemically
modified negatively charged quartz surfaces, while no fibril
formation was observed on the positively charged surfaces
[193].

Numerous in vitro and in vivo studies have demon-
strated that lipid bilayer composition, as well as membrane-
associated proteins, can regulate Aβ aggregation in both
enhancement and inhibition manner [37–40]. It has been
suggested that binding of Aβ to the ganglioside-containing
membranes can induce a structural transition from random
coil to β-sheet in Aβ40/42 and accelerate fibril formation
[194–196]. Electron microscopy studies have demonstrated
that interaction of Aβ40/42 with plasma, lysosomal, and
endosomal membranes accelerated fibrillogenesis of Aβ,
while the presence of Golgi membranes hindered the process
[169].

4. Conclusion

An increasing amount of evidence demonstrates that a
lot of cellular processes in AD are intimately associated
with physical properties and organization of membranes.
The primary step in Aβ accumulation, the amyloidogenic
cleavage of AβPP, is affected by the membrane properties
such as membrane fluidity and molecular order and can
be modulated by removal of cholesterol and manipulation
of membrane lipid composition. Aβ-membranes interac-
tion, in turn, affects biophysical membrane properties and
accelerates the amyloidogenic processing of AβPP. Aβ has
been reported to reduce membrane fluidity, affect molecular
order and membrane lysis tension, induce thinning of the
lipid bilayer, and increase membrane conductance. Aβ can
also indirectly affect membrane properties by binding to
membrane receptors and triggering downstream signaling
pathways leading to oxidative stress and inflammation.
On the other hand, the ability of Aβ to interact with
membranes of neurons and other cerebral cells depends
on physical properties and organization of membranes,
such as cholesterol content, lipid composition and Aβ/lipid
ratio, pH, the presence of metal ions, and bilayer surface
charge. Membrane properties and composition play critical
roles in Aβ cytotoxicity associated with its conformational
changes and aggregation state as well. Therefore, under-
standing how membrane properties and organization are
related to cellular pathways in AD should prove to pro-
vide insights into the mechanisms of the pathogenesis in
AD.
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[76] S. Schöbel, S. Neumann, M. Hertweck et al., “A novel sort-
ing nexin modulates endocytic trafficking and α-secretase
cleavage of the amyloid precursor protein,” The Journal of
Biological Chemistry, vol. 283, no. 21, pp. 14257–14268, 2008.

[77] S. A. Small and S. Gandy, “Sorting through the cell biology of
Alzheimer’s disease: intracellular pathways to pathogenesis,”
Neuron, vol. 52, no. 1, pp. 15–31, 2006.

[78] O. M. Grbovic, P. M. Mathews, Y. Jiang et al., “Rab5-
stimulated up-regulation of the endocytic pathway increases



International Journal of Alzheimer’s Disease 9

intracellular β-cleaved amyloid precursor protein carboxyl-
terminal fragment levels and Aβ production,” The Journal of
Biological Chemistry, vol. 278, no. 33, pp. 31261–31268, 2003.

[79] J. C. Cossec, A. Simon, C. Marquer et al., “Clathrin-
dependent APP endocytosis and Aβ secretion are highly
sensitive to the level of plasma membrane cholesterol,”
Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 846–852,
2010.

[80] J. P. Schuchardt, M. Huss, M. Stauss-Grabo, and A. Hahn,
“Significance of long-chain polyunsaturated fatty acids
(PUFAs) for the development and behaviour of children,”
European Journal of Pediatrics, vol. 169, no. 2, pp. 149–164,
2010.

[81] C. K. Chow, Ed., Fatty Acids in Foods and Their Health
Implications, Taylor & Francis, Boca Raton, Fla, USA, 2007.

[82] W. E. Connor, “Importance of n-3 fatty acids in health and
disease,” American Journal of Clinical Nutrition, vol. 71, no.
1, pp. 171S–175S, 2000.

[83] S. C. Dyall and A. T. Michael-Titus, “Neurological benefits of
omega-3 fatty acids,” NeuroMolecular Medicine, vol. 10, no.
4, pp. 219–235, 2008.

[84] N. G. Bazan and B. L. Scott, “Dietary omega-3 fatty acids and
accumulation of docosahexaenoic acid in rod photoreceptor
cells of the retina and at synapses,” Upsala Journal of Medical
Sciences, Supplement, no. 48, pp. 97–107, 1990.

[85] R. T. Holman, S. B. Johnson, and P. L. Ogburn, “Deficiency of
essential fatty acids and membrane fluidity during pregnancy
and lactation,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 88, no. 11, pp. 4835–4839,
1991.

[86] R. Uauy, D. R. Hoffman, P. Peirano, D. G. Birch, and E. E.
Birch, “Essential fatty acids in visual and brain development,”
Lipids, vol. 36, no. 9, pp. 885–895, 2001.

[87] J. M. Alessandri, P. Guesnet, S. Vancassel et al., “Polyunsat-
urated fatty acids in the central nervous system: evolution
of concepts and nutritional implications throughout life,”
Reproduction Nutrition Development, vol. 44, no. 6, pp. 509–
538, 2004.
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