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Abstract

Background

Most sequencing studies of schizophrenia (SCZ) have focused on de novo genetic variants

due to interpretability. However, investigating shared rare variants among patients in the

same multiplex family is also important. Relatively large-scale analyses of SCZ multiplex

families have been done in Caucasian populations, but whether detected variants are also

pathogenic in the Japanese population is unclear because of ethnic differences in rare

variants.

Materials and methods

We performed whole-exome sequencing (WES) of 14 Japanese SCZ multiplex families.

After quality control and filtering, we identified rare variants shared among affected persons

within the same family. A gene ontology (GO) analysis was performed to identify gene cate-

gories possibly affected by these candidate variants.

Results

We found 530 variants in 486 genes as potential candidate variants from the 14 SCZ multi-

plex families examined. The GO analysis demonstrated significant enrichment in calcium

channel activity.

Conclusion

This study provides supporting evidence that calcium ion channel activity is involved in SCZ.

WES of multiplex families is a potential means of identifying disease-associated rare vari-

ants for SCZ.
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Introduction

Schizophrenia (SCZ) is a chronic and severe mental disorder characterized by some combina-

tion of hallucinations, delusions, and extremely disordered thinking and behavior that impairs

daily functioning [1]. The lifetime prevalence of SCZ is 0.3–0.7%, and the standardized mortal-

ity ratio is 2.5 [2, 3]. Both genetic and environmental factors affect the risk for SCZ [4, 5]. Pop-

ulation-based and twin concordance studies indicated that the heritability of SCZ is 60–80%,

with only subtle contributions from environmental factors [6, 7].

As genetic factors play a significant role in the etiology of SCZ, many genetic studies of the

disease have been conducted. Linkage studies identified multiple genetic risk loci for SCZ;

however, these studies were not sufficient to suggest specific causative genes [8]. Genome-

wide association studies (GWASs) have identified numerous loci significantly associated with

SCZ [9, 10] based on the common disease–common variant hypothesis. However, the effect

sizes of the individual single-nucleotide polymorphisms identified in GWASs are too small to

explain the high heritability of SCZ demonstrated in cohort studies, which has been designated

“missing heritability” [11]. To overcome this problem, it is necessary to consider rare variants

such as single-nucleotide variants (SNVs) or copy number variants [12].

The feasibility of exploring disease-associated SNVs has been enhanced due to the advent

of whole-genome sequencing (WGS) and whole-exome sequencing (WES) techniques, with

the latter providing a more rapid and cost-effective approach for sequencing protein-coding

regions across the genome. However, efficiently extracting candidates from a large number

of detected mutations is challenging. As such, most of these studies have focused on de novo
genetic variants or rare variants significantly associated with SCZ due to interpretability

[13–16] in terms of their large estimated effect sizes and the possibility of functional

validation.

In addition, patients in families with multiple affected members are likely to be enriched in

genetic factors that strongly affect the development of SCZ [17]. Therefore, it is also essential

to investigate variants shared among patients in order to elucidate the association between

transmitted variants and SCZ. Indeed, several sequencing studies have focused on shared vari-

ants associated with bipolar disorder [18, 19] and autism spectrum disorder [20, 21] in patients

in the same multiplex family. A previous WES study of SCZ multiplex families demonstrated

that several loci could potentially affect synaptic plasticity and neurocognitive performance

[22] and that variants in genes related to metabotropic glutamate receptor 5 (mGlu5) are more

common in affected family members [23].

However, the above-mentioned relatively large-scale sequencing studies have been done in

Caucasian populations. The total genetic variation of the Japanese population, however, is con-

sidered relatively low [24] compared to that of ethnically diverse populations, in particular

Europeans, which can be beneficial in sequencing studies due to decreased allelic diversity

[25–27]. Furthermore, rare variants, which were targeted in this study due to their more recent

origin, tend to be more geographically clustered and can be population specific, thus poten-

tially revealing new SCZ candidates beyond those identified in studies of Caucasian

populations.

We therefore hypothesized that we could identify variants associated with SCZ susceptibil-

ity in the Japanese population via analyses of Japanese SCZ multiplex families, even if the sam-

ple sizes were small compared with studies of Caucasian populations. Individual rare variants

provide limited power for identifying significant trait associations, and thus, multi-variant

and/or multi-genic approaches such as gene set enrichment tests are necessary.

To address this hypothesis, a WES study of multiplex families within the Japanese popula-

tion was conducted to identify disease-associated rare variants or gene sets.
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Materials and methods

Participants—SCZ multiplex families

A multiplex family was defined as a family having more than one member with SCZ. DNA

samples were collected from peripheral blood or saliva of 29 patients with SCZ, 1 patient with

obsessive-compulsive disorder (OCD), and 9 healthy individuals from 14 SCZ multiplex fami-

lies in Japan (Fig 1, S1 Table). Among the 14 SCZ multiplex families, pedigree 10 was a consan-

guineous family. All families were unrelated, lived on the mainland of Japan, and self-

identified as Japanese. All patients fulfilled the criteria for SCZ listed in the Diagnostic and Sta-

tistical Manual of Mental Disorders–Fifth Edition (DSM-5).

The Ethics Committees of Nagoya University Graduate School of Medicine approved this

study, and written informed consent was obtained from all subjects. The study was conducted

in accordance with the Helsinki Declaration of 1975 and its later amendments or comparable

ethical standards.

WES

The library was prepared using SureSelect XT Human All Exon V5 (Agilent Technologies).

WES was performed on a HiSeq2500 sequencer (Illumina) with paired-end 100-bp reads.

WES data reported are available only upon request, as the data contain potentially identifying

or sensitive pedigree information. Low-quality reads were excluded using the FASTX-Toolkit,

and the remaining reads were mapped to the Human 1kg Reference (GRCh37 + decoy) using

the BWA-MEM algorithm. Duplicated reads were removed using Picard. Variants were called

using the HaplotypeCaller in the Genome Analysis Toolkit (GATK) [28] and annotated using

ANNOVAR [29] with GENCODE Comprehensive gene annotation ver. 19.

Quality control

To reduce the number of false positives, only SNVs satisfying the following criteria were

included: read depth�10, genotyping quality�20, and alternative allele ratio�25%, which

Fig 1. Sequenced samples. Dashed lines indicate individuals who underwent WES. Squares indicate males, and circles

indicate females. Shading indicates an affected individual, and slash marks indicate deceased individuals. We

performed WES for 29 patients with SCZ, 1 patient with obsessive-compulsive disorder (OCD), and 9 healthy

individuals from 14 SCZ multiplex families in Japan.

https://doi.org/10.1371/journal.pone.0268321.g001
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was derived from the number of reads with alternative alleles divided by the total number of

reads. We also included variants passed through the GATK VQSR filter and not in segmental

duplications. Furthermore, using in-house WES data for 1,781 samples, variants with�20

detections were excluded to avoid platform-dependent sequencing errors (i.e., false positives).

We then performed analyses of relatedness using the—relatedness2 option of vcftools [30]

software to confirm the prior information about each multiplex family [31].

Filtering conditions

To identify pathogenic SNVs and indels, we selected those meeting the following conditions:

(1) variants that cause protein alterations; (2) variants located in the splicing site, including

synonymous variants detected by ANNOVAR with GENCODE comprehensive gene annota-

tion ver. 19., because synonymous variants that disrupt exonic splice enhancers could be a

common cause of genetic disorders [32]; (3) variants with an allele frequency�1% in the fol-

lowing databases: 1000 Genome Project (2015 August), total population without psychiatric

cohorts in Exome Aggregation Consortium ver. 0.3, Eastern Asian population in Exome

Aggregation Consortium ver. 0.3, Human Genetic Variation Database (http://www.hgvd.

genome.med.kyoto-u.ac.jp), and Japanese Multi Omics Reference Panel (https://jmorp.

megabank.tohoku.ac.jp/); (4) variants shared only among patients (we also selected de novo
variants only from pedigrees whose parents were unaffected, as pedigrees with affected parents

could have shared rare variants between cases); and (5) variants in genes with a percentile

residual variation intolerance score (RVIS) [33] (ExAC_0.05 threshold)�25% and genes

expressed in brain regions based on data from the Human Protein Atlas with normalized

expression�1, as we assumed that variants occurring in genes highly intolerant of protein

alterations and expressed in the brain could be deleterious for biological functions.

For deleterious variants and/or de novo or homozygous variants, we manually inspected

their calls using Integrated Genomics Viewer [34] ver.2.7.2 and confirmed their exonic func-

tions (change in protein structure and/or function induced by a variant in the exon, such as

synonymous, nonsynonymous, or loss of function) using Ensembl genome browser GRCh37

(http://grch37.ensembl.org/index.html).

Gene ontology (GO) analysis

We performed GO analysis (http://geneontology.org/docs/go-enrichment-analysis/) using

Cytoscape and its GeneMANIA plugin [35]. To correct in multiple comparisons, Q-values

derived via the Benjamini-Hochberg procedure were used to judge the significance of results.

The significance level was set at Q-value <0.05.

Results

WES analysis

We performed WES for 14 SCZ multiplex families in Japan (Fig 1). The data were quality

checked and filtered using the following criteria: 1) low frequency (an allele frequency�1% in

the databases), 2) protein-altering (missense and splice site variants), and 3) variants in the

intolerant genes (RVIS� 25%) and genes expressed in brain regions. Finally, we identified 525

variants among 481 genes carried by at least two patients in the same family. A summary of

the filtered variants is presented in S2 and S3 Tables. Loss-of-function variants among these

candidate variants are presented in Table 1. In addition to the 525 variants identified among

the 481 genes, we also identified a number of de novo variants (Table 2). Therefore, we
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Table 1. Loss-of-function variants.

Pedigree Genomic position Function Gene cDNA change� Amino acid change�

1 20:48479568 Frameshift deletion SLC9A8 c.864delA p.A288fs

3 19:56000877 Frameshift insertion SSC5D c.210dupG p.P70fs

6 10:26785321 Splicing APBB1IP c.160+1G>C -

7 19:33167791 Frameshift deletion RGS9BP c.622_643del p.P208fs

8 1:60306057 Frameshift deletion HOOK1 c.615delT p.D205fs

8 16:3165404 Stopgain ZNF205 c.G106T p.E36X

9 2:84932821 Stopgain DNAH6 c.C8677T p.R2893X

10 2:80085187 Stopgain CTNNA2 c.C347A p.S116X

10 18:6898571 Stoploss ARHGAP28 c.T2167C p.X723Q

10 7:12384097 Splicing VWDE c.3887-2->T -

11 17:18150343 Stopgain FLII c.G2700A p.W900X

11 19:33134477 Splicing ANKRD27 c.585+1G>A -

14 4:186357227 Frameshift insertion C4orf47 c.348_349insAT p.T116fs

14 8:29043913 Frameshift deletion KIF13B c.392_393del p.F131fs

14 16:74694876 Frameshift deletion RFWD3 c.465_472del p.V155fs

Genomic positions correspond to the NCBI37/hg19 build;

�Longest transcription.

https://doi.org/10.1371/journal.pone.0268321.t001

Table 2. Homozygous (hemizygous) and de novo variants.

Pedigree Sample ID Genomic

position

Function Gene

symbol

G_Change AA_Change MAF

ExAC_ALL ExAC_EAS 1000G_ALL HGVD jMorp

De novo
4 N0674 12:2224447 Nonsynonymous

SNV

CACNA1C c.C107T p.A36V 0 0 0 0 0

4 N0674 19:14046846 Nonsynonymous

SNV

PODNL1 c.G352A p.E118K 0 0 0 0 0

4 N0673 19:39993536 Nonsynonymous

SNV

DLL3 c.G491T p.R164L 0 0 0 0 0

13 N1010 2:10582149 Nonsynonymous

SNV

ODC1 c.C902T p.T301M 0.000022 0.0002 0 0 0

13 N1010 9:139964552 In-frame deletion SAPCD2 c.359_361del p.120_121del 0 0 0 0 0

Homozygous

10 N0688,

N0689

3:1363404 Nonsynonymous

SNV

CNTN6 c.T832G p.S278A 0.000011 0.0002 0 0.0016 0.002

Hemizygous

13 N0812,

N0813

(N1010)

X:43662605 Nonsynonymous

SNV

MAOB c.C326T p.P109L 0.0004 0 0.00052 0.00042 0

Abbreviations: MAF, minor allele frequency; ExAC, exome aggregation consortium; EAS, Eastern Asian; 1000G, 1000 Genome Project; HGVD, Human Genetic

Variation Database; jMorp, Japanese Multi-Omics Reference Panel. Genomic position based on NCBI build GRCh 37/hg19.

Note: N1010 is the mother of N0812 and N0813, who were affected with obsessive compulsive disorder with heterozygous variants in the X chromosome.

https://doi.org/10.1371/journal.pone.0268321.t002
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identified a total of 530 variants among 486 genes as potential multiplex family candidate vari-

ants for SCZ.

Of the 14 pedigrees examined, seven (pedigrees 1, 4, 5, 10, 11, 13, and 14) included control

samples. We selected 199 variants in 190 genes found in these seven pedigrees as “strict-fil-

tered” for further analysis, as we sequenced both affected and unaffected family members in

these pedigrees to exclude variants carried by healthy individuals.

GO analysis

To identify gene categories that could be affected by the identified candidate variants, we per-

formed GO analysis. Significantly enriched categories (Q-value <0.05) are shown in Table 3.

We tested the enrichment of the 199 variants identified in the 190 “strict-filtered” genes (pedi-

grees 1, 4, 5, 10, 11, 13, and 14) and found significant enrichment of genes associated with cal-

cium channel activity (Q = 0.032). A similar result was also observed for the 530 variants

identified in 486 genes that were derived from whole pedigrees in this study (Q = 0.011).

Discussion

This is the first report of a WES analysis of Japanese SCZ multiplex families. After WES analy-

sis and filtering of 14 SCZ multiplex families, we selected variants shared only among patients

(we also selected de novo variants only from pedigrees whose parents were unaffected, as pedi-

grees with affected parents could have shared rare variants between cases), and we identified a

total of 530 SCZ candidate SNVs and indels among 486 genes. In an in silico analysis involving

530 SCZ candidate SNVs and indels among 486 genes, we demonstrated that many candidate

variants were located in genes related to calcium ion channels that have also been reported as

involved in the pathophysiology of SCZ, as demonstrated by common variants from genome-

wide association analyses [10] and rare variants from whole-genome CNV/SNV analyses [16,

36]. For example, CACNA1C, which was identified as a candidate gene in this study, was also

identified as a SCZ susceptibility gene in a GWAS [10] as well as exome [16] and whole-

genome CNV [36] analyses.

The 486 candidate genes from 530 SCZ candidate variants identified in our present study

were enriched in calcium channel activity–related genes as the most enriched GO terms

(Table 3), although there could have been enrichment of calcium channel–related GO terms

among the top 25% RVISs and brain-expressed genes. Voltage-gated calcium channels are

widely distributed in all parts of the brain. They are critical for mediating intracellular Ca2+

influx, which results in transmitter release from pre-synaptic endings, thereby affecting neuro-

nal excitability and synaptic plasticity and playing a role in neurodevelopmental disorders

such as SCZ [37]. On the other hand, in this study, we did not observe any GO enrichment in

the SCZ-associated genes reported in two previous WES studies of SCZ multiplex families [22,

23] such as AMACR, a gene involved in fatty acid metabolism and previously implicated in

SCZ [22], and genes related to the metabotropic glutamate receptor 5 (Table 3) [23].

Among the 530 candidate variants identified, we detected a male carrier of a hemizygous

variant in MAOB (located on the X chromosome) and one homozygous variant in CNTN6 in a

pedigree with consanguineous marriage (Table 2). The p.P109L variant in MAOB identified in

family 13 was previously reported in a male SCZ patient as being inherited from his heterozy-

gous mother [38]. This variant may cause a change in the structure of the protein’s binding

site to the mitochondrial membrane [39]. We also identified this hemizygous variant in a male

SCZ patient segregated from his heterozygous mother with OCD (Fig 1). Interestingly, MAOB
is suggested as being associated with OCD [40].
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The homozygous SNV in CNTN6 shared among affected members of pedigree 10 with con-

sanguineous marriage is also interesting, as several recent reports have identified CNTN6 as a

candidate gene involved in neurodevelopmental disorders, including SCZ [41, 42]. SNVs in

CNTN6 are significantly associated with Autism spectrum disorder in particular [43]. CNTN6
encodes contactin 6, which plays a role in neuronal cell adhesion and promotes neurite out-

growth in sensory-motor neuronal pathways [44]. The homozygous variant we identified is

Table 3. GO analysis results.

GO ID GO term Q-value Coverage Gene
Genes from 7 pedigrees, including control samples (strict-filtered)
GO:0005262 Calcium channel activity 0.032 7/62 CACNA1C, RYR2, CACNB1, CACNA1E, LOXHD1, RYR1, CACNA1G
GO:0015085 Calcium ion transmembrane transporter

activity

0.033 7/73 CACNA1C, RYR2, CACNB1, CACNA1E, LOXHD1, RYR1, CACNA1G

GO:0005245 Voltage-gated calcium channel activity 0.033 5/26 CACNA1C, CACNB1, CACNA1E, RYR1, CACNA1G
Genes from all 14 pedigrees in this study
GO:0042391 Regulation of membrane potential 0.0023 18/165 WWP2, LRRK2, SHANK1, KCNH7, IFI6, MAPK8IP2,

KCNQ1, DSC2, ANK3, ACSBG1, CHRNA4, CACNA1E,

SKI, RYR2, NRXN1, CACNA1G, ANK2, AKAP6
GO:0043269 Regulation of ion transport 0.011 19/219 DIAPH1, WWP2, CAPN3, STIM2, CNKSR3, CACNA1C,

SHANK1, WNK2, AKT1, HOMER1, MAPK8IP2, KCNQ1, CAMK2G, ANK3,

CHRNA4, RYR2, NRXN1, ANK2, AKAP6
GO:0005262 Calcium channel activity 0.011 10/62 RYR1, ITPR1, STIM2, CACNB1, CACNA1C, LOXHD1,

RYR3, CACNA1E, RYR2, CACNA1G
GO:0015085 Calcium ion transmembrane transporter

activity

0.011 11/73 RYR1, ITPR2, STIM2, CACNB1, CACNA1C, LOXHD1,

RYR3, CACNA1E, RYR2, CACNA1G
GO:0034765 Regulation of ion transmembrane transport 0.026 13/119 WWP2, STIM2, SHANK1, WNK2, AKT1, HOMER1,

MAPK8IP2, KCNQ1, ANK3, RYR2, NRXN1, ANK2, AKAP6
GO:0072509 Divalent inorganic cation transmembrane

transporter activity

0.026 11/88 RYR1, ITPR1, STIM2, CACNB1, CACNA1C, LOXHD1,

RYR3, ITPR2, CACNA1E, RYR2, CACNA1G
GO:0010959 Regulation of metal ion transport 0.026 14/143 DIAPH1, WWP2, CAPN3, STIM2, CNKSR3, CACNA1C,

WNK2, HOMER1, KCNQ1, CAMK2G, ANK3, RYR2,

ANK2, AKAP6
GO:0032409 Regulation of transporter activity 0.026 12/105 WWP2, STIM2, SHANK1, WNK2, HOMER1, KMT2A,

MAPK8IP2, ANK3, RYR2, NRXN1, ANK2, AKAP6
GO:0034762 Regulation of transmembrane transport 0.026 13/126 WWP2, STIM2, SHANK1, WNK2, AKT1, HOMER1,

MAPK8IP2, KCNQ1, ANK3, RYR2, NRXN1, ANK2, AKAP6
GO:0032411 Positive regulation of transporter activity 0.026 7/34 STIM2, WNK2, KMT2A, ANK3, RYR2, ANK2, AKAP6
GO:0032412 Regulation of ion transmembrane transporter

activity

0.026 11/92 WWP2, STIM2, SHANK1, WNK2, HOMER1, MAPK8IP2,

ANK3, RYR2, NRXN1, ANK2, AKAP6
GO:0022898 Regulation of transmembrane transporter

activity

0.026 11/94 WWP2, STIM2, SHANK1, WNK2, HOMER1, MAPK8IP2,

ANK3, RYR2, NRXN1, ANK2, AKAP6
GO:0051235 Maintenance of location 0.041 15/176 ABCA1, CER1, RYR1, NFKBIE, ITPR1, OSBPL11, DAG1,

ENPP1, LATS1, SHANK1, NFKB1, TLN1, ANK3, SYNE1,

RYR2
GO:2000021 Regulation of ion homeostasis 0.044 11/100 RYR1, DIAPH1, CAPN3, ITPR1, CACNA1C, WNK2, IFI6,

ANK3, RYR2, ANK2, AKAP6

Abbreviations: GO, Gene Ontology.

Note: GO analysis was performed with 190 genes from 7 pedigrees, including control samples (strict-filtered) and 486 genes from all 14 pedigrees in this study. The genes

used in the GO analysis are listed in S4 Table.

https://doi.org/10.1371/journal.pone.0268321.t003
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located in the immunoglobulin C2–type domain (IGC domain), which mediates interactions

with contactin-binding partners such as protein tyrosine phosphatase receptor–gamma

(Ptptg), which plays a role in the molecular basis of neurodevelopmental functions [44]. More-

over, among the 486 genes examined in the present study, three genes (RBM12, NRXN1,

AKT1) are registered in the OMIM (https://www.ncbi.nlm.nih.gov/omim) database as being

associated with susceptibility to SCZ.

Although our results provide some support for the calcium channel–associated hypothesis,

there are still limitations to our study. First, our sample size was small for an investigation of

the burden and/or transmission of rare and de novo protein-altering mutations between

affected and non-affected individuals, and thus, our results could be misleading. Second, we

could not evaluate clinical phenotypes, especially within unaffected families. Therefore, we

could not evaluate the clinical phenotype of unaffected family members with discovered vari-

ants associated with susceptibility to SCZ, such as MAOB and CNTN6. Furthermore, in this

study, we could only elucidate minimal variant information for each pedigree due to data

availability constraints. In future multiplex familial studies, it will be important to evaluate in

detail the relationship between variants and phenotype within the same family. Third, due to

the study’s small sample size, the experiments could have generated false-positive results, and

strict filtering could have led to some false-negative results. The different strategies we used in

the study to narrow down candidate variants likely limited false positives, however. More

importantly, SCZ is not a monogenic disorder, so filtering is not necessary to identify only a

few pathogenic variants; identifying disease-associated pathways would also be a useful

approach to elucidate the mechanism of the disorder.

Conclusion

In conclusion, using WES analysis of 14 Japanese multiplex families, we identified a number of

rare variants segregated in SCZ patients. Our results provide support for the hypothesis that

calcium channel activity is related to the development of SCZ. Analyzing a larger sample size

of multiplex families could confirm these results and provide additional information regarding

the aspects of this disease.
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