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Abstract

The mitochondrial genetic code is much more varied than the standard genetic code. The invertebrate mitochondrial
code, for instance, comprises six initiation codons, including five alternative start codons. However, only two initiation
codons are known in the echinoderm and flatworm mitochondrial code, the canonical ATG and alternative GTG. Here,
we analyzed 23 Asteroidea mitogenomes, including ten newly sequenced species and unambiguously identified at least
two other start codons, ATT and ATC, both of which also initiate translation of mitochondrial genes in other inverte-
brates. These findings underscore the diversity of the genetic code and expand upon the suite of initiation codons among
echinoderms to avoid erroneous annotations. Our analyses have also uncovered the remarkable conservation of gene
order among asteroids, echinoids, and holothuroids, with only an interchange between two gene positions in asteroids
over �500 Ma of echinoderm evolution.

Key words: mitochondrial phylogeny, Asteroidea, mitochondrial gene evolution, mitochondrial gene order,
Echinodermata, translation table.

In 1968, Crick proposed that although the overall genetic
code is likely to be conserved through deep evolutionary
time, translation initiation codons may differ among taxa
(Crick 1968). Deviations from the standard code were first
discovered in the human mitochondrion (Barrell et al. 1979),
with a multitude of code variations that have since been
uncovered (Lobanov et al. 2010). A key difference between
the standard and alternative codes is in the initiation codon,
for which the canonical ATG is now known to be just one of
numerous possibilities. For example, up to 47 possible start
codons have been found in the model bacterium Escherichia
coli (Hecht et al. 2017).

The mitochondrial genes of echinoderms are translated
according to a variant genetic code (translation table 9) dis-
tinct from the standard code. Based on a 3,849-bp fragment
of mitochondrial DNA from Asterina pectinifera
(Echinodermata: Asteroidea), Himeno et al. (1987) uncovered
a number of variations in the genetic code, such as AGA and
AGG coding for serine instead of arginine, and hypothesized
that ATT and ATA could be alternative initiation codons for
the NADH dehydrogenase subunit 3 (ND3) and NADH de-
hydrogenase subunit 5 (ND5) genes, respectively (Asakawa
et al. 1995). Apart from the standard ATG, the only accepted
alternative mitochondrial initiation codon for echinoderms is
GTG (Jacobs et al. 1988; Cantatore et al. 1989). The

aforementioned studies have suggested ATA, ATC, and
ATT as possible start codons, although there have been res-
ervations (Cantatore et al. 1989). To date, the validity of ini-
tiation codons in the echinoderm mitochondrial code other
than ATG and GTG remains uncertain. Conversely, the mi-
tochondrial genetic code of other invertebrates (translation
table 5) comprises five alternative initiation codons—the two
present in the echinoderm mitochondrial code, along with
ATC, ATT, and TTG. Interestingly, ATT is the most frequently
annotated start codon for ND3 among invertebrates in an
investigation of over 900 mitogenomes, although ATG
remains the dominant initiation codon for all protein-
coding genes (PCGs) in translation tables 5 and 9 (Donath
et al. 2019). The same study also found that multiple other
initiation codons have been annotated for echinoderms, in-
cluding all alternative start codons in translation table 5 plus
TTT, TAT, GAT, and CTG.

In this study, we assembled eight new complete and three
incomplete mitogenomes across ten species of asteroid sea
stars for analysis with 16 published mitogenomes. For two
genes, ND3 and NADH dehydrogenase subunit 4L (ND4L), we
found unambiguous evidence for several species initiating
with either ATT (Asteroidea only; ND3, n¼ 16; and ND4L,
n¼ 12) or ATC (ND4L only; Asteroidea, n¼ 7; and
Echinoidea, n¼ 3) (Fig. 1), but no taxa had mitochondrial
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initiation codon ATA (Materials and Methods and see
Cantatore et al. 1989). We furthermore found preliminary
evidence in Euretaster insignis for TTG being a fourth alterna-
tive initiation codon through reannotation of the NADH de-
hydrogenase subunit 1 (ND1) to be in frame with the other
mitogenomes. TTG was also the initiation codon for ND3 (as
annotated by MITOS2; Bernt et al. 2013b). Indeed, inspection
of our ND3 alignment revealed that E. insignis had one less
codon at the 50 end than other echinoderm species. The
codon in ND3 that preceded TTG, AAT, is not a known
mitochondrial initiation codon in echinoderms or even inver-
tebrates more generally, although it is a possible start codon
in Escherichia coli (Hecht et al. 2017). Nevertheless, TTG is an
established alternative initiation codon in invertebrate mito-
chondria (Okimoto et al. 1990), so it possibly also initiates
translation of ND1 and ND3 in E. insignis and other echino-
derms (see Donath et al. 2019). More mitogenomes from its
close relatives (order Velatida) would clarify this relationship
with other asteroids and the components of the mitochon-
drial genetic code.

Considering the deep divergence between Asteroidea and
Echinoidea in the Cambrian (O’Hara et al. 2014), the conser-
vation of mitochondrial gene order within each of these taxa
is remarkable (Fig. 1). Examination of 21 asteroid, 26 echinoid,
and ten holothuroid mitogenomes revealed that there has
only been an interchange in ND1 and 16S rRNA gene posi-
tions, and both echinoids and holothuroids share the same
gene order (Fig. 2). These echinoderm taxa have a relatively

stable order of mitochondrial genes despite diverging from
one another as far back as �500 Ma (O’Hara et al. 2014). In
contrast, clades that have diversified over similar geological
time (e.g., Ophiuroidea [n¼ 3] and Crinoidea [n¼ 3]
[Perseke et al. 2008], as well as Corallimorpharia [Lin et al.
2014; Quattrini et al. 2020]) display much greater variability in
gene arrangements (Fig. 2).

In particular, the remaining echinoderm classes,
Ophiuroidea and Crinoidea, exhibit larger variations in gene
order compared with their relatives in Echinodermata. Lee
et al. (2019) examined 15 species of ophiuroid mitogenomes
and found limited gene order conservation compared with
asteroids, echinoids, and holothuroids, although the block of
genes between cytochrome c oxidase subunit I (COI) and
NADH dehydrogenase subunit 6 (ND6) were ordered identi-
cally among the four classes (see Scouras et al. 2004). Based on
17 mitogenomes, Galaska et al. (2019) found similar patterns
and estimated that rearrangements of rRNA genes occurred
�175–205 Ma for two ophiuroid species (Ophiacantha linea
and Amphipholis squamata; see also O’Hara et al. 2017).
Mitochondrial gene order in Crinoidea is most varied, with
some crinoids (e.g., Antedon mediterranea and
Neogymnocrinus richeri) no longer showing the conserved
block of genes present in the other four echinoderm classes.
In general, nucleotide substitution rate is positively linked to
gene order variation (Shao et al. 2003; Xu et al. 2006; Bernt et
al. 2013a; see also Yokobori et al. 2004, 2005). Therefore, the
more rapid mitochondrial nucleotide substitution in
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FIG. 1. Maximum likelihood phylogeny of Asteroidea mitochondrial genomes (solid lines) with Echinoidea as outgroup (dotted lines) (left) and
mitochondrial initiation codons arranged in gene order (right). Values on nodes represent maximum likelihood bootstrap (�50)/posterior
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ophiuroids and crinoids (Scouras et al. 2004) could be driving
the differences seen among echinoderm classes.

Although targeted sequencing of fast-evolving mitochon-
drial markers remains useful for phylogenetic inference (e.g.,
mitochondrial control region, Bronstein et al. 2018), complete
mitochondrial genes and genomes are now readily obtainable
via whole-genome sequencing (e.g., Galaska et al. 2019; this
study), and even as by-products of restriction site-associated
DNA (Terraneo et al. 2018a, 2018b) or hybrid-capture (Allio
et al. 2020; Quek et al. 2020) sequencing. Mitogenome
sequences are frequently used in downstream applications
such as population genomics and phylogenomics (Quek
et al. 2019; Barrett et al. 2020; Inoue et al. 2020; Poliseno
et al. 2020). Apart from homologous gene sequences isolated
from mitogenomes, gene order can also be useful for eluci-
dating phylogenetic relationships, particularly for ancient
divergences as mitochondrial DNA sequences are likely to
be substitution saturated due to the rapid evolutionary rates
(Boore and Brown 1998; Oxusoff et al. 2018). For example,
Fritzsch et al. (2006) reconstructed the phylogeny of proto-
stomes based on mitochondrial gene arrangements and re-
covered the monophyly of arthropods, annelids,
platyhelminths, and nematodes. However, such methods
are more applicable for deep relationships across a broad
range of taxa (Boore and Brown 1998; Lavrov and Lang
2005; Fritzsch et al. 2006), or among species with a number
of gene rearrangements (Chen et al. 2018; but see Tyagi et al.
2020).

The mitogenome phylogeny reconstructed here (Fig. 1) is
consistent with the phylotranscriptomic analysis of
Linchangco et al. (2017) in showing that Velatida,
Brisingida, and Forcipulatida share a close relationship and
are sister to Valvatida, Spinulosida, and Paxillosida. The para-
phyly of Valvatida has been reported in previous studies

(Janies et al. 2011; Mah and Blake 2012) and also noted by
Linchangco et al. (2017). The latter recovered Paxillosida as a
clade, though we note that Ophidiasteridae (represented here
by Ophidiaster granifer) was not analyzed. Although
Ophidiasteridae is conventionally placed within Valvatida,
Mah and Blake (2012) have reported that Ophidiasteridae
is more closely related to Paxillosida. Nevertheless, we note
that the sister relationship between Styracaster yapensis
(Paxillosida) and Ophidiaster granifer as well as the general
polyphyly of Paxillosida is not well supported by both recon-
structions (Fig. 1). Resolution of these relationships and revi-
sion of the Asteroidea classification are warranted but require
broader species and gene sampling.

Overall, this study has highlighted not just the diversity of
the genetic code and the conserved gene order of many
echinoderm mitogenomes but also improved gene annota-
tions arising from the accurate identification of initiation
codons.

Materials and Methods
New mitogenomes sequenced in this study consisted of 11
taxa, of which two were previously sequenced together with
Archaster typicus in Quek et al. (2019) and the remaining nine
samples were from Ip et al. (2019) and the cryogenic collec-
tion of the Lee Kong Chian Natural History Museum (for
sample information, see http://dx.doi.org/10.5281/zenodo.
3834170). DNA extraction, library preparation, sequencing,
read quality trimming, and assembly followed by mitoge-
nome contig identification and annotation largely followed
Quek et al. (2019), but sequencing was performed on a HiSeq
4000 (150�150 bp). Raw reads were trimmed using
Trimmomatic v0.38 (Bolger et al. 2014) and assembled with
SPAdes v3.12.0 (Bankevich et al. 2012) under default settings.
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FIG. 2. Mitochondrial gene order among the five living classes of Echinodermata.
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A BlastN (e-value ¼ 10e�6) was conducted against two
Acanthaster mitogenomes (Yasuda et al. 2006) to identify
mitochondrial contigs, which were then annotated using
MITOS2 (Bernt et al. 2013b).

Data obtained were combined with published, annotated
mitochondrial sequences for an additional 16 species from
GenBank. From the 27 mitogenomes, 13 PCGs and both
rRNAs were extracted and aligned. Annotations of some
PCGs by MITOS2 (Bernt et al. 2013b) had discrepancies in
lengths when aligned to reference mitogenomes downloaded
from GenBank, so all PCGs were aligned and annotations
adjusted following visual inspection to ensure that they
were in frame and accurately annotated.

Cytochrome b, ATPase subunit 6, and NADH dehydroge-
nase subunit 4 in three published mitochondrial genomes
were originally annotated with alternative initiation codons
ATA (Strongylocentrotus droebachiensis [AM900391] and
S. pallidus [AM900392]) or ATT (Patiria pectinifera
[D16387]), but inspection of gene alignments allowed the
start codon to be corrected as the standard ATG codon
(Fig. 1). Sequences from three samples could not be assem-
bled into complete mitochondrial genomes (Fig. 1), so only
full-length genes were extracted for phylogenetic analysis.

Sequence matrix preparation and phylogenetic analyses
were conducted as described in Quek et al. (2019) with phy-
logenetic reconstruction performed based on maximum like-
lihood implemented in RAxML v8.2.11 (Stamatakis 2014) and
Bayesian inference carried out in MrBayes v3.2.6 (Ronquist
et al. 2012).
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