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Abstract

Genomic regions that control traits of interest can be rapidly identified using BSA-Seq, a technology in which next-generation sequencing
is applied to bulked segregant analysis (BSA). We recently developed the significant structural variant method for BSA-Seq data analysis
that exhibits higher detection power than standard BSA-Seq analysis methods. Our original algorithm was developed to analyze BSA-Seq
data in which genome sequences of one parent served as the reference sequences in genotype calling and, thus, required the availability
of high-quality assembled parental genome sequences. Here, we modified the original script to effectively detect the genomic region–trait
associations using only bulk genome sequences. We analyzed two public BSA-Seq datasets using our modified method and the standard
allele frequency and G-statistic methods with and without the aid of the parental genome sequences. Our results demonstrate that the ge-
nomic region(s) associated with the trait of interest could be reliably identified via the significant structural variant method without using
the parental genome sequences.
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Introduction
Bulked segregant analysis (BSA) was developed for the quick

identification of genetic markers associated with a trait of inter-

est (Michelmore et al. 1991; Giovannoni et al. 1991). For a particu-

lar trait, two groups of individuals with contrasting phenotypes

are selected from a segregating population. Equal amounts of

DNA are pooled from each individual within a group. The pooled

DNA samples are then examined via restriction fragment length

polymorphism (RFLP) or random amplification of polymorphic

DNA (RAPD) analyses. Fragments unique to either group are po-

tential genetic markers that may link to genes that control phe-

notypic expression to the trait of interest. Candidate markers are

further tested against the population to verify the marker–trait

associations. With the recent dramatic reductions in cost, next-

generation sequencing (NGS) has been applied to more and more

BSA studies for the identification of qualitative or quantitative

trait loci (QTL; Duveau et al. 2014; Clevenger et al. 2018; Chen et al.

2018b; Arikit et al. 2019; Imerovski et al. 2019; Lahari et al. 2019;

Zheng et al. 2020). This new technology is referred to as BSA-Seq.

In BSA-Seq, pooled DNA samples are not subjected to RFLP/RAPD

analysis but are directly sequenced instead. Genome-wide struc-

tural variants between bulks, such as single-nucleotide polymor-

phisms (SNPs) and small insertions/deletions (InDel), are

identified based on the sequencing data. Genomic regions linked

to the trait-controlling gene(s) are then identified based on the

enrichment of the SNP/InDel alleles in those regions in each bulk.

The time-consuming and labor-intensive marker development

and genetic mapping steps are eliminated in the BSA-Seq

method. Moreover, SNPs/InDels can be detected genome-wide via
NGS, which allows for the reliable identification of trait-
associated genomic regions across the entire genome.

For each SNP/InDel in a BSA-Seq dataset, the base (or oligo in
the case of an InDel) that is the same as the reference genome is
termed the reference base (REF), while the base that differs from
the reference genome is referred to as an alternative base (ALT).
Because each bulk contains many individuals, the vast majority
of SNP loci in a bulk contain both REF and ALT bases. For each
SNP, the number of reads of REF/ALT alleles is termed allele
depth (AD). Because of the phenotypic selection via bulking, for
trait-associated SNPs, the ALT allele should be enriched in one
bulk while the REF allele should be enriched in the other.
However, for SNPs unassociated with the trait, both ALT and REF
alleles would be randomly segregated in both bulks and enriched
in neither. Hence, these four AD values (REF/ALT reads from
each bulk) can be used to assess how likely an SNP/InDel is asso-
ciated with the trait.

QTL-seq is the most widely used software program for BSA-
Seq data analysis (Takagi et al. 2013; Yamakawa et al. 2021). It cal-
culates the REF or ALT allele frequencies of an SNP in both bulks
with the four AD values and assesses the likelihood the SNP locus
is associated with the trait based on the allele frequency differ-
ence (DAF) between bulks. Another software program calculates
the G-statistic value of an SNP with the four AD values and uses
the calculated value to judge how likely the SNP is associated
with the trait (Magwene et al. 2011). We refer to the former as the
allele frequency method and the latter as the G-statistic method.
We have previously developed the significant structural variant
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method for BSA-Seq data analysis (Zhang and Panthee 2020). In
this method, an SNP/InDel is assessed with Fisher’s exact test us-
ing the AD values of both bulks. An SNP/InDel with a low P-value
of Fisher’s exact test tends to have a high absolute DAF and
G-statistic values. An SNP/InDel is considered significant if the
P-value of Fisher’s exact test is lower than a specific type I error
rate, e.g., a¼ 0.01, and nonsignificant if otherwise; a significant
SNP (sSNP)/InDel is more likely associated with the trait of inter-
est than a nonsignificant SNP/InDel. Theoretically, sSNPs/InDels
should be clustered within and around trait-controlling genes
and should not present in genomic regions not associated with
the trait of interest. Since SNPs/InDels normally are not evenly
distributed across chromosomes, we use the ratio of the signifi-
cant structural variants to the total structural variants to judge if
a genomic region is associated with the trait of interest in our
method. This ratio is a parameter at the genomic region level,
whereas both the allele frequency and the G-statistic value are
parameters at the SNP level, which is the key difference between
the significant structural variant method and the standard allele
frequency and G-statistic methods, and the root cause of our
method’s higher statistical power in the detection of the genomic
region–trait associations.

We tested the significant structural variant method using the
BSA-Seq data of a rice cold-tolerance study (Yang et al. 2013). One of
the parents in this study was rice cultivar Oryza sativa ssp. japonica
cv. Nipponbare. Its high-quality assembled genome sequences were
used as the reference sequences for SNP/InDel calling as well,
which makes the genotype calling and SNP/InDel filtering very
straightforward: any locus in any bulk that is different from the REF
allele is a valid SNP/InDel (Zhang and Panthee 2020). Only high-
quality assembled genome sequences can serve as the reference
sequences in genotype calling, an essential step in BSA-Seq data
analysis. For most species, however, such sequences are available
for only a single or limited number of lines. If lines without assem-
bled high-quality genome sequences are used as the parents in
BSA-Seq studies, the parental genomes are often sequenced via
NGS for the determination of the parental origin of SNP alleles and
the identification of parental heterozygous SNPs (htSNPs).
Modification of our original method to allow the analysis of BSA-
Seq data in the absence of assembled or NGS-generated parental
genome sequences would provide greater flexibility and signifi-
cantly reduce sequencing costs. Hence, we modified our original
script to allow for the identification of the false-positive SNPs/
InDels (homozygous structural variants that are the same in both
bulks but different from those in the reference genome) and part of
the heterozygous loci in the parents without the aid of the parental
genome sequences. Using the modified script and the scripts for the
standard G-statistic and allele frequency methods (Magwene et al.
2011; Takagi et al. 2013), we analyzed two public BSA-Seq datasets
using either the genome sequences of both the parents and the
bulks, or the bulk genome sequences alone. The results revealed
that we can only achieve reliable detection of genomic region–trait
associations via our modified script when using only the bulk ge-
nome sequences.

Materials and methods
The rice sequencing data used in this study were generated by
Lahari et al. (2019). In that study, parents LD24 and VialoneNano
were used to develop an F2 population of 178 plants. Both the re-
sistant and the susceptible bulk contained 23 plants each. The
DNA samples of both the parents and the bulks were sequenced
using Illumina MiSeq Sequencing System and MiSeq v3

chemistry. The accession numbers of these sequences are

ERR2696318 (parent LD24), ERR2696319 (parent VialoneNano),

ERR2696321 (the resistant bulk from the F2 population), and

ERR2696322 (the susceptible bulk from the F2 population). The

maize dataset used in this study was generated by Zheng et al.

(2020). Unlike the rice dataset generated by Yang et al. (2013),

high-quality assembled genome sequences are not available to

the parents of both the rice (Lahari et al. 2019) and maize (Zheng

et al. 2020) datasets used here. However, the parental genomes

were sequenced via NGS in both datasets, which is ideal for us to

test how parental genome sequences affect the identification of

trait-associated genomic regions via the allele frequency, G-sta-

tistic, and significant structural variant methods. A graphical

overview of the analysis workflow is presented in Figure 1.

SNP calling
The rice BSA-Seq sequencing data were downloaded from the

European Nucleotide Archive using the Linux program wget, and

the rice reference sequence (Release 47) was downloaded from

https://plants.ensembl.org/Oryza_sativa/Info/Index. Sequencing

data preprocessing and SNP calling were performed using fastp,

samtools, BWA-MEM, and GATK4 (Li et al. 2009; McKenna et al.

2010; Li 2011, 2013; Chen et al. 2018a) as described previously

(Zhang and Panthee 2020). When analyzing the BSA-Seq data

with the genome sequences of both the parents and the bulks,

bulk/parent SNP calling was performed separately. The common

SNPs of the two SNP datasets were used for the downstream

analysis (Figure 1). The SNP calling-generated .vcf file, but not

the raw sequences, is available to the public for the maize data-

set. Thus, SNP calling was performed only on the rice sequencing

data. For BSA-Seq data analysis in maize, the CHROM, POS,

QUAL, REF, ALT, GT, AD, and GQ fields of the .vcf file were

extracted to a .tsv file using the GATK4 utility VariantsToTable,

and the parental SNP set and the bulk SNP set were created from

this .tsv file using a Python script.

Workflow of the Python scripts
The SNP dataset generated via SNP calling was processed with

our Python script to identify sSNP–trait associations. A single

script contains all three methods. The workflow of the scripts is

as follows:

1) Read the .tsv/.csv input file(s) generated via SNP calling into a

pandas DataFrame (size-mutable and potentially

Figure 1 The overview of the analysis workflow. PyBSASeq_WP.py (for
the parent and bulk genome sequences) and PyBSASeq.py (for only the
bulk genome sequences) are Python scripts for BSA-Seq data analysis.
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heterogeneous two-dimensional tabular data structure with
labeled rows and columns; McKinney 2010; Reback et al. 2021).

2) Perform SNP filtering on the pandas DataFrame.
3) Calculate the P-values of Fisher’s exact test (the significant

structural variant method), the DAF (allele frequency differ-
ence between bulks) values (the allele frequency method),
or the G-statistic values (the G-statistic method) using the
four AD values (ADref1 and ADalt1 of bulk 1 and ADref2 and
ADalt2 of bulk 2) of each SNP in the filtered pandas
DataFrame. The P-values of Fisher’s exact tests, the DAF
values, and the G-statistic values of all SNPs on each chro-
mosome are smoothed by applying a Savitzky–Golay filter
(Savitzky and Golay 1964). The smoothed P-values are used
to identify the sSNPs, while smoothed DAF/G-statistic val-
ues will be used to calculate the corresponding values of
sliding windows in step 5.

4) Estimate the threshold of the sSNP/totalSNP ratio, the DAF,
or the G-statistic via simulation. A Savitzky–Golay filter
(Savitzky and Golay 1964) is applied to the simulated values
of DAF and G-statistic at the chromosome level as well to
smooth the threshold curves. The thresholds will be used to
identify the significant peaks/valleys in the plots generated
in the next step.

5) Use the sliding window algorithm to plot the sSNP/totalSNP
ratios, the DAF values, or the G-statistic values against their
genomic positions.

SNP filtering
In our previous BSA-Seq study, a parent of the bulks was the
O. japonica rice cultivar Nipponbare, and its genome sequences
were used as the reference sequences for SNP/InDel calling
(Zhang and Panthee 2020). In the current dataset, the parents
were LD24 and VialoneNano; many false-positive SNPs/InDels
and heterozygous loci in the parents would be included in the
dataset if analyzing the BSA-Seq data using the original script.
Hence, SNP filtering is carried out a little differently from
previously described, and its details are below (see
Supplementary Table S1 for example):

• Unmapped SNPs or SNPs mapped to the mitochondrial or
chloroplast genome;

• SNPs with an “NA” value in any column of the DataFrame;
• SNPs with zero REF read and a single ALT allele in both bulks/

parents;
• SNPs with three or more ALT alleles in any bulk/parent;
• SNPs with two ALT alleles and its REF read is not zero in any

bulk/parent;
• SNPs in which the bulk/parent genotypes do not agree with

the REF/ALT bases;
• SNPs in which the bulk/parent genotypes are not consistent

with the AD values;
• SNPs with a genotype quality (GQ) score less than 20 in any

bulk;
• SNPs with the sum of its AD values (ADref þ ADalt) greater

than six times of the average sequencing coverage in any
bulk; and

• SNPs heterozygous in any parent when parental genome
sequences are available.

In addition, for SNPs with two ALT alleles and zero REF read in
both bulks/parents, the REF allele is replaced with the first allele
in the “ALT” field, its ALT allele is replaced with the second allele
in the original “ALT” field. The REF read and a comma after it are
removed from both the AD fields (one for each bulk/parent). This
step is carried out before checking the genotype agreement

between bulks and the REF/ALT fields. When parental genome
sequences are involved, the common SNP set is identified before
filtering out the SNPs with a low GQ score in the parental SNP
dataset.

Sliding window settings
The sliding windows algorithm was used to facilitate the visuali-
zation of the distribution of the sSNP/totalSNP ratios, the DAF
values, and the G-statistic values across the chromosomes. For
all three methods, the size of the sliding windows is 2 Mb and the
incremental step is 10 kb in rice; the values of these variables are
5 Mb and 10 kb, respectively, in maize.

Swapping REF/ALT values of AD and genotype
The tightly linked SNP alleles from the same parent tend to segre-
gate together and should have a similar extent of allele enrich-
ment and thus similar AD values. In an SNP dataset, the
genotypes (GT) of each bulk/parent are represented as “GTref/
GTalt” when an SNP contains both the REF and ALT bases in the
GT field and the AD values in each bulk/parent is represented as
“ADref, ADalt”. The genotype and the AD value of the REF allele
are always placed first in both fields. For an SNP locus in the .tsv
input file, the allele with the same genotype as the reference ge-
nome is defined as the REF allele. However, it is highly unlikely
that all of the SNP alleles in a parent are the same as those in the
reference genome, except in instances where reference genome
sequences used in SNP calling are from one of the parents, as in
the case of the cold-tolerance study as mentioned above (Yang
et al. 2013). It is necessary to place the genotypes and AD values
of all SNP alleles from one parent (the reference parent, e.g.,
LD24) in the REF position, and those from the other parent (e.g.,
VialoneNano) to the ALT position in the GT and AD fields to
make the bulk dataset consistent. Thus, for a particular SNP, if
the REF base in the .tsv file is different from the genotype of
LD24, its GT/AD values in both bulks would be swapped, e.g.,
“G/A” to “A/G” and “19,9” (the REF read is 19 while the ALT read is
9 in a bulk in the .tsv input file) to “9,19” (the REF read becomes 9
and the ALT read becomes 19 after AD swapping). AD/GT swap-
ping is performed following SNP filtering and only when the pa-
rental genome sequences are used to aid BSA-Seq data analysis.
AD swapping ensures that adjacent SNPs have similar DAF
values. Examples of AD/GT swapping are provided in
Supplementary Table S1.

Calculation of DAF/G-statistic and estimation of
their thresholds
Calculation of the G-statistic values and the DAF values and
estimation of their thresholds were carried out as described
previously (Zhang and Panthee 2020). In brief, Equation (1) is
used for DAF calculation while Equation (2) is used for G-statistic
calculation. In Equation (1), the first part on the right side of the
equation is the ALT allele frequency in bulk 2, while the second
part on the same side is the ALT allele frequency in bulk 1. In
Equation (2), O is the observed AD (ADREF1, ADALT1, ADREF2, or
ADALT2), E is the expected AD under the null hypothesis and is
calculated as in the original G-statistic method (Magwene et al.
2011), and ln denotes the natural logarithm. The better the ob-
served values fit the null hypothesis, the closer the expected val-
ues are to the observed values and the closer to zero the
G-statistic value. Most sliding windows contain many SNPs. The
DAF/G-statistic value of a sliding window is the average value of
all SNPs in it.
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AF ¼ ADalt2

ADref2 þADalt2
� ADalt1

ADref1 þADalt1
(1)

G ¼ 2
X

i

Oi � lnðOi=EiÞ (2)

Threshold estimation of DAF/G-statistic is performed for all
SNPs in the dataset by simulation. For each SNP in a bulk, its se-
quencing depth (ADref þ ADalt) and the ALT allele frequency in
the population are used to simulate its ADref (smADref) and ADalt

(smADalt) under the null hypothesis. The simulated smADref1/
smADalt1 of bulk 1 and smADREF2/smADALT2 of bulk 2 are used to
calculate the DAF or the G-statistic. This process is repeated
10,000 times, the 99% confidence interval of the 10,000 DAF val-
ues is used as a significant threshold for the allele frequency
method, and the 99.5th percentile of the 10,000 G-statistic values
is used as a significant threshold for the G-statistic method. As in
the real dataset, the threshold of a sliding window is the average
value of all SNPs in it.

Identification of sSNPs and threshold estimation
For each SNP in the dataset, Fisher’s exact test was performed us-
ing its four AD values: ADref1/ADalt1 of bulk 1 and ADref2/ADalt2 of
bulk 2. An SNP with its P-value less than a¼ 0.01 is defined as a
sSNPs. For a trait-associated SNP (located in a trait-controlling
gene or tightly linked to the gene), the more the gene contributes
to the phenotype, the more its REF/ALT allele would be enriched
in either bulk and the more likely it would be identified as an
sSNP. SNPs are not distributed evenly along a chromosome, thus
it is very likely that different sliding windows contain different
numbers of SNPs. Therefore, the sSNP/totalSNP ratio is used to
measure sSNP enrichment in a sliding window.

Calculating a threshold requires simulating ADref/ADalt values
and calculating the P-value of Fisher’s exact test for each SNP in
a sliding window. This process needs to be repeated 10,000 times
for a sliding window. Doing so for all sliding windows of the SNP
dataset would take a very long time. To overcome this obstacle,
we first calculate a genome-wide threshold and use it to identify
potential significant peaks, then sliding window thresholds of
these peaks are calculated via simulation to verify if the sSNP/
totalSNP ratios of these peak sliding windows are really signifi-
cant.

Genome-wide threshold
The number of SNPs that are the same as the average number of
SNPs per sliding window are randomly selected from the entire
SNP dataset. For each SNP in this sample, smADref1/smADalt1 of
bulk 1 and smADref2/smADalt2 of bulk 2 are obtained via simula-
tion as above. These simulated AD values are used to perform
Fisher’s exact test; an SNP with its P-value less than a¼ 0.10 is
considered an sSNP. This process (starting from sampling SNPs)
is repeated 10,000 times, and the 99.5th percentile of these 10,000
simulated sSNP/totalSNP ratios is used as the significance
threshold for the detection of potential significant peaks. A
higher a value (10� higher than that used in the real SNP dataset)
is used here, resulting in the identification of more sSNPs from
the simulated SNP sub-dataset, hence a higher threshold and
fewer false positives.

Sliding window threshold
Estimating a sliding window threshold is very similar to estimat-
ing the genome-wide threshold; the only difference is that we do
not need to sample SNPs from the genome. Instead, smADref and
smADalt of each SNP in each bulk in the sliding window are

obtained via simulation, and Fisher’s exact test, identification of
sSNPs, and sSNP/totalSNP calculation are carried out in the same
way as above. This process is repeated 10,000 times, and again
the 99.5th of these 10,000 simulated sSNP/totalSNP ratios is used
as the threshold for this sliding window.

Results
We first test how parental genome sequences affected QTL detec-
tion in rice. The original sequence reads of the rice data were
3.9G, 3.8G, 3.4G, and 3.5G; they became 3.8G, 3.6G, 3.3G, and 3.4G
after quality control, respectively, in ERR2696318 (parent LD24),
ERR2696319 (parent VialoneNano), ERR2696321 (the resistant
bulk), and ERR2696322 (the susceptible bulk), which correspond
to 8.8�, 8.5�, 7.6�, and 7.9� coverage, respectively (Lahari et al.
2019). The preprocessed sequences were used for SNP calling to
generate an SNP dataset, which was analyzed using the modified
significant structural variant method, the G-statistic method,
and the allele frequency method with or without the aid of the
parental genome sequences.

BSA-Seq data analysis using the genome
sequences of both the parents and the bulks
The SNP calling-generated parent/bulk SNP dataset was proc-
essed with the Python script PyBSASeq_WP.py. SNP filtering was
performed as described in the Materials and Methods section. The
parental SNP dataset was processed first. All algorithms assume
all SNP loci are homozygous in the parental lines, and threshold
estimation is based on this assumption. Therefore, the SNPs het-
erozygous in any parent were eliminated. Although most rice
breeding lines should be homozygous in most loci, more than 7%
htSNP loci (2,011,062 homozygous and 153,000 heterozygous)
were identified in the parental SNP dataset. However, the GATK’s
variant calling tools are designed to be very lenient in order to
achieve a high degree of sensitivity (https://gatk.broadinstitute.
org/hc/en-us/articles/360035535932-Germline-short-variant-dis
covery-SNPs-Indels-), and it is possible that some sequencing
artifacts were identified as heterozygous alleles. The bulk SNP
dataset was processed second. The SNPs with the same chromo-
some ID, the same genomic coordinate, and the same allele com-
position in both datasets were considered common SNPs.
Common SNPs in the bulk dataset were used to detect SNP–trait
associations for all three methods.

The significant structural variant method
Each SNP in the dataset was tested via Fisher’s exact test using
its four AD values, and SNPs with P-values less than a¼ 0.01 were
defined as sSNPs. The chromosomal distributions of the sSNPs
and the total SNPs are summarized in Table 1. Using the sliding
window algorithm, the genomic distribution of the sSNPs, the to-
tal SNPs, and the sSNP/totalSNP ratios of sliding windows were
plotted against their genomic position (Figure 2, A and B). A
genome-wide threshold was estimated as 0.0538 via simulation,
as described in the Materials and Methods section. Two peaks above
the threshold were identified: a minor one on chromosome 9 and
a major one on chromosome 11. The position of the peak on chro-
mosome 9 was at 1.11 Mb, the sliding window contained 230
sSNPs and 3738 total SNPs, corresponding to an sSNP/totalSNP
ratio of 0.0615; the position of the peak on chromosome 11 was at
26.44 Mb, the sliding window contained 675 sSNPs and 1139 total
SNPs, corresponding to an sSNP/totalSNP ratio of 0.5926. The slid-
ing window-specific threshold was estimated for each peak via
simulation, and the values were 0.0551 and 0.0623, respectively,
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indicating both peaks were significant. Both values are higher

than the genome-wide threshold, probably due to the lower

amount of total SNPs in these sliding windows. The average SNPs

per sliding window was 5893.

The G-statistic method
The G-statistic value of each SNP in the dataset was calculated,

and its threshold was estimated via simulation as described in

the Materials and Methods section. Using the sliding window

algorithm, the G-statistic value of each sliding window, the aver-
age G-statistic values of all SNPs in that sliding window, was plot-
ted against its genomic position (Figure 2C), and the curve
pattern was very similar to that in Figure 2B. A significant peak
was identified on chromosome 11; its position was at 26.43 Mb,
its G-statistic value was 12.8068, well above the threshold 9.0574.

The allele frequency method
The DAF value of each SNP in the dataset was calculated, and the
DAF threshold of the SNP was estimated via simulation as de-
scribed in the Materials and Methods section. Using the sliding win-
dow algorithm, the DAF value of each sliding window, the
average DAF values of all SNPs in that sliding window, was plot-
ted against its genomic position (Figure 2D). A significant peak
on chromosome 11 was identified, the peak position was located
at 26.37 Mb, its DAF value was 0.7178, and the 99% confidence in-
terval was to �0.6508 to 0.6508. The DAF curves of all chromo-
somes are very similar to those created by Lahari et al. (2019).

BSA-Seq data analysis using only the bulk
genome sequences
The SNP calling-generated bulk SNP dataset was processed with
the Python script PyBSASeq.py. The methods and parameters
were the same as above; the only difference was that the parental
SNP dataset was not used here. Using a different color scheme,
the genomic distribution of the sSNPs, the total SNPs, the sSNP/

Table 1 Chromosomal distribution of SNPs—using the genome
sequences of both the parents and the bulks

Chromosome sSNPs Total SNPs sSNP/totalSNP

1 1170 139,910 0.0084
2 310 125,129 0.0025
3 459 102,331 0.0045
4 330 89,577 0.0037
5 372 84,706 0.0044
6 1581 83,605 0.0189
7 378 94,371 0.0040
8 258 80,617 0.0032
9 1292 67,157 0.0192
10 363 56,681 0.0064
11 2765 88,287 0.0313
12 241 87,145 0.0028
Genome-wide 9519 1,099,516 0.0087

Figure 2 BSA-Seq data analysis using both the parental and bulk genome sequences or the bulk genome sequences alone in rice. The red lines/curves
are the thresholds using both the parental and bulk genome sequences, while the yellow lines/curves are the thresholds using only the bulk genome
sequences. The black curves represent the number of sSNPs (A), sSNP/totalSNP ratios (B), G-statistic values (C), or DAF values (D) using the genome
sequence of both the parents and bulks. Whereas the cyan curves represent the number of sSNPs (A), sSNP/totalSNP ratios (B), G-statistic values (C), or
DAF values (D) using only the bulk genome sequences. (A) Genomic distributions of sSNPs and total SNPs. Blue curves: total SNPs using genome
sequences of both the parents and bulks; green curves: total SNPs using only the bulk genome sequences. (B) Genomic distributions of sSNP/totalSNP
ratios. (C) Genomic distributions of G-statistic values. (D) Genomic distributions of DAF values. Note: due to the value similarity, the cyan curves
partially masked the black curves in some genomic regions. The same is true for the yellow lines/curves and the red lines/curves.
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totalSNP ratios, the G-statistic values, and the DAF values are

plotted in Figure 2 for easy comparison.

The significant structural variant method
The chromosomal distribution of the sSNPs and total SNPs are

summarized in Table 2. The total number of SNPs was 1,346,185

here, much higher than the above, which was 1,099,516. The

number of the sSNPs and total SNPs in every sliding window are

always higher when the parental genome sequences were not

used (Figure 2A). The patterns of the cyan curves (without the

aid of the parental genome sequences) were very similar to those

of the black curves (with the aid of the parental genome sequen-

ces). The sSNP/totalSNP ratios in the low sSNP/totalSNP ratio

regions did not change much, and the cyan curves largely overlap

with the black curves in these genomic intervals. In contrast,

sSNP/totalSNP ratios of the sliding windows were decreased sig-

nificantly in the high sSNP/totalSNP ratio regions, leading to

missing the minor locus on chromosome 9. Only the peak on

chromosome 11 was significant; it was located at 26.96 Mb, a

0.52 Mb shift (Figure 2B). The peak sliding window contained

1122 sSNPs and 2945 total SNPs, corresponding to a 0.3810 sSNP/

totalSNP ratio, well above the genome-wide threshold (0.0535)

and the sliding window-specific threshold (0.0601). The average

SNPs per sliding window was 7215.

The G-statistic method
The patterns of the G-statistic value plot were very similar with

or without the aid of the parental genome sequences. Similar to

those in the significant structural variant method, the G-statistic

values were significantly decreased in high-value regions; only a

single sliding window was above the threshold (8.8975); its posi-

tion was at 26.96 Mb, and its G-statistic value was 8.9119

(Figure 2C).

The allele frequency method
Without the aid of the parental genome sequences, the pattern of

the DAF curve of chromosome 11, especially the genomic region

associated with the trait, was drastically different. Differences in

the curve patterns were observed in other chromosomes as well,

but they were relatively minor (Figure 2D). No peaks/valleys are

significant; all DAF values were within the 99% confidence inter-

val, although AD swapping was performed on only 67,396 SNPs,

6.1% of total SNPs.

Analysis of a maize BSA-Seq dataset
Sequencing coverage affects QTL detection. Higher coverage is re-
quired to detect minor QTLs than major QTLs (Zhang and
Panthee 2020). Rice has the smallest genome size among the ma-
jor cereal crops; maize has a genome size approximately six
times that of rice (Haberer et al. 2005). The cost would be much
higher in maize than in rice to obtain the same sequencing cover-
age. Eliminating the need for the parental genome sequences
would significantly reduce the sequencing cost for BSA-Seq stud-
ies in maize. Here, we analyzed a maize SNP dataset generated by
Zheng et al. (2020) to test how well our script works on a crop with
a much larger genome. Using the dataset, Zheng et al. identified a
major QTL controlling fertility restoration of the maize cms-c
(C-type cytoplasmic male sterility) gene via the allele frequency
method. We analyzed the dataset using the allele frequency,
G-statistic, and significant structural variant methods. With the
aid of the parental genome sequences, results similar to those in
Zheng et al. were obtained using the allele frequency methods; a
significant peak on chromosome 8 was identified. However,
many more QTLs were identified using the significant structural
variant method: in addition to the major locus on chromosome 8,
significant peaks on all chromosomes were identified (Figure 3B),
with major QTLs located on chromosomes 2, 8, and 9. Without
the aid of the parental genome sequences, the sSNP/totalSNP ra-
tios were decreased significantly in the high-value regions, but
significant peaks were still identified on chromosomes 2, 3, 4, 7,
8, 9, and 10. Most peaks are in very similar positions with or with-
out the aid of the parental genome sequences for the significant
structure variant methods, but a few peaks shifted significantly.
The major peak on chromosome 8 shifted from 129.90 to
138.22 Mb. Most peaks are also in very similar position for the
G-statistic method, but G-statistic values were reduced dramati-
cally without the aid of the parental genome sequences, and no
significant peaks were above the thresholds and no QTLs were
identified via this method (Figure 3, B and C). However, the DAF
curves are drastically different across the genome when only the
bulk sequences were used and no significant peaks/valleys were
detected (Figure 3D). Linked SNPs should have the same P-val-
ues, DAF values, and G-statistic values if recombination does not
occur between them. Many peaks in a short genomic region on
chromosomes 2 and 8 in Figure 3, B–D are observed, which is ei-
ther curved by high frequency of recombination hot spots in
those regions or is just noise caused by other genetic factors or in-
troduced by experiment design. Large duplication could be one of
such genetic factors. If a genomic region contains a large duplica-
tion and there are many SNPs between the duplicated copies,
these SNPs would affect the P-values, DAF, and G-statistic values
of sliding windows in this genomic region.

Discussion
We tested how parental genome sequences affected the detection
of SNP–trait associations via BSA-Seq using a dataset of the rice
root-knot nematode resistance and a dataset of the maize cms-c
fertility restoration. We analyzed these datasets with the signifi-
cant structural variant, the G-statistic, and the allele frequency
methods. Using the genome sequences of both the parents and
bulks, two QTLs in rice and more than 10 QTLs in maize were
detected via the significant structural variant method. However,
only a single major locus was detected in both maize and rice via
the G-statistic method or the allele frequency method. The
results, including QTL detection, the curve patterns, and peak/

Table 2 Chromosomal distribution of SNPs—using only the bulk
genome sequences

Chromosome sSNPs Total SNPs sSNP/totalSNP

1 1,335 163,260 0.0082
2 391 146,877 0.0027
3 578 120,319 0.0048
4 442 110,952 0.0040
5 481 103,362 0.0047
6 1,724 103,416 0.0167
7 459 114,564 0.0040
8 373 103,385 0.0036
9 1,410 82,744 0.0170
10 572 78,206 0.0073
11 3,120 112,719 0.0277
12 281 106,381 0.0026
Genome wide 11,166 1,346,185 0.0083
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valley positions, obtained via the allele frequency method are
similar to those in the original studies (Lahari et al. 2019; Zheng
et al. 2020). The positions of the peaks/valleys detected via differ-
ent methods were not the same, but they were very close to each
other (black curves in Figures 2, B–D, and 3, B–D). Using only the
bulk genome sequences, most peaks of the sSNP/totalSNP ratios
and the G-statistic values are in similar positions compared to
those with the aid of parental genome sequences, but their val-
ues were decreased significantly in many genomic regions, lead-
ing to missing some minor QTLs via the structural variant
method and all minor QTLs and most of major QTLs via the
G-statistic method; the only unmissed QTL via the G-statistic
method has a single sliding window above the threshold (cyan
curves in Figures 2, B and C, and 3, B and C). On the other hand,
both peak positions and the DAF values can be altered dramati-
cally, and no QTL can be detected via the allele frequency
method when the parental genome sequences were not used
(cyan curves in Figures 2D and 3D).

The significant structural variant method assesses if an SNP is
likely associated with the trait via Fisher’s exact test. The greater
the ALT proportion differences between the bulks, the less the
P-value of the Fisher’s exact test, and the more likely the SNP is
associated with the trait. Fisher’s exact test takes a numpy array
or a Python list as its input, the same P-value will be obtained
with either [(ADref1, ADalt1), (ADref2, ADalt2)] or [(ADalt1, ADref1),
(ADalt2, ADref2)] as its input. The G-statistic method assesses if an
SNP is likely associated with the trait via the G-test; the greater
the G-statistic value of an SNP, the more likely it contributes to
the trait phenotype (Magwene et al. 2011). The G-statistic values
are the same with either input [(ADref1, ADalt1), (ADref2, ADalt2)] or

[(ADalt1, ADref1), (ADalt2, ADref2)]. Changing the AD value (REF/ALT
reads) order in the array/list does not affect the P-value of
Fisher’s exact test or the G-statistic value of G-test, which is why
the parental genome sequences-guided AD swapping does not al-
ter the curve patterns of both methods. Therefore, theoretically,
parental genome sequences are not required to identify genomic
region–trait associations in either the significant structural vari-
ant method or the G-statistic method.

When the parental genome sequences were used, AD value
swapping was performed for the SNPs in which the genotype of
the reference parent was different from the REF base in the refer-
ence genome sequences (rice cultivar Oryza sativa ssp. japonica cv.
Nipponbare or maize B73, see the Materials and Methods section
for details), and the DAF values of these SNPs were calculated
based on the swapped AD values using Equation (1). AD swapping
makes the adjacent SNP loci have similar DAF values. The DAF
values of such SNPs would be calculated using Equation (3) if not
performing AD swapping. Equation (3) can be converted to
Equation (4), which would produce an opposite value relative to
that produced by Equation (1). For two adjacent SNPs in the refer-
ence parent, where one SNP has the same genotype as the REF
base while the other has the same genotype as the ALT base,
they would have opposite DAF values if AD swapping is not per-
formed. For the SNPs that do not contribute to the trait pheno-
type and are not linked to any trait-associated genomic regions,
their DAF value should fluctuate around zero. The parental ge-
nome sequences will have less effect on the DAF value of the slid-
ing windows containing such SNPs. However, for trait-associated
SNPs, adjacent SNPs with opposite DAF values would cancel each
other out and lower the absolute DAF value of the sliding window

Figure 3 BSA-Seq data analysis using both the parental and bulk genome sequences or the bulk genome sequences alone in maize. The color codes are
the same as in Figure 2. (A) Genomic distributions of sSNPs and total SNPs. (B) Genomic distributions of sSNP/totalSNP ratios. (C) Genomic distributions
of G-statistic values. (D) Genomic distributions of DAF values.
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significantly. Therefore, parental genome sequences are required
to identify genomic region–trait association via the original allele
frequency method. The recently published BRM method (Huang
et al. 2020) is a variant of the allele frequency method. Although it
has high detection power due to threshold estimation at the ge-
nome level, it is not suitable for BSA-Seq data analysis when the
parental genome sequences are unavailable.

DAF ¼ ADref2

ADref2 þ ADalt2
� ADref1

ADref1 þ ADalt1
(3)

DAF ¼ ADalt1

ADref1 þ ADalt1
� ADalt2

ADref2 þ ADalt2
(4)

We used the bulk SNPs that also exist in the parents for BSA-
Seq data analysis when using the genome sequences of both the
parents and bulks, and the htSNPs in the parents were filtered
out as well. Without the aid of the parental genome sequences,
we can only filter out htSNPs containing three or four alleles in
an SNP locus (e.g., the genotype of a parent is A/T and the geno-
type of the other parent is T/G, T/C, A/G, A/C, G/C, GG, or CC at
this SNP locus), but not the htSNPs containing only two alleles in
an SNP locus (e.g., the genotype of a parent is G/C and the geno-
type of the other parent is CC, GG, or G/C at this SNP locus). In ad-
dition, there are always bulk-specific SNPs (bsSNPs); if a portion
of the genome is sequenced in the bulks but not in the parents,
the SNPs in this genomic region will be bsSNPs; sequencing arti-
facts can create bsSNPs as well. Thus, the bulk SNP dataset could
contain a significant number of extra SNPs when only the bulk
genome sequences were used. In the rice data set, there were
1,345,185 SNPs in the bulk dataset when not using the parental
genome sequences, 137,224 of them were htSNPs (heterozygous
in the parental lines) while 109,445 SNPs of them were unique to
the bulks, and the rest 1,099,516 SNPs were the same as in the
dataset with the aid of the parental genome sequences. In the
maize dataset, the bulk SNP dataset size was 16,573,961 when
only the bulk genome sequences were used, 6,549,258 of them
were htSNPs while 3,195,935 of them were bsSNPs, and the rest
6,828,768 were the same as in the dataset with the aid of the pa-
rental genome sequences.

To determine how htSNPs and bsSNPs affected the detection
of genomic region–trait associations via the significant structural
variant method, we extracted the htSNPs/bsSNPs from the bulk
SNP dataset and created subdatasets containing only htSNPs or
bsSNPs. We first analyzed the rice dataset. We plotted the num-
bers of htSNPs, bsSNPs, genome heterozygosity, and ratios of
sSNPs in htSNPs or bsSNPs to the total SNPs using the sliding
window algorithm (Figure 4). Although low at the genome level,
heterozygosity can be �60% in some SNP sparse regions
(Figure 4B). The sSNPs of the htSNPs/bsSNPs contribute little to
the overall sSNP/totalSNP ratios in the vast majority of genomic
regions, but the sSNPs of the htSNPs contributes �0.04 and the
sSNPs of the bsSNPs contributes �0.02 to the overall sSNP/
totalSNP ratios around the major QTL (Figure 4C). The curve pat-
terns of this region in Figures 2B and 4C are similar as well. It is
likely that the contribution of htSNPs/bsSNPs to the overall sSNP/
totalSNP ratio is real in this genomic region. It is possible that we
used too stringent conditions in filtering out htSNPs in the
parents so that some identified htSNPs are actually homozygous.
Although we cannot rule out the possibility that some bsSNPs
were generated by sequencing artifacts, it is possible that some
genomic regions were really not sequenced in the parents but
were sequenced in the bulks considering the low sequencing cov-
erage (less than 9�). We then plotted the numbers of htSNPs,

bsSNPs, genome heterozygosity, and the ratios of sSNPs in
htSNPs/bsSNPs to total SNPs of the maize dataset using the slid-
ing window algorithm (Figure 5). The number of bsSNPs is much
less than that of the htSNPs (Figure 5A). The genome heterozy-
gosity is �39.5% (Figure 5B), indicating an average �20% or
higher heterozygosity in the parental lines (common htSNPs
shared between the parents were counted only once in obtaining
the 39.5% heterozygosity rate), which is much higher than that in
the rice dataset (�3.5%). Heterozygosity is very high (>60%) in
some genomic regions, and the positions of such regions are cor-
related very well to the positions of the deep valleys on chromo-
somes 2 and 8 (Figures 3B and 5B). The maximum contribution
of the sSNPs in htSNPs/bsSNPs to the overall sSNP/totalSNP is
less than 0.0075. Thus, both htSNPs and bsSNPs mainly increase
the total SNPs, not the number of sSNPs, which significantly
decreases the sSNP/totalSNP ratios in the QTL regions. Low ge-
nome heterozygosity as in the rice dataset has very minor effects
on the peak position shift, but too many htSNPs as in the maize
dataset can significantly shift some peaks of sSNP/totalSNP ratios
and G-statistic values. It is difficult to remove htSNPs with two
alleles from the dataset in a software approach without the aid of
parental genome sequences, but their negative effects on the
sSNP/totalSNP ratios and peak shift can be minimized if F2 popu-
lations are constructed with seeds from a single F1 plant or the
parents are selfed more generations.

All three methods can be used to identify both qualitative and
QTL; the allele frequency is particularly informative to determine
if an SNP is associated with a qualitative or quantitative trait lo-
cus. For an incomplete dominant locus, we expect 100% of ALT
allele frequency in one bulk while 0% of ALT allele frequency in
the other bulk. For a dominant locus, one bulk should contain
66.7% heterozygous and 33.3% dominant homozygous individu-
als, corresponding to 66.7% ALT allele frequency (treat the domi-
nant allele as the ALT allele), and the other bulk should contain
100% recessive homozygous individuals, corresponding to 0%
ALT allele frequency. For a QTL, allele enrichment is dependent
on how much it contributes to the trait. The major QTL would
have high allele enrichment, while the minor QTL would have
low allele enrichment. The ALT allele frequency of an SNP in a
QTL should be lower than 100% but could be higher than that of
a dominant locus. The peak on chromosome 11 in rice
(Figure 2B) should represent an incomplete dominant locus: a
cluster of SNPs around the peak have allele frequency of 100% in
one bulk and 0% in the other bulk. The highest peak on chromo-
some 8 in maize (Figure 3B) is very likely a dominant locus: a
cluster of SNPs around this peak have allele frequency of �67%
in one bulk and 0% in the other bulk. The highest frequency of
such SNPs is around 140 Mb on chromosome 8, very close to the
peak identified with only the bulk genome sequences. As
expected, the SNP alleles with 0% allele frequency in the cluster
are from the same bulk (after AD/GT swapping and removing
htSNPs and bsSNPs) in both rice or maize. Some SNPs with ALT
allele frequency not equal to 0% intermingled in the clusters was
observed in these regions; it is very likely they are caused by se-
quencing artifacts or SNPs between large duplications in the ge-
nome. The other significant peaks should represent QTLs. Our
results suggest that rice nematode resistance is controlled by a
single incomplete dominant gene with a minor modifier while
maize cms-c fertility restoration is controlled by a dominant gene
with many modifiers. These modifiers are most likely QTLs.

Both the allele frequency and the G-statistic methods use an
SNP level parameter to identify significant sliding windows to de-
tect the genomic region–trait associations. The significant
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structural variant method, however, uses the sSNP/totalSNP ra-
tio, a parameter at the sliding window level, to measure the sSNP
enrichment in a sliding window for the identification of the trait-
associated genomic regions. An SNP normally has less than 100
reads because of the cost concern, while a sliding window nor-
mally contains thousands of SNPs. Thus, the significant struc-
tural variant method has much higher statistical power, which is
consistent with our observations. Moreover, we used a¼ 0.01 for

the identification of sSNPs in the real SNP dataset, whereas we
used a¼ 0.1 for the same purpose in the simulated SNP dataset
when estimating thresholds, leading to the identification of more
sSNPs in the simulated SNP dataset and thus higher sSNP/
totalSNP thresholds. For the rice dataset, the genome-wide
threshold is 0.0538 with the aid of the parental genome sequen-
ces and 0.0535 without the aid of the parental genome sequences
with a¼ 0.1 for threshold estimation (Figure 2B). When using

Figure 4 The effects of htSNPs and sequencing bsSNPs on BSA-Seq data analysis when only the bulk genome sequences were used in rice. (A) Genomic
distributions of sSNPs (cyan), htSNP (magenta), bulk-specific SNPs (gray), and total SNPs (green). (B) Genomic distributions of SNP heterozygosity in the
bulk genome. (C) Genomic distributions of the ratios of sSNPs from htSNPs (magenta) or bsSNPs (gray) to the total SNPs using the dataset with only the
bulk genome sequences.

Figure 5 The effects of htSNPs and sequencing bsSNPs on BSA-Seq data analysis when only the bulk genome sequences were used in maize. (A)
Genomic distributions of sSNPs (cyan), htSNPs (magenta), bsSNPs (gray), and totalSNPs (green). (B) Genomic distributions of SNP heterozygosity in the
bulk genome. (C) Genomic distributions of the ratios of sSNPs from htSNPs (magenta) or bsSNPs (gray) to the totalSNPs using the dataset with only the
bulk genome sequences.
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a¼ 0.05 for threshold estimation, the thresholds are much lower,
0.0275 with the aid of the parental genome sequences and 0.0273
without the aid of the parental genome sequence; in addition to the
major locus on chromosome 11 and the minor locus on chromo-
some 9, a significant peak on chromosome 6 was identified with or
without the aid of the parental genome sequences. Similarly, the
sSNP/totalSNP thresholds were decreased significantly in maize us-
ing a¼ 0.05 for threshold estimation and thus more minor QTLs
were detected. The sSNP/totalSNP ratio of a sliding window within a
genomic region not associated with the trait should be zero. The
sSNP/totalSNP ratios of the sliding windows on the entire chromo-
somes 2, 7, 8, and 12 and the vast majority of the genomic regions
of the other chromosomes are very close to zero in Figure 2B, and
the ratios of the majority regions of chromosomes 1, 3, and 5 in
Figure 3B are very close to zero as well, suggesting the background
noise of the significant structural method is very low and it is rea-
sonable to use a¼ 0.05 for threshold estimation. Therefore, the sig-
nificant structural variant method can be used to reliably detect
major QTLs and some minor QTLs when the parental genome
sequences are not available.

Data availability
The scripts and their usage can be found on https://github.com/
dblhlx/PyBSASeq. The rice raw BSA-Seq sequencing data are
available on https://www.ebi.ac.uk/ena/browser/view/PRJEB27
629. Small subsets of the rice and maize parental/bulk SNP/InDel
datasets used in this study are deposited on https://github.com/
dblhlx/PyBSASeq/tree/master/Data and can be used as the input
file(s) to test the Python scripts.

Supplementary material is available at G3 online.
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