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Abstract

Research on specialized biological systems is often hampered by a lack of consistent terminology, especially across species.
In bacterial Type IV secretion systems genes within one set of orthologs may have over a dozen different names. Classifying
research publications based on biological processes, cellular components, molecular functions, and microorganism species
should improve the precision and recall of literature searches allowing researchers to keep up with the exponentially
growing literature, through resources such as the Pathosystems Resource Integration Center (PATRIC, patricbrc.org). We
developed named entity recognition (NER) tools for four entities related to Type IV secretion systems: 1) bacteria names, 2)
biological processes, 3) molecular functions, and 4) cellular components. These four entities are important to pathogenesis
and virulence research but have received less attention than other entities, e.g., genes and proteins. Based on an annotated
corpus, large domain terminological resources, and machine learning techniques, we developed recognizers for these
entities. High accuracy rates (.80%) are achieved for bacteria, biological processes, and molecular function. Contrastive
experiments highlighted the effectiveness of alternate recognition strategies; results of term extraction on contrasting
document sets demonstrated the utility of these classes for identifying T4SS-related documents.
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Introduction

Named entity recognition (NER) research has focused on

recognition of classes such as genes, proteins, and diseases. We

explored recognition of less-studied classes of entities, such as

cellular components and biological processes, to support enhanced

access to the literature for users of the Pathosystems Resource

Integration Center (PATRIC, patricbrc.org). We chose bacterial

Type IV secretion systems (T4SSs) as our first area of focus with

the intent of applying similar techniques in future work to other

biological phenomena of interest to infectious disease researchers,

such as pathogenicity mechanisms, virulence factors, colonization

and incubation, and evasion of host immune response.

Searching literature related to T4SSs is difficult, in part, due to

a lack of common terminology across bacterial species. In this

introduction, we briefly describe bacterial T4SSs and their

functional complexity, to demonstrate the extent of the synonym

problem in this domain, and our approach to mitigate that

problem with the use of named entity recognition techniques.

Type IV Secretion Systems
At least seven distinct macromolecular translocation systems

have been identified in prokaryotes for the transfer of molecules

across intra- and intercellular barriers [1]. Currently, T4SSs are

the only group of translocation machines that span the broad

distribution of Prokaryota, being encoded within many genomes of

both Gram negative and Gram positive species, as well as within

some wall-less bacteria and Archaea [2]. Based on a survey of

diverse subfamilies [3], it can be stated that T4SSs function

predominantly in conjugation [4], naked DNA uptake and release

[5], and the propagation of genomic islands [6]. As such, T4SSs

are important factors in bacterial diversification and are

responsible for the lateral mobilization of antimicrobial resistance

and virulence genes. Additionally, T4SSs are also used by some

bacterial species to transport effector molecules (DNA and/or

protein) to eukaryotic host cells [7], a process that can facilitate

infection and sometimes pathogenesis. For example, over 150

substrates of the dot/icm T4SS of Legionella pneumophila have been

identified, many of which assist the bacterium in its avoidance of

the host lysosomal network [8,9]. Thus, given their broad

phylogenetic scope, T4SSs encompass an extraordinary array of

functional diversification and constitute a major player in

infectious disease processes in many bacterial species. This level

of biological complexity challenges their classification and

characterization, yet because of their importance it is a worthwhile

endeavor to do so.
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One confounding aspect of T4SSs pertains to gene nomencla-

ture. Across the major groups of T4SSs, rarely are gene

nomenclatural schemes consistent, even when informatics strongly

supports orthology across these divergent families (Fig. 1). Relative

to the archetypal vir T4SS, there exists a wide array of synonymous

gene and protein names for components related to the vir genes.

For example, VirB6 is synonymous with AvhB6, TrbL, Vbh6,

CagX, TraG, Pfc19, and VblB6. In addition, T4SS function can

be radically different across even closely-related species. While the

vir T4SS of A. tumefaciens, which is essential for survival in its plant

hosts and secretes a nucleoprotein complex into host cells that

eventually results in insertion of tumerogenic DNA into the host

genome [10,11], the vir T4SS of closely-related Sinorhizobium

melliloti is not essential for symbiosis with its host, but rather needed

only for bacterial conjugation [12].

The diversity of terminology associated with genes and proteins

across the range of organisms exhibiting these transport mecha-

nisms can hinder unification of the related literature and

knowledge, so we instead chose to focus on the organisms and

mechanisms that define and describe the behavior of these T4SSs.

Our hypothesis is that the introduction of information relating to

cellular components, biological processes, molecular functions,

and organisms will enable more robust identification of the

literature in this and similar fields, when allied with existing well-

developed systems for gene and protein recognition. Exploitation

of such information, however, requires the creation of systems that

can extract these novel classes of entities and concepts from the

literature. Thus, we developed named entity recognition systems

targeted to these new concept classes. We assessed their

effectiveness not only with regard to a ‘‘gold standard’’ corpus

Figure 1. Complexity of Type IV secretion system (T4SS) architecture and nomenclature. (A) Model of the VirB/VirD P-T4SS encoded on
the pTi plasmid of Agrobacterium tumefaciens. LPS = lipopolysaccharide, OM = outer membrane, M = murein layer, IM = inner membrane, C =
cytoplasm. (B) Description of the VirB/VirD proteins. (C) Diversity encompassed by the major groups of T4SSs. P, P-T4SS: top = Rickettsia prowazekii
(rvh) [31],[45] bottom = Helicobacter pylori (cag pathogenicity island, cag-PAI) [46]. Genes with homology to vir genes are colored accordingly. cag-
PAI genes colored gray are not known to form the T4SS scaffold, while genes colored white are involved in T4SS function but have no clear homology
to vir genes. F, F-T4SS: top = Escherichia coli (tra/trb of F plasmid), bottom = Neisseria gonorrhoeae (tra/trb of gonococcal genetic island). Capital
letters depict tra genes while lower case letters depict trb genes, with remaining genes given their full names. I, I-T4SS: top = tra/trb of the IncI
plasmid R64, bottom = Legionella pneumophila (dot/icm) [47]. Capital letters depict icm and tra genes while lower case letters depict dot and trb
genes. GI, GI-T4SS: top = Haemophilus influenzae (tfc), bottom = Salmonella enterica Typhi (tfc). NOTE: Genes of F-, I- and GI-T4SSs with homology to
vir genes are colored accordingly.
doi:10.1371/journal.pone.0014780.g001
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that we created for training and evaluation, but also in terms of

their ability to identify terminology which can distinguish T4SS-

related documents from documents relating to other secretion

systems and from more general documents in the biological

domain.

Related Research
The need for creation of controlled vocabularies targeted to

microbiology has been noted in the literature [13]. While there are

established ontologies, such as the Gene Ontology [14], there is a

substantial disparity between the names and synonyms present in

these ontologies and terminology used by authors. The text mining

efforts described here aim to overcome these terminological

barriers and can be used to aid ontologies such as GO by allowing

GO to import synonyms revealed by the text mining effort and

through the expansion of GO into key areas of interest to

infectious disease researchers.

Many approaches have been applied to the NER problem in the

biomedical domain, particularly in the area of gene/protein

mentions [15], predominantly involving systems that exploit

different types of machine learning techniques, such as Naive

Bayes’, Maximum Entropy, Support Vector Machines, and

Conditional Random Fields [16,17,18,19]. There has been little

work published explicitly dealing with text mining targeting

bacterial Type IV secretion systems. The terminology relevant to

this domain spans several concept classes including: microorgan-

isms, genes and proteins, and several concept classes from the

Gene Ontology, notably cellular components, biological processes,

and molecular function. In terms of potential pathogens, there has

been some research on disease recognition [20,21,22,23,24,25].

There has been very substantial research on recognition of genes

and proteins, through several community evaluations, such as

JNLPBA-2004 [26] and BioCreative [27,28]. For cellular

components, biological processes, and molecular function, most

research has focused on assigning one or more GO tags to

documents, as in GoPubMed [29]. While variants of these tasks

have achieved classification accuracies just over 70%, a related

BioCreative Challenge [27] indicated that due to lack of training

data and the complexity of the task, no systems had yet achieved

levels of accuracy sufficient for practical use. Our work targets the

specific and more challenging task of recognizing the specific GO

concept mentions associated with T4SS within the text.

Materials and Methods

First, we describe the resources and techniques we applied to

investigate the creation and application of named entity

recognition systems for the T4SS domain. We begin by describing

the methodology for identifying the entity types of interest. We

then describe in detail the creation of a gold standard corpus for

these entity classes for use in training and evaluation of our system.

Next, we explain the extraction and tuning of terminological

resources for this task, based on publicly available, large-scale,

curated resources. Finally, we present the dictionary-based and

hybrid machine-learning/dictionary-based approaches to named

entity recognition employed in this work.

Selection of Named Entity Classes
Ideally, a T4SS named entity recognizers would have been

developed using an existing annotated corpus freely available to

the text mining community; however, since recognizing T4SS

entities represents novel challenges for text mining, there are no

prior standard annotated corpora to serve as training data for

machine learning algorithms or to provide a gold standard for

evaluation. Furthermore, the types of relations and patterns of

term occurrence that are interesting are not typically present in the

abstracts, but more often appear as part of the full text of the

articles. Therefore, we developed new training and evaluation

corpus materials for these concepts of interest, based on

annotation of full papers.

It was necessary to determine the types of entities that would be

most useful for distinguishing T4SS-related documents. To

facilitate this process, we used the term extraction service,

TerMine (http://www.nactem.ac.uk/software/termine/) [30] to

automatically recognize frequent multi-word terms in a corpus.

The top terms identified by TerMine included ‘‘secretion system’’,

‘‘Ti plasmid’’, ‘‘outer membrane’’, and ‘‘nuclear import.’’

Frequent single word terms could have been used as well although

we believe single word terms such as ‘‘system’’, ‘‘plasmid’’,

‘‘membrane’’ and ‘‘nuclear’’ are less informative for the task at

hand. TerMine was applied to 10 T4SS-related documents and 17

‘near-miss’ documents; we refer to these documents as the

Terminology Exploration Set. The positive training examples

are selected from articles listed in a Type IV secretion system

bibliography compiled by a domain expert. The bibliography is

the basis for references in Gillespie [31] and includes 268

references (see Supporting Information S1). The set of negative

examples was compiled by randomly selecting papers from

journals on bacteriology, microbiology, cell stress, and other near

miss topics. Less related topics, such as soil metagenomics and

cancer, were included to ensure a broader coverage in molecular

function and cell component areas. Two domain experts reviewed

the list of negative examples; one paper was eliminated because it

addressed Type IV secretion systems but referred to it as

conjugation (a T4SS function). A list of the top-ranked 240 terms

formed the basis for term category selection. The 20 highest

ranked terms appear in Appendix A (included in Supporting

Information S1).

Corpus Creation and Annotation
We annotated the four concept classes that should aid in the

identification of documents associated with Type IV Secretion

Systems: bacteria names, cellular components, biological process-

es, and molecular functions.[32] For cellular components,

biological processes, and molecular functions, we restricted the

annotation, and subsequently recognition, to those subsets of the

entity classes specifically linked to T4SS, as detailed below. Full

annotation guidelines for all classes are available in the

supplementary material, Supporting Information S1.

N Bacteria: Since T4SS are employed by bacteria to transport

material we annotated all named instances of bacterial

organisms. These names generally include genus and species,

with the genus frequently abbreviated to its first letter. If

present, subspecies, strain, and serovar names were annotated

as part of the entity. For example, Agrobacterium tumefaciens str.

C58 is annotated, as are its alternate forms, including

Agrobacterium tumefaciens C58, Agrobacterium tumefaciens, and A.

tumefaciens.

N Cellular components (as defined in GO [14]) were tagged if

they were associated with Type 4 secretion systems. Associa-

tion with GO terms was determined by a mapping from T4SS-

related genes in UniProt to GO, described in detail in the

Concept and Entity Recognition Resources section below. The

same process was followed for biological process and molecular

function classes. A list of primary associated concepts appears

in Appendix B (see Supporting Information S1). Examples

include: protein complex, membrane, and periplasmic space.

NER for Bacterial T4SS
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In addition, terms whose concepts are related to the selected

GO terms are also tagged, as are terms specific to conjugation

apparatus, such as the sex pilus or conjugal pore.

N Biological Processes identified by GO and associated with

T4SS were also tagged, along with related concepts with

alternate lexical realizations. These concepts included: trans-

port realized as protein transport process and conjugation also

realized as conjugal transfer of DNA. When specific genes

were included in the description of the process, they were also

tagged, as in RP4 plasmid transfer. Finally, more general

biological processes were tagged in a context of T4SS,

including localization, translocation, and virulence.

N Molecular functions in GO were tagged if associated with

T4SS. These functions include different types of binding, such

as ATP binding or RNA binding, and classes of activity, such

as hydrolase activity or protein transporter activity. Again,

related concepts were tagged, as in GTP-binding.

Exact GO terms are rarely used in the text of publications so

corpus annotators used their judgment to identify related terms

when tagging the training corpus.

The corpus was seeded with 10 full text documents from the

T4SS-targeted bibliography provided by a T4SS domain expert

(described above). An exploratory manual annotation of full-text

documents for bacteria names, cellular components, and biological

processes was performed by a bioinformatician. Based on this

initial annotation, only bacteria were recognized with good

accuracy (.80%). For each of the latter three entirely novel

concept classes, we created a more extensive annotated corpus

through the use of NaCTeM’s ‘accelerated annotation’ (Acela)

interface Through this interface, the domain expert iteratively and

interactively worked with the system to annotate candidate

instances of an entity class, in a setting similar to active learning.

We created an instance of the Acela system specific to each

concept class, augmenting the original document set with a new set

of untagged full-text documents, bringing the total set of

documents to be annotated to 27, five of which are also present

in the terminology exploration set. The domain expert used the

interface to tag entity mentions until the system achieved an

estimated coverage of over 95%, or until no additional positive

instances were found. For quality control, another domain expert

was asked to second-score a subset of the annotations for cellular

component, a particularly complex class. Since the two domain

experts had dissimilar annotations (inter-rater agreement score of

F-measure = 42.1%), they worked together to create an adjudi-

cated annotation and revised the guidelines for annotation. The

detailed corpus statistics for the corpus are shown in Table 1

(Training and Test Corpus).

Entity and Concept Recognition Resources
For each of the entity types, we constructed lexical resources

tailored to the task from a combination of established, curated

domain ontologies and term lists provided by domain experts.

Detailed statistics for these resources appear in Table 2.

We merged two large-scale resources for scientific names for

bacteria: the bacteria branch of the NCBI taxonomy (http://www.

ncbi.nlm.nih.gov/Taxonomy) and the ‘List of Prokaryotic names

with Standing in Nomenclature’ (LPSN, http://www.bacteria.cict.

fr). We extracted all scientific bacteria names from these resources

and converted them to a set of standardized forms that cover

typical variability for these terms (see Supporting Information S1).

For the classes of cellular component, biological process, and

molecular function, we extracted instances from the corresponding

namespaces of the GO. The task-specific term list for biological

processes, cellular components, and molecular functions was

compiled with the following process. A domain expert compiled

a list of 929 genes related to Type IV secretion systems. The list

was developed based on the domain expert’s understanding of the

various names for the diverse array of Type IV secretion systems.

For each gene, GO annotations were retrieved from UniProt.

Domain experts reviewed the list to identify GO annotations

specific to Type IV secretion systems that did not generally apply

to other topics as well. A full list GO annotations retrieved from

UniProt and the root T4SS concepts selected as relevant by

domain experts can be found in Appendix C (see Supporting

Information S1). From these root T4SS concepts, we extracted all

names and synonymous forms for concepts on corresponding sub-

branches of Gene to populate our dictionary resources. The

reduction in terminology resulting from this T4SS domain-specific

focus is highlighted in Table 2.

The output of the NER task is a tagged span of text identifying

bacteria name or a concept that is a member of the set of concepts

constituting the intersection of T4SS concepts and one of

biological process, cellular component, or molecular function.

For this task, the goal is to identify concepts related to T4SS at the

top levels of the GO ontology. For evaluation purposes, a tagged

span was considered correctly identified it contained a term related

to T4SS,e.g. conjugation, and was in the context of a T4SS topic,

e.g. bacterial conjugation but not molecular conjugation.

Entity and Concept Recognition Approaches
We evaluated three recognition techniques: a pure dictionary

approach, a dictionary plus corpus enrichment, and a machine

learning approach. In a pure dictionary-based approach, matching

is performed to identify the longest substrings, under simple

orthographic normalization, that match in the static dictionaries

created above. In the second strategy, dictionary-based matching

Table 1. Corpus statistics for T4SS concepts: Bacteria, Cellular Component (Cell. Comp.), Biological Process (Bio. Process.),
Molecular Function (Molecular.Fn.).

Fully Manual Annotation Acela Annotation (with Manual Seeds)

# Documents 10 27

# Pseudo-sentences 2437 11914

# Tokens 63465 222966

Bacteria Cell. Comp. Bio. Process Molecular Fn

# Tagged Entities 526 2237 1870 203

# Tagged Tokens 1034 4440 3001 369

doi:10.1371/journal.pone.0014780.t001

NER for Bacterial T4SS
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with corpus enrichment, tagged terms found in a training portion

of the corpus were added to the static dictionary and then

matching was performed. This strategy allowed the system to

augment the terminology found in standard domain resources with

that present in running text.

The machine learning approach incorporated dictionary-based

information and other features in a Conditional Random Field

(CRF) tagger. CRFs are machine learning algorithms which take

into account features of the context in which named entities

appear. When used with natural language sentences, the words

before and after a term constitute the context and features include

the part of speech and capital/lower case patterns in those

surrounding words. CRFs [33] have been used successfully to

sequence labeling problems such as named entity recognition, part

of speech tagging and parsing[34,35]. The main advantage of

CRFs is that they estimate the conditional probability distribution

over labeled sequences and allow the information on the

confidence of the decision to be used by other components in

the text processing pipeline.[34,35] We employed a linear chain

CRF model trained on the annotated corpora converted to a

standard named entity recognition data format. The format,

known as the BIO format, labels each word in a text with a B, I or

O for beginning of an entity, inside an entity, and outside and

entity, respectively. For example, the term ‘‘transmission of DNA’’

is labeled as a biological process in the following phrase while the

other words in the phrase are labeled as outside of a biological

process term.

for O

transmission B

of I

DNA I

substrates O

across O

the O

The machine learning component used three main sets of base

features, inspired by previous research in biomedical NER [32]:

1. Lexical features included the current word, the root form of the

current word, and the part-of-speech tag of the current word,

computed by the Genia tagger [36].

2. Orthographic features comprised substring and word form

features. In the word form features, all uppercase letters were

normalised to ‘A’, lowercase to ‘a’, and all digits to ‘0’. The first

two and four characters and last two and four characters of the

original word and its normalised word form were chosen as

features.

3. Dictionary features included binary features that indicate the

presence of the word in our dictionary and the position of the

word within any dictionary entries.

For each of the base features, corresponding features for words

within a context window were added to the representation. The

window ranged from 1–3 words preceding and following the

current word.

Results

Entity Recognition
We performed recognition experiments across the four novel

entity types targeted by the T4SS application domain: bacteria,

cellular component, biological process, and molecular function.

We explored three experimental contrasts: 1) simple dictionary-

based tagging, 2) dictionary enrichment from a training segment of

the tagged corpus, and 3) a hybrid dictionary-machine learning

approach. For all training conditions, five-fold cross-validation was

employed on a manually tagged corpus created specifically for this

task. All results are presented are presented in terms of the

standard metrics of precision, recall, and the harmonic mean of

precision and recall, known as an F-measure. The results were

computed with a version of the scoring script developed for the

Conference on Natural Language Learning (CoNLL)-2000work-

shop evaluation [37] and The CoNLL-2000 workshop assessed

system performance on a ‘chunking’ task, involving finding phrases

in text. By analogy, our current task can be viewed as finding

entity phrases in text, making this program suitable for analysis.

The results of these experiments appear in Table 3 below.

Results ranged from F-measures of 18% to 96% for pure

dictionary-based approaches, from 54% to 97% for dictionary-

based approaches with dictionary enrichment from corpus, and

from 68% to 93% for machine learning methods, using all

features. Tables 3 and 4 show some interesting contrasts. In the

cases of cellular component and biological process, pure

dictionary-based results were quite poor, corpus enriched

dictionary results showed substantial improvement, and machine

learning results ranged from fair (cellular component) to excellent

(biological process, molecular function). This contrast is consistent

with the fact that the basic terminology found in GO, from which

the dictionaries for these classes were selected, is frequently unlike

that which is found in typical published scientific text. This

contrast was also highlighted by the annotators themselves and

was reflected in the annotation guidelines. As a result, inclusion of

tagged terms from the annotated corpus with the domain

dictionaries introduces the more common term variants, and

machine learning techniques enable further generalization and

disambiguation.

Conversely, pure dictionary-based approach for the annotation

of Bacteria yielded the best results overall, and an extremely high

recall rate of 97%. This suggests that the normalized term list

extracted for bacteria was well-matched to this task, capturing

most sources of variability. The relatively poorer accuracy for the

machine learning approach in this case indicates that some small

remaining inconsistencies in tagging may be introducing some

noise into the training process that misleads the probabilistic

learner.

Using Terms to Identify T4SS-related Documents
This investigation of the recognition of these novel entity classes

was motivated by their potential to distinguish documents

associated with T4SS from documents which are not, a common

and difficult task faced by annotators working in large-scale

Table 2. Statistics for dictionaries extracted from domain-
specific resources for each of the entity classes.

Bacteria
Cell.
Component Bio. Process Mol. Function

Full Ontology

Head terms 100255 2451 17128 8655

Total entries 475612 4383 50566 31882

T4SS Branches

Head terms N/A 1418 2453 2880

Total entries N/A 2766 5881 8369

All GO-related categories include terms extracted across the full Gene Ontology
and for only the T4SS branches.
doi:10.1371/journal.pone.0014780.t002

NER for Bacterial T4SS
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bioinformatics resources such as PATRIC. Using the entity

recognition systems developed above, we compared the use of

this terminology across three different document classes: T4SS

documents (10 documents from the terminology exploration set),

‘near-miss’ documents (17 documents also from the terminology

exploration set), and an additional 10 general non-T4SS

documents, drawn from various journals based on broad searches

such as ‘soil metagenomics’ and ‘cancer’. For the documents in

each of these classes, we applied the best-performing automatic

concept recognition approach for each concept category deter-

mined by the earlier experiments. We then extracted all instances

of recognized phrases and ranked them by frequency of

occurrence within each of the document classes. Table 4 contrasts

the distribution of these entity classes across the document classes.

These results indicate, as expected, dramatic differences in the

distribution of T4SS-associated terminology across the document

classes. T4SS-related terms occur in T4SS documents at 4–8 times

the rate they appear in the general document class. With the

exception of bacteria, the T4SS-related terms are still found in

T4SS documents at 1.3 to 2 times their rate of occurrence in near-

miss documents. Since the near-miss documents refer to secretion

systems, though not Type IV, which are themselves observed in

bacteria, it is not surprising that bacteria mentions appeared at a

similarly high rate for both T4SS and near-miss documents.

The differences in the mechanisms of different types of secretion

systems are further highlighted in the specific terms employed and

the differences in term distributions. Only, 7% (cellular compo-

nent) to 20% (bacteria) of the distinct terms recognized in each of

the concept classes appear in both T4SS and near-miss

documents. For example, terms relating to conjugation, T-

complex, and dot/icm transporter genes were strongly associated

with T4SS documents as were bacteria that exhibit these systems.

These terms, however, appeared infrequently or not at all in the

concepts tagged in even the near-miss documents and much less

the general documents. In contrast, general secretion terms and

terms that were strongly associated with other specific types of

secretion systems were recognized frequently in the near-miss

documents. These terms associated with other secretion systems,

such as bacteria (e.g., Yersinia and Pseudomonas) and cellular

components (e.g., cytosol), were strongly associated with these

documents, while remaining infrequent or absent in the T4SS

documents. These strong contrasts in the distribution across the

three document classes of recognized concepts in these T4SS-

associated classes support the utility of these terms for automatic

classification and recognition of T4SS documents.

Discussion

Impact of Corpus-enrichment
With the exception of the bacteria class, the use of corpus-based

enrichment dramatically improves NER effectiveness over the

fixed dictionary. In the case of bacteria, the dictionary has near-

exhaustive coverage of the domain and has been automatically

expanded with standard variant forms of the terms. Furthermore,

bacterial scientific names are minimally inflected, with only

singular and plural forms, and they are rarely abbreviated except

for the initial of the genus when the binomial is used. As a result,

term coverage is very high, and only eight forms are added.

For cellular components and biological processes, a fairly large

number of term forms are added (366 to 701, though many of the

latter differ only in minor formatting) in contrast with the small

number of terms added for the bacteria class. This difference

indicates both the better coverage of the bacteria term resources

and the greater degree of variability of the expressions used for the

other classes. The relatively small number of terms added to the

molecular function class results from the combination of the small

number of tagged instances (less than 200) and a highly restricted

class that includes a restricted set of types of binding and activity

classes. The vast majority of the terms added (86% for biological

process) are paraphrase variants of each other and of entries in the

dictionary, often with further restriction through arguments or

modifiers. These forms are fairly consistent but only moderately

productive, so it would be problematic to attempt to generate all

such forms exhaustively for a dictionary-based system. In contrast,

the machine learning approaches can automatically acquire these

general patterns to support robust recognition. Below we analyze

this variability in greater detail and present strategies to manage it

through entity mention normalization.

Table 3. Entity Recognition across classes contrasting dictionary-based, dictionary-based with corpus enrichment, and machine
learning strategies.

Bacteria Cellular Comp. Biological Proc. Molecular Fun.

# Entities 526 2237 1870 203

P R F P R F P R F P R F

Dictionary 96 97 96 50 11 18 59 35 44 64 62 63

Dictionary+Corpus 96 97 97 fsd(8) 49 59 54 (701) 66 86 75 (366) 69 83 75 (71)

Machine Learning 93 91 93 74 62 68 87 81 84 92 82 86

Abbreviations are as follows: P = precision, R = recall, and F = F-measure, the harmonic mean of precision and recall. The number of distinct terms added by corpus
enrichment is given in parentheses.
doi:10.1371/journal.pone.0014780.t003

Table 4. Number of terms in each class for Bacteria, Cellular
Component, Biological Process, and Molecular Function
classes for T4SS, near-miss, and general documents.

T4SS
Documents

‘Near-miss’
Documents General

Bacteria 230 259 30

Cellular Components 208 92 48

Biological Process 215 160 58

Molecular Function 20 13 4

Numbers are scaled by corpus size for each class.
doi:10.1371/journal.pone.0014780.t004
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Analysis of Entity Mention Variability
An understanding of the ways in which entities of interest are

referred to in text is necessary for the efficient development of

methods for detecting entity mentions and for mapping detected

mentions to specific database or ontology identifiers. To analyze

the variation of entity mentions in the T4SS corpora, we applied

normalization methods to the four sets of annotated gold standard

mentions, measuring the efficiency of each normalization

approach in reducing the number of unique text strings in each

of these sets. We applied standard normalizations addressing

typographical, morphological, and syntactic variation, applied

some partially domain-specific term reduction rules, and resolved

abbreviations.

Typographical variation was addressed by string matching that

ignores, for example, capitalization and hyphenation in spelling

variants, and morphological variation by lemmatization, that is,

restoring each word of an entity mention to its word root. As the

annotated entity mentions contained only little syntactic structure,

a small number of hand-written rules were used to normalize basic

syntactic variants such as alternation between noun-modifying and

prepositional phrase variants of a term, e.g. ‘‘DNA binding’’ vs.

‘‘binding of DNA’’. Normalization drawing on the semantics of

the annotated words was limited to the reduction of semantically

light head words,e.g. ‘‘activity’’, when the removal of such words

allowed a match with another annotated term. For abbreviations,

a local acronym dictionary was extracted from definitions found in

the corpus, and different shortened, full, and abbreviation-defining

forms were replaced with a standard canonical form of each

acronym. Finally, a single rule implementing the common form of

abbreviating species names, e.g. Escherichia coli vs. E. coli) was

applied in cases where the abbreviation matched another

annotated entity. Examples of each of these types of variation

are given in Table 5.

Table 6 shows the effect of the normalization on the number of

unique strings in each of the annotated entity classes, showing a

notable decrease for all classes. The effectiveness of the different

normalization strategies varied considerably by class (Figure 2).

For bacteria, we find limited typographical and morphological

variation and no syntactic variation or head words that could be

reduced, likely reflecting the rigidity of the species’ names. By

contrast, for classes other than bacteria, we find significant

typographical and morphological variation – together accounting

for the majority of all variation – as well as notable benefit from

syntactic normalization (esp. for biological process) and reduction

(esp. for molecular function). While the resolution of abbreviations

contributes to normalization for all classes except biological

process, the effect is most significant for bacteria, reflecting the

frequency of occurrences of abbreviated species’ names.

The results of this analysis largely agree with our previous

studies of biomedical domain terminology [30,38], demonstrating

that the variation found in T4SS terms falls largely under types

addressed by previously introduced methods for e.g. soft string

matching [39], lemmatization [40], and acronym detection and

resolution [41]. Future efforts will include the automation of T4SS

term normalization through the use of these methods and

integration of the recognition and normalization into search

functionality in tools such as Medie [42].

Entity Contrasts
Unlike much prior work on Named Entity Recognition (NER),

we do not aim to recognize all members of an ontological class, but

instead selectively recognize task-specific subsets of broader

ontological classes. Rather than recognizing all cellular compo-

nents, for instance, we aim to identify only those entities, and their

subclasses, linked to ontological concepts mapped from entities in

UniProt, associated with T4SS and more general terminology

applied to T4SS contexts. This perspective emphasizes precision in

entity and concept recognition. This focus on precision, filtering of

terms and contexts associated with T4SS, provides an advantage

to machine learning techniques which can exploit these contextual

restrictions.

In addition, the types of features which provide evidence for

recognition of these new entity classes also differ from those which

have typically been observed for more commonly studied Named

Entities, such as genes and proteins. The terms added by corpus

enrichment highlight some of these contrasts. For example, word

shape, such as patterns of capitalization and digits, has often been

identified as a key feature in entity recognition for gene and

protein mentions. However, among these entities, only bacteria

have highly consistent orthographic cues, as in ‘A. tumefaciens’

where the pattern of capital letter, dot, space, and lowercase term

is a strong cue to Latinate organism names, though this does not

distinguish among organism classes easily. Strain names likewise

may be cued by orthographic patterns. No such patterns appear

for biological processes, and only in plasmid names for cellular

components.

Contrasting approaches through error analysis
In comparing the errors made by the different approaches, we

observed some consistent patterns. In the pure dictionary

approaches, phrasal variants are missed, and all instances of

dictionary terms were tagged. The first lowered recall and the

second reduced precision. For example, in the case of ‘transfer’

from above, neither that term nor any of its labeled phrasal

variants were present in the original dictionary, although over 350

such instances are annotated in the corpus. Clearly, this had a

Table 5. Typological breakdown of entity mention variability
in typographical, morphological, syntactic, reduction, and
abbreviation classes.

Examples

Typographical Nucleotide binding, nucleotide-binding, NUCLEOTIDE-
BINDING

Morphological localize, localizes, localized, localization

Syntactic DNA translocation, translocation of DNA, translocates DNA

Reduction secretion process, secretion/ATP-binding activity, ATP-
binding

Abbreviations type IV secretory system, T4SS,Type IV secretion system
(TFSS)

doi:10.1371/journal.pone.0014780.t005

Table 6. Impact of normalization of entity mentions
expressed by reduction in number of unique strings, broken
down by entity class.

Original Normalized Decrease

Bacteria 55 40 27%

Cellular Component 698 563 19%

Biological Process 323 217 33%

Molecular Function 60 30 50%

doi:10.1371/journal.pone.0014780.t006
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severe deleterious effect on recall. In the case of cellular

components, ‘plasmid’ followed a similar pattern. Conversely,

‘transport’ is in the dictionary, and while it was present in over 140

of the labeled biological process instances, it also appeared over 71

times unlabeled, where non-T4SS transport was described or

where it specified a cellular component instead. Since all instances

were labeled by the dictionary-based approach, this significantly

degraded precision. Many other terms exhibited similar patterns,

including ‘binding’ for molecular function. This behavior was

prevalent across the GO concept classes and results in their poor

performance. In contrast, for bacteria, variation was more regular

and was adequately captured by the dictionary creation process,

yielding few errors.

Corpus-enrichment significantly mitigated the problem of

missing phrasal variants that reduce recall. However, it can

introduce severe problems of over-generalization that can

exacerbate the problems with precision. For example, a single

annotated instance of the term ‘formation’ caused the corpus-

enriched dictionary-based system to tag all subsequent mentions,

incorrectly as it turns out. A similar problem arose for the term

‘transfer’.

Machine learning exhibited improved precision for all classes,

with dramatic improvements for the GO-related concept classes. It

yielded only small reductions in recall in most cases, with the

exception of the small improvement found for cellular compo-

nents. This effectiveness can be attributed largely to two factors:

the use of contextual features by the machine learning system and

the use of probabilistic evidence. While the dictionary-based

approaches tagged all and only those terms in their current

working dictionary, machine learning approaches employed

probabilistic classification based on the observed contextual

training examples. The same term may be tagged differently by

the system in different positions in the documents, based on the

context of appearance. These systems did not exhibit the extreme

over-generalization of dictionary-based approaches given a single

term mention. For many terms, only a small proportion of their

mentions should actually be tagged, penalizing the recall-oriented

dictionary approaches and improving the more precision-oriented

machine learning approach. As a result, these approaches perform

well across all entity classes.

Future Work
Although the focus of this paper has been on the specific task of

named entity recognition for the key entity classes associated with

T4SSs, our future plans emphasize the application of this

component technology to enhance semantic search and informa-

tion extraction, both broadly and for this specific domain of

interest. We will deploy the NER techniques developed in this

work to enhance the large-scale semantic search system, KLEIO

(38) (http://www.nactem.ac.uk/software/kleio/) developed at

NaCTeM (http://www.nactem.ac.uk). This system provides

concept-based, rather than keyword-based, retrieval, highlighted

display of named entities within retrieved abstracts, and faceted

search based on the indexed classes of named entities. The

inclusion of additional entity classes, such as bacteria, will further

enrich this system for the community.

In future phases of the collaboration between PATRIC and

NaCTeM, we will build on this work in three additional ways.

First, we will leverage the NER built in this work, as well as other

NaCTeM text mining tools and services, to support information

extraction tasks that exploit these domain resources. In particular,

we plan to mine relationships involving genes and proteins of

bacterial pathogens, supported by the new bacteria recognizer,-

existing gene/protein recognition systems, and other tools from

NaCTeM, such as [43,44]. We will also incorporate this

advanced entity recognition into PATRIC. Finally, we will apply

similar techniques to other biological phenomena of interest to

infectious disease researchers, such as pathogenicity mechanisms,

virulence factors, colonization and incubation, and evasion of

host immune response. In this way, we will create a highly

functional and adaptable portal by adding text mining function-

ality to the PATRIC system. Through a plug-in architecture, we

will be able to incorporate an expanding range of new text

mining-based capabilities, encompassing named entity recogni-

tion across diverse entities and detailed relation and event

extraction.

A web demonstrator is available for testing the named entity

recognizer developed in this work at NaCTeM’s portal http://

www.nactem.ac.uk/T4SS_NER/top.py and http://patricbrc.vbi.

vt.edu/portal/portal/patric/NACTEM. Lexical resources are

available at these sites as well.

Figure 2. Comparison of the effect of normalization. Different classes of entity mention variability (Typographical, Morphological, Syntactic,
Reduction, and Abbreviation) across different entity classes (Bacteria, Cellular component, Biological process, and Molecular function). The graph
indicates the percentage reduction in unique strings contributed by each class of normalization process.
doi:10.1371/journal.pone.0014780.g002
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The Supporting Information S1 and S2 files include a set of

appendices and compressed file with instructions and data for

generating T4SS NERs. The seven appendices are as follows.

Appendix A is a list of the top twenty multi-word terms identified

in the T4SS documents. Appendix B is the set of GO terms related

to T4SS. Appendix C contains a list of GO terms retrieved from

UniProt using a list of 929 T4SS genes. Appendix D describes an

assessment of the stability of the annotation process and the impact

of errors in annotation. Appendix E lists the most frequent terms

for Bacteria, Cellular Component, Biological Process, and Molecular

Function classes for T4SS, near-miss, and general documents.

Appendix F is a bibliography of T4SS literature. Appendix G is a set

of guidelines used by annotators when tagging the training documents.

Supporting Information

Supporting Information S1 Supplementary Material

Found at: doi:10.1371/journal.pone.0014780.s001 (0.16 MB

DOC)

Supporting Information S2 Source document extracts and

scripts. The results described in this paper can be recreated by

following the workflow described in the file entitled "Instructions

for Executing T4SS Named Entity Recognition Workflow.docx."

Found at: doi:10.1371/journal.pone.0014780.s002 (4.93 MB ZIP)
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