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ABSTRACT: Morphological measurements of nanoparticles in electron microscopy images are tedious, laborious, and often
succumb to human errors. Deep learning methods in artificial intelligence (AI) paved the way for automated image understanding.
This work proposes a deep neural network (DNN) for the automated segmentation of a Au spiky nanoparticle (SNP) in electron
microscopic images, and the network is trained with a spike-focused loss function. The segmented images are used for the growth
measurement of the Au SNP. The auxiliary loss function captures the spikes of the nanoparticle, which prioritizes the detection of
spikes in the border regions. The growth of the particles measured by the proposed DNN is as good as the measurement in manually
segmented images of the particles. The proposed DNN composition with the training methodology meticulously segments the
particle and consequently provides accurate morphological analysis. Furthermore, the proposed network is tested on an embedded
system for integration with the microscope hardware for real-time morphological analysis.

■ INTRODUCTION
Nanoparticles are studied for their various uses controlled by
their morphological properties. The change in morphological
properties and their accurate observation unlocks the
application of nanoparticles in the fields of target drug delivery,
surface plasmon resonance (SPR) sensing, surface-enhanced
Raman scattering (SERS) detection, biosensing, and catalysis.
Au spiky nanoparticles (SNPs)1 are studied in electron
micropscopic images, and various applications are discussed
with the importance of the morphological analysis of the
nanoparticle. However, determining the peculiar shape of the
SNP during a period of its growth is a strenuous and laborious
exercise.
Automation of laborious jobs is a developing norm and

taking its course from established industries to research and
development. Along with many computational fields, the
applied natural sciences are benefiting from recent deep
learning trends in artificial intelligence (AI).2−4 Until now, the
automated analysis of cell morphology has been performed

using conventional techniques in computer vision and machine
learning. A support vector machine with handcrafted features
was used by Lohrer et al. to analyze dendritic cell maturation.5

where electron microscopic images (AFM and SEM) of
dendritic cells are acquired and processed using a conventional
morphological operation. Microscopic images are processed
with noise removal, and image features are computed using
histogram of oriented gradients (HOG) and classified using
the error correcting output codes (ECOC) technique. A recent
work6 evaluated multiple state-of-the-art deep learning models
for the segmentation of nanoparticles in bright-field trans-
mission electron microscopy (BF-TEM) and environmental
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transmission electron microscopy (E-TEM) images. The BF-
TEM images are for nanocatalyst Pt nanoparticles, whereas the
E-TEM images are for nanoparticles, and both particles in the
tested images are regularly shaped. This study considers the
automated morphology analysis of irregular-shaped SNPs over
the course of their growth during an experiment. Conventional
unsupervised learning techniques are used to monitor the
growth of the SNP.7 However, deep learning techniques
cannot detect finer boundaries of the particle.7 The analysis
needs a fine extraction of the particle and separate it from the
environment. This study uses a state-of-the-art UNet deep
learning network for segmentation. The peculiar morphology
of the SNP challenged the state-of-the-art capacity and did not
extract the finer spikes of the particle. Although the dice
coefficient loss function improves border detection, the sharp
spikes of SNP are not accurately segmented. In this study, an
additional term is proposed in the loss function to improve the
sharp spikes and boundary segmentation of the particle. The
implementation of the proposed loss term is easy with the
change in the cross-entropy loss function. The following are
the main contributions tested in this study:

• Automated morphology analysis of a Au SNP.
• A boundary loss to favor learning of the irregular shape

spikes in segmentation.
• Implementation of the proposed loss in UNet and

testing on an embedded system.
The study is structured as follows: The proposed method-

ology and data set preparation are described in the Method-
ology section. The Experimentation and Results section
outlines the necessary experimental setup for the study and
provides a detailed analysis of results, as well as a comparison
with other methods. In the end, the Conclusion section
concludes this study.

■ METHODOLOGY
The morphology of a Au SNP is automated using semantic
segmentation of the particle in TEM images. Deep neural
networks (DNNs) are state-of-the-art in-object segmentation

in images. There are two pertinent challenges using SOTA
with the Au SNP data set. First, there are few images available
with visible spikes. Second, the particle overlaps with noise on
the border. The two challenges are solved by exploring the
hard inductive bias of DNN and identifying a border favoring
loss function for training.
Deep Neural Network. This study uses a variant of

UNet,8 a DNN with a loose encoder-decoder architecture. The
encoder is a sequence of convolutional layers, and the decoder
is a sequence of deconvolution layers. The proposed network
uses the same architecture with different compositions of the
layers in the network, and Figure 1 shows a detailed
composition of the layers. The image Ii, a H × W × C, is
clamped to the encoder, which down-samples the image and
extracts the features. The encoder is divided into modules

{ } { }E d p w q( , 1 ... , 1 ... )d
w (Figure 1 enM-i) of the same

spatial resolution, and within each module the resolution of the
receptive field is increased by twice from each layer to the next
layer. The layers in the encoder are convolution layers and use
a kernel of size 3 × 3 for all convolutions.

The decoder starts with the output of Mp
q as the input and

the upsamples to generate the spatial resolution of H × W of
the segmented image size. The decoder is also divided into
modules { } { }D d p w q( , 1 ... , 1 ... )d

w (Figure 1 deM-i) of
the same spatial resolution within the module. The spatial
resolution increases from one module to the next in the
decoder. The receptive field resolution is increased with the
input from an adjacent encoder layer like E D(out( ) out( ))d

q
d
q

1
, where “↷” is a concatenation operation applied with the
same spatial resolution. The receptive fields decrease by a
factor of 2 with increasing q in the decoder and are exactly
equal to the same number of filters in the corresponding
encoder module. Dout( )p

q is passed to a final layer that classifies
the pixel location, i.e., whether it is a particle pixel or a
background pixel.
Loss Function. DL networks are composed of activation

functions and the connection between the activation functions.
The connection is the parameters, θ, of a network that are

Figure 1. Proposed architecture of deep neural networks for segmentation. ⊕ denotes the concatenation of the features from the encoder to the
decoder layer. sm is the softmax layer.
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tuned with learning algorithms. A gradient descent technique
updates the parameters learning the deviation of the network
predictions, yi , from target values, yi, for an input image Ii. The
deviation is measured using a loss function. A commonly used
loss function for classification is cross-entropy loss,

y p Ilog( ( ))C
i i

mn
1 , for each pixel in the image, where C is

the number of classes and mn is the location of the pixels.
Cross-entropy loss gives equal weight to all locations in the

images;9 however, a challenge with images in the current data
set is that the border of the particle in images contains sharp
spikes. A dice coefficient is used to consider the impact of the
scarcity of boundary data values compared to nonboundary
values.10,11 The loss function with a dice coefficient captures a
global impact of the prediction and target values. A peculiarity
of the Au SNP data set gives prior knowledge about the
boundary of the particle that helps us to design a loss function
term additional to the dice coefficient favoring the prediction
at the boundary of the particle. The additional loss term

p I1 log( ( ))b i
mn enforces the additional penalty for loss in the

boundary pixel, b. The loss function in this study uses a
combined loss with the cross-entropy, the dice coefficient, and
the additional boundary-favoring term.

=

+
+

L y p I p I

p q

pq

log( ( )) 1 log( ( ))

2

C

i i
mn

b i
mn

i i i i

i i i

1
2 2

(1)

Here α, β, and γ are weights to adjust the contributions in the
loss for each term in the loss. p is the probability of the particle
pixel, and q is the probability of other pixels. C is the number
of classes.
The additional loss is easily achieved in the implementation

with another cross-entropy loss with the edges mask generated
as the target.
Morphological Measurements. The primary objective of

this study is the analysis and prediction of the morphology of a
Au SNP. There are two important components of the
nanoparticle, the main body and the spikes. The study
proposes automated methods to generate statistics for the
size of a complete nanoparticle and the number of visible
spikes. Moreover, it generates statistics about the height and
sharpness of the largest spike. The size of a nanoparticle is
computed first, followed by the automated calculation of the
aforementioned spike-related parameters. It should be noted
that the number of spikes visible in the 2D image of the Au
SNP may vary from the number of spikes present in the actual
3D object.
Size of Whole Particle. Segmentation of the particle from

TEM images over the course of its growth significantly reduces
the challenge of computing the size statistics. A contour
enclosing the segmented particle is drawn using the border-
following technique.12 Properties of circular regions give a fine
measurement of the morphology of the particle in pixels, and
the region is drawn enclosing the contours around the
segments. The following formulations are used to calculate
the actual size of the particle from the pixel and circle statistics:

= rArea 2 (2)

= rVolume
4
3

3

(3)

where r is the radius of the circle. The formulation computes
the automated statistics of the morphology of a particle and its
size over the course of its growth during experiments.
Morphology of Spikes. The Au SNP has peculiar shapes

with spikes on the body surface that are visible in the 2D
image. Spikes grow over the period of growth of the particle,
and the morphology of the spikes is automatically analyzed
after postprocessing of the segmented nanoparticle. The
number of spikes is calculated by detaching the spikes from
the body of the particle using image morphological techniques
in computer vision. In this study, an elliptical kernel is used to
detach the spikes from the body, and Figure 7 shows the
segmented results of detached spikes. Later, a connected
component analysis is performed to label and count the
number of spikes. Additionally, the size of the largest spike is
calculated by measuring its height using the Hough circle
enclosing the spike. Another important fact is the sharpness of
the spike, which can be calculated using a corner detection
technique and is left for exploration in future studies.

■ EXPERIMENTATION AND RESULTS
There are two stages of experimental setup that are pertinent
to this study. The first stage is a setup to grow the particle in a
solution and to capture electron microscopic data. The second
stage is the use of digital image data to design an algorithm that
automatically generates morphological statistics of the particle.

The experimental setup of the computational system is
further designed with two compositions. The initial exper-
imentation is performed on a PC with an Intel Corei7
processor, 16 GB of RAM, and an Nvidia GeForce RTX 3090
GPU. Another particular setup is created with an Nvidia Jetson
Nano embedded board. The latter setup is a low-cost solution
to integrate the automated morphology operations with the
electron microscopic hardware.
Experiment Preparation. Solution Preparation. The

hydrogen tetrachloroaurate (III) (HAuCl4·3H2O) solution
and deionized (DI) water (Milli-Q) were purchased from Alfar
Asear and Fisher Chemical, respectively. A stock solution of
HAuCl4 was diluted with DI water to form solutions of 20
mM. Due to their light-sensitive nature, the solutions were

Figure 2. The top row shows (a) a sample image of a later stage of the
particle, (b) a segmentation with Mask R-CNN,13,14 and (c) a
segmentation with the edges prior technique. The bottom row shows
(d) groundtruth (hand-segmented image) and a segmentation with
the proposed UNet architecture (e) without an additional loss term
and (f) with an additional loss term.
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stored in an opaque glass bottles and covered with aluminum
foil.
Preparation of a LCTEM Holder for In Situ Experiments.

To observe the process of SNP growth induced by electron
beam radiolysis, we used a liquid cell transmission electron
microscope (LCTEM) holder purchased from Hummingbird
Scientific. An LCTEM holder includes an inlet and an outlet
liquid path lines, both of which are built for the continuous
flow of the solution into the microsize aquarium. The
aquarium is fabricated by an assembly of two (top and
bottom) chips of silicon nitride (Si3N4) membranes whose
dimensions are 50 × 200 μm2, and the liquid thickness can be
manipulated by a choice of spacers that are inserted between
the two chips. Prior to assembling the chips, we cleaned the
two chips with ethanol and deionized water and then dried
them in a desiccator. The Si3N4 membrane was turned
hydrophilic by plasma cleaning for 30 s. Subsequently, the
chips were assembled in the holder, then they were inserted
into the vacuum station (1.6 × 10−6 Torr) for several hours
while the deionized water flowed at 10 μL/min to confirm the
vacuum safety within the TEM (Tecnai 300 keV) and to
remove bubbles in the solution. Finally, the holder was loaded
into the TEM to perform the experiments. The images were
taken using the digital micrograph-3 program.
Experimental Procedure and Other Details. In this work,

the electron beam is used to grow Au particles from a solution
of Au ions by radiolysis in which the electron beam forms
hydrated electron (eh ), among other species. To adjust the
dose rate of the transmitted electron beam, which is an
important factor for Au particle formation, we changed spot
sizes and gun lenses. The dose rate of the transmitted electron
beam was measured using a viewing screen. Electron beam
sizes and dose rates used for our experiments were in the
ranges of 1.84 μm and 57−360 e−/nm2·s, respectively. A pH
value of below 2 is maintained for HAuCl4. The time for each
experiment is less than 1 min. The conditions mentioned
above also helped maintain no bubble condition in the cell.
The experiments are performed near the edgees of the
membranes that had constant liquid thickness induced by
the difference in pressure between the inside and the outside of
the cell. The movies were recorded at a speed of approximately
4 frames per second with 1024 × 1024 pixels in BF-TEM

Figure 3. Segmentation of each tested network is mapped over the
hand-segmented particle to depict the difference. (a) Mask RCNN
results, (b) the edge prior result, (c) the U-Net results, and (d) results
with additional loss results segmented in ground truth. The last row
shows the magnifying improvement of the segmentation results: (e)
the UNet without boundary loss and (f) segmentation results with
loss.

Figure 4. Plot of the growth of the particle over the course of the experimentation. (a) Area of the particle computed with πr2. (b) Volume of the
particle computed with r4

3
3.
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imaging. The beam-induced temperature rise is not significant
under our typical TEM imaging conditions.
(a) The area of the particle was computed with πr2

(b) The volume of the particle was computed with r4
3

3.

Deep Learning Algorithm. The first stage produces 257
images each of size 767 × 767, and 46 images are manually
segmented to generate ground truth data. The deep learning
algorithm discussed in this section is a supervised neural
network and requires ground truth to train the network. The
neural network in Figure 1 is presented with image data for
training. The data set is split into testing and training in an
80:20 ratio with K-fold data split methods. The network is
trained with a stochastic gradient descent algorithm. We used a
new loss function with backpropagation and an RMSprop
optimizer for parameter adjustment, as described in Loss
function section. The optimizer uses a learning rate value of 1
e−5, a weight decay value of 1 e−8, and a momentum value of
0.99. The images are cropped, and the training images only
depict the spotlight region. There are two methods tested for
cropping the image, as the spotlight is not static and often
adjusts during the course of data capture. A circular region
detection technique using the Hough circle15 method is
employed in the first approach. The second method uses a K-
mean clustering technique proposed previously.16 The latter
approach is computationally expensive but caters to the high
variations in the spotlight perturbations. A parallel implemen-
tation of the stream of images with a pipeline of cropping and
segmentation may reduce the time. The same ground-truth
image is used to compute the loss, as the additional edge loss is
implemented as a cross-entropy loss with the edges generated
from the ground-truth image. At inference time, only the
cropped image of the particle is presented to the network,
which generates the segmented particle. The morphological
measurements are generated using the formulation given in the
Results section.
Results. The experimentation of this study is extensively

evaluated with quantitative and qualitative results. Two sets of
evaluation criteria were adopted for the study. The first set
comprises morphology statistics of the particle during its
growth, while the second set includes IoU and F1 scores from
CV evaluation criteria. Qualitative results are shown as
segmentation of the particle and comparison of segmentation
images from various techniques. The Au SNP has spikes and

the body, and an accurate quantitative measure may be masked
by the size of the body; thus, a qualitative evaluation
comparison with groundtruth may help the expert for a better
comparison.

There are 257 frames with the Au SNP images in all for
which the evaluation is possible and only 68 groundtruth
images are available. The training set uses 50 images, and the
remaining are used to generate the quantitative results.
However, qualitative results can be given on all 257 images.
Figures 2, 3, and 6 show the qualitative results of the

Figure 5. Number of spikes of the particle over the period of time
during its growth.

Figure 6. Demonstration of the segmentation results of selected
frames over the growth period of the SNP with the proposed method.
The time at the right corner is from the recorded video in the test
data. (a) Particle growth over time. (b) Segmented result over the
period of time.
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segmented images with the proposed methods. Figure 2 shows
the comparison of segmented images with three alternatives: a
Mask R-CNN,13,14 a UNet with edge prior in the input, and a
UNet without edge prior. The maskRCNN hardly detects the
spike, although it detects the body of the particle and thick
protruded spikes. The UNet detects the spike, and with an
edge prior in the input it also sharpens the segmented spikes,
but it loses the actual length of spikes. The proposed UNet
with the boundary-loss expression detects almost all the visible
spikes of the particle, and the segmented particle is very close
in shape to the hand-segmented groudtruth.
Figure 3 further depicts the difference between the

techniques tested. The segmented particle shown in blue is
placed over the hand-segmented image shown in gray to show
the fine-grained comparisons. The proposed UNet trained with
an additional boundary-loss term shows the best results and
detects the spikes close to the particle perceived by human
experts in images. Briefly, the former compared techniques do
not recognize the particular spiky structure of the particle,
whereas the later proposed techniques show improved
segmentation. The proposed network further refines the
boundaries of the spikes and improves the overall segmenta-
tion results.
Figure 4 shows size of particle computed with proposed

technique at various stages of its growth. Figure 4a depicts the
plot of the area calculated by mapping the slide length of 5 μm
to the number of pixels (767 × 767) and the area of the circle
enclosing the particle. In contrast, the volume of the sphere
formula is used to calculate the volume with prior knowledge
of the spherical shape of the Au SNP, and Figure 4b depicts
the plot of volume over the course of its life. Furthermore,
Table 1 shows the IOU, F1, precision, and recall scores of the
images in the test set with the proposed technique and three
other neural networks. The compared networks are
MaskRCNN UNet with edges prior and UNet without the
added loss term. The recall values analyzed in combination
with the qualitative results of segmentation show improvement
with the proposed methods. Figure 4 shows a plot of particle

size over its growth calculated using segmented images of the
proposed and compared networks. It is visible in the plot that
the hand-segmented images are prone to error considering that
the particle does not shrink over the period of its growth.
Figure 6 shows the segmentation of the particle at different
stages during the period of its growth during the experiment
with the proposed UNet and additional loss function. Figure 7
shows the detached spikes in a fully grown Au SNP, and in this
particular frame the number of spikes is 32. The height of the
biggest spike shown is 0.48 μm (calculated using the same
pixel to slide ratio as discussed above). Moreover, Figure 7
shows a graph depicting the number of spikes calculated over
the period of the complete experiment. It is important to note
that the schematics of the Au SNP1 as a 3D object are not
entirely visible in the 2D electron microscopic images used in
this study. The morphology of spikes is an approximation of
the only visible side of the particle. This can be extended in the
future with anticipated advancements in electron microscopic
imaging techniques to capture a complete 3D view of a
particle. Finally, we confirm that the plots of particle growth
clearly exhibit two different growth regimes: the initial slower
growth (called the “mixed regime”, which is limited by the
mixture of surface reaction and Au formation rate), followed by
faster growth (which is entirely governed by Au formation
rate), as made in detail in our previous paper.1

■ CONCLUSION
Fine segmentation of nanoparticles is desired for the
automated morphology operations in electron microscopy
images. This study uses a deep neural network with a proposed
boundary-favoring loss function to finely segment the spikes of
Au SNP in images. The segmented particles are used to
automatically generate the statistics of the morphology of the
particle over the course of its growth in an experiment. The
experimentation shows the proposed methodology perform-
ance is on par with the manually calculated statistics of the
particle in images. The work can be extended by studying
multiple particles on one slide. Moreover, an FPGA
implementation of the proposed methodology will help its
integration in the electron microscope hardware and with it in
camera morphology statics generation.
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Table 1. Quantitative Results of the Segmentation

technique time (fps) IOU F1-score precision recall

MaskRCNN 10 0.971 0.982 0.973 0.988
UNet 3 0.986 0.992 0.991 0.994
UNet-Edges 3 0.975 0.984 0.972 0.999
UNet-BL 3 0.987 0.992 0.994 0.991
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