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Abstract

Background: Clonal expansion is a process in which a single organism reproduces asexually, giving rise to a
diversifying population. It is pervasive in nature, from within-host pathogen evolution to emergent infectious
disease outbreaks. Standard phylogenetic tools rely on full-length genomes of individual pathogens or population
consensus sequences (phased genotypes).
Although high-throughput sequencing technologies are able to sample population diversity, the short sequence
reads inherent to them preclude assessing whether two reads originate from the same clone (unphased
genotypes). This obstacle severely limits the application of phylogenetic methods and investigation of within-host
dynamics of acute infections using this rich data source.

Methods: We introduce two measures of diversity to study the evolution of clonal populations using unphased
genomic data, which eliminate the need to construct full-length genomes. Our method follows a maximum
likelihood approach to estimate evolutionary rates and times to the most recent common ancestor, based on a
relaxed molecular clock model; independent of a growth model. Deviations from neutral evolution indicate the
presence of selection and bottleneck events.

Results: We evaluated our methods in silico and then compared it against existing approaches with the well-
characterized 2009 H1N1 influenza pandemic. We then applied our method to high-throughput genomic data
from marburgvirus-infected non-human primates and inferred the time of infection and the intra-host evolutionary
rate, and identified purifying selection in viral populations.

Conclusions: Our method has the power to make use of minor variants present in less than 1% of the population
and capture genomic diversification within days of infection, making it an ideal tool for the study of acute RNA
viral infection dynamics.

Background
A single rapidly evolving RNA virus can give rise to a
swarm of related descendants [1]. Clonal expansions can
be observed during an acute infection as pathogens repli-
cate within a host [2,3] or in an outbreak of an emerging

pathogen, when a novel virus propagates through a sus-
ceptible host population. A viral population diversifies as it
expands, enabling the virus to explore larger sections of
the fitness landscape [4]. Studying the dynamics of viral
diversification can yield insight into when a host was ori-
ginally infected, how fast a pathogen is evolving, and if
specific genomic alterations are being selected for in a par-
ticular host or treatment regime.
Clonal populations founded by a single ancestor consist

of individual organisms with highly similar, though not
necessarily identical, genomes. The consensus genome is
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a constructed sequence representing the majority allele at
each residue; hence, it may not truly exist in the viral
population and fails to capture the whole mutant distri-
bution in the sub-population structure. Viral diversity in
acute infection has been previously studied through sin-
gle genome amplification and combinations of RT-PCR
and cloning [5,6]. These studies have utilized both phylo-
genetic techniques and exponential growth models
to quantify viral evolution [5,7]. With advances in high-
throughput sequencing technologies, studying viral
genomic diversity and its role in inter- and intra-host
evolution has become more feasible. Ultra-deep sequen-
cing has been employed to investigate systems of
chronic infections in which viral populations have
reached sustained levels of diversity [8,9], as well as to
investigate intra-host evolution of viral infections utiliz-
ing minor variants [10,11]. However, given estimated
viral evolutionary rates of 10-4 to 10-6 substitutions/site/
year, intra-host evolutionary dynamics during the first
few days of an acute infection are dominated by very
rare variants that only exist in less than 1% of the popu-
lation [12]. Due to inherent limitation on the length of
the reads produced by high-throughput sequencing
technologies, standard phylogenetic algorithms and con-
sensus-based methodologies fail as the coexistence of
very rare polymorphisms in each individual viral clone
cannot be determined. In other words, the mutations
cannot be phased as the information of their linkage
with respect to the viral genome is lost (Supplementary
Fig. S1, in Additional file 1) [4,11,13].
In this manuscript, we introduce a method to study the

dynamics of clonal evolutions without the need for phased
data. Our methodology provides a means to estimate the
starting time and evolutionary rates without assuming a
model of growth. We validate our method both using a
simulated clonal expansion and using genomic data from
the 2009 H1N1 influenza pandemic. In the latter case,
phylogenetic analyses using full-length genomes are trea-
ted as the gold standard, with which our evolutionary
dynamic estimates strongly agree [14,15]. We then apply
our method to genetic data where phase information is
missing. Specifically, we infer the intra-host evolutionary
dynamics of viral infections in vivo, using high-throughput,
deep sequence data obtained from marburgvirus-infected
non-human primates (NHP).

Methods
Measures of diversity. If the genome of the expansion’s
initiating clone is known, the frequencies of the diver-
ging alleles from the seed, as well as their genomic posi-
tions (segregating sites), are evident in its descendants.
Therefore, we define total divergence, DT(ti) =

∑
s xs(ti),

where xs(ti) is the frequency of a diverging allele at time
ti, positioned at segregating sites, s. Knowledge of the

alleles present within the seeding clone is commonly
unavailable. In lieu of this information, an approximated
proxy for the initial seeding genome from the samples
collected early in the expansion is often used. Even
though some polymorphisms become fixed and some
disappear from the population, DT, as a measure of
divergence, will always increase with time (Figure 1).
To avoid approximating the genome of the initial

seeding clone, we propose to estimate the genomic
diversity at time ti with the sum of the minimal allele
frequencies (MAF) at segregating sites. Minimal allele
frequency can be best represented by one minus the fre-
quency of the dominant allele at a segregating site. By
definition, xs(ti) are always equal or larger than MAF;
therefore, estimates based on sum of MAF represent the
lower bound of those from DT. Strong differences
between the two measures indicate selection or bottle-
necks, as changes in DT measure time and divergence
from the seed and the sum of MAF indicates variations
in population diversity at a particular time.
Mathematical framework. Consider a clonal expan-

sion with N(ti) clones at time ti, after a single initial
clone began reproducing at time t0. Independent of a

model of growth, we define μ̄i =
1

ti − t0

ti∫
t0

μ (τ) dτ to be

the average of evolutionary rates between time ti and t0.
The average Hamming distance between any of these
clones and the seed can be approximated by μ̄il(ti − t0),
where l is the size of the genome. Assuming that the N
(ti) clones truly represent the frequencies of the segre-
gating sites at time ti,

〈
d(ti)

〉
, the expected distance of

the descendants to the original clone, can be re-written

as: d(ti) �
∑

s
xs(ti) = DT(ti).

To study the early days of intra-host evolution, we
assume negligible back-mutations. Nonetheless, back-
mutations and different rates per base can be accounted
for by modifying the definition of

〈
d(ti)

〉
with more fit-

ting substitution models [16-18]. Note that
〈
d(ti)

〉
differs

from intra-population nucleotide diversity, π[19], which
is derived from the pairwise comparison of the present
genomes at time ti, whereas

〈
d(ti)

〉
is derived from com-

paring those genomes to the original clone at time t0.
Let mj (ti) be the number of accumulated polymorph-

isms at time ti in sequence j since the start of the expan-
sion at time t0. Assuming mj(ti) is Poisson distributed with
mean μ̄il(ti − t0), the log-likelihood of the observed state

is L(μ̄i, t0) ≈
∑

i,j
(mj(ti)log(μ̄il(ti − t0)) − μ̄il(ti − t0)).

In all summations, i counts the number of time points,
and j counts the number of sampled viral clones in ti.
Since the total number of mutations in the population can
be counted across the genomes, or equivalently via the fre-
quency of the segregating sites, a crucial observation can
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be made that
∑

j
mj(ti) = N (ti)

∑
s
xs(ti) = N(ti)

〈
d(ti)

〉
,

leading to L(μ̄i, t0) ≈
∑

i
(N(ti)

〈
d(ti)

〉
log(μ̄il(ti − t0)) − N(ti)μ̄il(ti − t0)).

Thus, the maximum likelihood estimate (MLE) of the evo-
lutionary rates and the time of the initial clone can be
derived from maximizing L(μ̄i, t0). In these estimates, DT

or the sum of MAF at ti are used to approximate
〈
d(ti)

〉
.

Maximizing a likelihood, in which there are more para-
meters than data points without any constraints will lead
to over-fitting the data. We follow Sanderson’s modeling
of a relaxed molecular clock and penalized likelihood
approach [20,21], and utilizing a non-parametric regulari-

zation term,W(μ̄i) =
∑

i
(μ̄i − μ̄i−1)2, we minimize

�(μ̄i, t0) = −L(μ̄i, t0) + λW(μ̄i), where l is the smooth-
ing parameter. For very large l, minimizing � leads to
estimates equal to predictions under a strict molecular
clock model. On the other hand, small l leads to over-fit-
ting the likelihood, and the estimates will be highly
affected by small changes in the data. Therefore, an inter-
mediate value of l should be chosen, so that the estimates
follow the data while avoiding numerical artifacts caused
by over-fitting. We determine this value by minimizing �

over a range of values for l and comparing the resulting
values of L versus those of W, by scaling them between 0
and 1. In other words, the maximum L is obtained when
λ = 0 (corresponding to scaled L and W of 1) and the
minimum W is obtained when λ → ∞ (corresponding to
scaled L and W of 0). We choose the value of l that results
in equally weighted scaled L and scaled W [22]. For all
optimization problems in our method, we employ the
non-linear Active Set algorithm [23] as implemented in
MATLAB and R. In each optimization, we require 0 < μ̄i

and t0 < t1.

To calculate standard errors for estimates of 〈μ̄i〉 and
t0, we generate 1,000 bootstrap sets by permuting the
sequences in each dataset. Using each dataset’s smooth-
ing parameter, we obtain maximum likelihood estimates
for 〈μ̄i〉 and t0. The bootstrap estimates are normally
distributed and are used to calculate 95% confidence
intervals. The presence of purifying selection can be

measured through ω = β
μnon−syn.

μsyn.
, when it is less than 1.

Here, l is the ratio between the number of synonymous
to non-synonymous sites in the genome, which we
obtain by randomly mutating the viral genome one mil-
lion times, assuming equal probability for transition and
transversion events.
Simulated data.Starting from a single homogenous

10,000 base-long clone, we simulated an exponentially
expanding population at 12 time steps. The substitution
rate was set at 10-4 substitutions/site per time point in
addition to a noise term with a mean of zero and stan-
dard deviation of 10-4. At each time point, 5,000
sequences were randomly sampled, simulating a typical
depth of 5,000x for deep-sequencing. We repeated this
procedure 1,000 times.
Influenza data. Influenza consensus full-length

sequences were obtained from Influenza Virus Resource
Database [24] and GISAID [25], selecting H1N1 pan-
demic strains collected between March 2009 and March
2010. We aligned the sequences of each segment using
the MUSCLE algorithm, and further manual curation.
High-throughput marburgvirus data.Two separate

animal studies provided the samples used in this study.
Blood from cynomolgus macaques was collected from
NHP therapeutic efficacy trial control animals (saline

Figure 1 Clonal expansions arise as asexual growth from a single clone. Left: Phylogenetic algorithms compare the descendant clones
across their genomes to reconstruct the evolutionary history. We, however, measure population diversity across the segregating sites, via
summing their frequency, to estimate evolutionary properties. Right: The estimates for the simulated datasets. Estimates based on MAF
represent the lower bound of those based on DT. The mean evolutionary rate, 〈μ̄i〉, is given in 10-4 substitutions/site per time point. The
standard errors are derived from 95% confidence intervals via 1,000 simulated datasets.
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treated only) on days 8 and 10 of the infection. The viral
RNA was extracted and sequenced. We rigorously
cleaned the sequence reads to remove systematic errors
and identified statistically significant single nucleotide
substitutions. The ethics statement and details of the
library preparation, sequencing, and variant calling are
provided in Supplementary Methods (Additional file 1).

Results
Simulated data. In a set of 1,000 simulations, the esti-
mates of evolutionary rates between time points cap-
tured the expected evolutionary dynamics (〈μ̄i〉 = 10-4

substitutions/site per time point), within statistical fluc-
tuations, as shown in Figure 2 (right). In particular, the
estimates from DT found the average of evolutionary
rates, 〈μ̄i〉, to be 0.99 ± 0.22 × 10-3 substitutions/site per
time point, and the starting time of the expansion to be
at -0.03 ± 0.62. The estimates based on MAF indicated
the lower bound of those from DT (Figure 1).
The 2009 H1N1 influenza pandemic. The influenza

genome consists of eight single-stranded RNA segments,
which code for 10 or more proteins. The novel influenza
A virus responsible for the 2009 pandemic was first iden-
tified in late March in California and Mexico [26], and
spread quickly, as very limited previous immunity to the
new strain existed within the human population. Phylo-
genetic analyses estimated the most recent common
ancestor of this strain to have arisen around January
2009 (no earlier than August 2008), and to have evolved
with a rate of 3.67 ± 3.05 × 10-3 substitutions/site/year
[14,27]. These analyses also identified purifying selection
during the pandemic (ω < 1) [15]. The exact genome of
the initial virus that infected the human population is not
known; however, we approximated a proxy based on the
consensus genomes of strains collected early in the

expansion (Additional file 2). We found the estimates for
the mean of evolutionary rates between time points, 〈μ̄i〉
and the starting time of the pandemic, t0, based on both
DT and sum of MAF to be consistent across all segments
(Figure 2 (right) and Supplementary Fig. S2, in Additional
file 1). As there has been no evidence for reassortment
events during the 2009 H1N1 clonal expansion in
humans [28], we concatenated the segments and esti-
mated 〈μ̄i〉 and t0 using whole-genome data. As shown in
Figure 2 (left), the MAF-based estimates for t0 agreed
with those from DT, and were found to be between
November 2008 and January 2009. We also estimated
〈μ̄i〉 of 1.82 ± 1.28 × 10-3 and 3.02 ± 0.66 × 10-3 substitu-
tions/site/year during the pandemic, according to DT and
sum of MAF, respectively. We also identified a strong
purifying selection during this period (ω = 0.22), corro-
borating results from phylogenetic methods.
Deep sequencing of marburgvirus from infected

NHP. Marburgvirus, in the Filoviridae family, is a sin-
gle-stranded RNA genome of about 19,000 bases that
encodes seven proteins, with an estimated evolutionary
rate of 0.1-1.0 × 10-3 substitutions/site/year [29]. Cyno-
molgus macaque constitutes a commonly used model
organism for infection of filoviruses, recapitulating some
of the clinical features of infection in humans. Marburg-
virus causes hemorrhagic fevers in humans and NHP,
who typically succumb to the infection in 8-12 days.
Working from an existing study of cynomolgus maca-

ques infected with a Musoke strain marburgvirus, we
utilized deep sequencing data (coverage depth >10,000x)
of viral RNA collected at different time points from four
samples (505113, 052803, C0507178, and 0602167, as
shown in Supplementary Table S1, in Additional file 1).
We obtained frequency estimates as low as 0.05% for an
average of 60 variants per sample (range 26 to 110, as

Figure 2 The maximum likelihood estimates for the 2009 H1N1 influenza pandemic. Left: Whole-genome data estimates based on both
MAF and DT. Right: Individual segments’ estimates based on DT. (For the MAF-base estimates, see Supplementary Fig. S2, in Additional file 1.)
PB2, PB1, and PA encode the RNA polymerase; HA and NA encode the glycoproteins hemagglutinin and neuraminidase; NP, M, and NS
segments code the nucleoprotein, matrix proteins and non-structural proteins. Due to structural constraints and small size, the latter three
segments accumulate the least number of mutations. Our estimates for the evolutionary rates, the starting time of the expansion, and presence
of strong purifying selection (ω = 0.22) corroborated phylogenetic results. The mean evolutionary rate, 〈μ̄i〉, is in 10-3 substitutions/site/year and
t0 is in days. The standard errors are the 95% confidence intervals via bootstrapping.
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listed in Supplementary Tables S2 and S4, in Additional
file 1 and Additional file 3 respectively). We found ~3.5
times more transitions than transversions across samples
(Supplementary Table S3, in Additional file 1), and
observed a very homogenous viral population in the
challenge stock (day 0) and a subsequent increase in
viral diversity over time in vivo in all four individual
experiments (Figure 3). The four independent analyses
showed similar results, 1) an increasing genomic diver-
sity with 〈μ̄i〉 of 0.23-1.50 × 10-3 substitutions/site/year
for non-synonymous substitutions and 1.29-3.81 × 10-3

for all substitutions; 2) 2-8 days to convergence with the
reference, approximately the amount of time spent pro-
pagating the virus after it was originally sequenced [30].

Acknowledging the caveat that each of the four samples
went through different host-specific immune responses,
we combined the data and obtained estimate for 〈μ̄i〉 to
be 2.11 ± 1.76 × 10-3 substitutions/site/year for non-
synonymous substitutions and 2.95 ± 0.48 × 10-3 for all
substitutions (Supplementary Fig. S3, in Additional file 1).
We also identified strong purifying selection (ω = 0.43).

Discussion
We have proposed two measures of genetic diversity,
derived independently of phasing information: 1) total
divergence, DT, the sum of frequencies of diverging
alleles from the original clone, and 2) the sum of mini-
mal allele frequencies (MAF) at segregating sites. Our

Figure 3 The maximum likelihood estimates for four marburgvirus samples from infected NHP. We found the estimated intra-host
evolutionary rates for non-synonymous substitutions to be in similar range. In three samples, MAF-based and DT measures differed for
synonymous substitutions, due to increases in frequency of a single allele. In the fourth sample, MAF-based and DT measures were identical and
overlapped. The mean evolutionary rate, 〈μ̄i〉, is in 10-3 substitutions/site/year and t0 is in days. The standard errors are the 95% confidence
intervals via bootstrapping.
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methodology is robust to recombination or reassortment
events within a clonal population because such evolu-
tionary processes do not affect our measures of genetic
diversity. Since the numbers of sites with diverging
alleles in a sampled population, acquired within the first
few days of an acute infection or the early months of an
outbreak, are much smaller than the length of the viral
genome, the assumption that their distribution between
two time points can be approximated with Poisson dis-
tributions holds. Assuming negligible positive selection
and back-mutations, DT, increases over time by defini-
tion; thus, it measures divergence from the seed of the
expansion. On the other hand, the sum of MAF mea-
sures population diversity at a particular moment in
time. Therefore, strong differences between the two
measures indicate deviations from neutral evolution,
selection, or bottlenecks. Our approach is particularly
novel in its independence from an assumed growth model
or previously published evolutionary rates, used in similar
applications to intra-host data [5]. Since we assume that
the number of segregating sites is much smaller than the
length of the viral genome, and that the infection starts by
a genetically uniform population, our method is applicable
to lytic viruses, and cannot be applied to integrating or
lysogenic viruses. Based on these measures, we followed a
penalized maximum likelihood approach and a model of
relaxed molecular clock [20,21], and were able to estimate
the starting point in time and evolutionary rate of clonal
expansions.
To evaluate our method with well-characterized exam-

ples of clonal expansion, we calibrated it with a set of
simulated sequences following a relaxed molecular clock
model, and obtained estimates that capture the evolu-
tionary parameters of the generating model. We found
the estimates obtained from sum of MAF to be the
lower bound of those from total divergence. With the
purpose of comparing and validating our methodology
with standard phylogenetic techniques, we utilized
phased whole-genome sequence data from the 2009
influenza pandemic. Limiting the data to the H1N1 iso-
lates collected within the first year after the start of the
pandemic, our estimates for the mean evolutionary rate,
the starting time of the expansion, and presence of
strong purifying selection corroborated with phyloge-
netic results [14,15,27]
The novelty and most important application of our

method is in analyzing unphased temporal data to which
phylogenetic methods cannot be applied. During the
course of an acute infection, the diversification of the
viral population is not reflected in the consensus
sequence, as most changes are minor, rare variants. To
study viral intra-host diversity, we employed genomic
data obtained from high-throughput ultra-deep sequen-
cing of marburgvirus from four infected NHP, sampled

at days 8 and 10 of the infection. The results showed
consistent increases in viral diversity and the starting
time of the intra-host expansion was found in agreement
with the experimental setup [30]. MAF-based diversity
measures for non-synonymous substitutions in three of
the infected NHP presented extremely good approxima-
tions for DT, which is especially important when the seed
of a clonal expansion is not known (Figure 3). In particu-
lar, we found the estimated intra-host evolutionary rates
for non-synonymous substitutions to be in similar range
but higher than those reported from inter-host phyloge-
netic analysis [29]. Combining the data from four sam-
ples corroborated with individual analyses, and the ratio
of non-synonymous to synonymous substitutions rates
indicated similar strong purifying selection to inter-host
transmission of marburgvirus [31].
In three samples, MAF-based and DT diversity mea-

sures differed for synonymous substitutions, due to
increases in frequency of a single allele (E142E) in the L
gene. This allele increased from 6% in the seed stock to
62% (052803), 57% (505113), and 92% (C0507178) on
day 8. The frequencies on day 10 were similar to those
on day 8, except in one sample (052803), in which it fell
to 31%. In one sample (0602167) the frequency of this
allele was found to be 23% on both day 8 and day 10,
not affecting MAF. Synonymous mutations have been
shown to contribute to viral fitness in other viruses [4],
and despite the fact that this allele did not alter the cod-
ing of the L protein, the presence of a selection pressure
that leads to increases in its frequency cannot be ruled
out.

Conclusion
As technology progresses, deep sequencing of temporal
samples is becoming more readily available; however,
due to missing phasing information, the application of
standard phylogenetic methods to these data sources is
limited. The measures of diversity defined in this manu-
script present a distinct advantage over methods based
on consensus sequences, specifically because of their
power to analyze genomic diversification within days of
an infection. This method is an ideal tool to pinpoint
the time of infection, to estimate the evolutionary rate
within a host, and to identify early markers of selection,
in the course of an acute infection.

Additional material

Additional file 1: Supplementary Methods, Figures, and Tables. This
file contains the ethics statement, and the details of high-
throughput sequencing of marburgvirus samples. It also contains
Figures S1, S2, and S3, and Tables S1, S2, and S3.

Additional file 2: Approximated genome of the seed of the H1N1
pandemic. This file, in FASTA format, contains the approximated
proxy for the genome of the initial 2009 H1N1 virus, based on the
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genomic consensus of strains collected in March 2009: A/Mexico/
LaGloria-4/2009(H1N1), A/Mexico/LaGloria-4/2009(H1N1), and A/
California/05/2009(H1N1).

Additional file 3: Supplementary Table S4. This file contains Table
S4, the list of variants statistically present in at least one temporal
data for four NHP marburgvirus-infected samples.
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