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Autophagy is a highly conserved self-degradative process that plays a key role in diverse

cellular processes such as stress response or differentiation. A growing body of work

highlights the direct involvement of autophagy in cell migration and cancer metastasis.

Specifically, autophagy has been shown to be involved in modulating cell adhesion

dynamics as well as epithelial-to-mesenchymal transition. After providing a general

overview of the mechanisms controlling autophagosome biogenesis and cell migration,

we discuss how chemotactic G protein-coupled receptors, through the repression of

autophagy, may orchestrate membrane trafficking and compartmentation of specific

proteins at the cell front in order to support the critical steps of directional migration.
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CHEMOTACTIC MIGRATION: CONTROL BY G
PROTEIN-COUPLED RECEPTORS

Steps of Chemotactic Migration
Chemotactic cell migration is a highly coordinated process that is crucial to the function of many
cell types. As such, it is a fundamental property of a variety of physiological and pathological
phenomena. Chemotactic migration is first observable during embryonic development, as sheets
of cells undergo migration to form the different layers of the embryo and later, the different
tissues that constitute organs (Keller, 2005). In the central nervous system, chemotactic migration
allows cells such as new neurons to localize to the appropriate cortical layer, and guides the
elongation of their growth cones to facilitate circuit formation (Cooper, 2013). Cell migration is
also involved in immune response and angiogenesis allowing cells to infiltrate and navigate through
tissues (Imhof and Dunon, 1997). A few pathological processes can also take advantage of a cell’s
migration abilities to spread through the organism. This is the case in cancer progression, during
which parenchyma invasion and metastasis formation heavily rely on chemotactic migration
(Bravo-Cordero et al., 2012).

Previous studies have shown that chemotactic migration can be broken down into a few
successive steps. Surface receptors pick up on chemotactic cues in the extracellular environment
and orient chemotaxis. These receptors can activate signaling cascades that establish a front-
rear polarity. The class I phosphatidylinositol 3-kinase (PI3K) is a vital player during this step.
The lipid kinase forms phosphatidylinositol (3,4,5)-triphosphate (PIP3) at the cell front, which
serves as a signal for several pathways that converge toward reorganizing the actin cytoskeleton
(Weiner, 2002). This allows the formation of actin-dependent membrane protrusions toward the
chemotactic signal. The lamellipodium is probably the most characterized type of cell protrusion
involved in migration. It is composed of a dense dendritic network of actin filaments that pushes
the plasma membrane forward, but also serves as an intracellular scaffold favoring the appearance
of links with the extracellular matrix (ECM). These links, called adhesion complexes, stabilize the
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lamellipodium and act as a molecular clutch allowing the cell
body to pull itself forward (Ridley et al., 2003).

Adhesion complexes are highly dynamic structures that
are formed by the hierarchical recruitment of different
scaffolding proteins. At their base we find integrins, heterodimer
transmembrane proteins with long extracellular heads that can
bind to ECM components such as fibronectin. This link, coupled
with intracellular cues, activates integrins by modifying the
conformation of their extracellular heads, thereby increasing
their affinity for the ECM (Tadokoro et al., 2003; Campbell and
Humphries, 2011). Activated integrins also cluster together to
form more robust structures that are linked to actin filaments
by talin and paxillin (Ridley et al., 2003). During migration, the
retrograde flow of actin filaments applies forces to the adhesion
complexes that seem to be essential to their sustainability and
maturation, by allowing the addition of strengthening proteins
such as vinculin (Choi et al., 2008). A rearward motion of
these adhesion complexes can be observed as the cell body
moves forward. Once they reach a certain point, they begin to
disassemble, as to not impede with migration. Cells that cannot
effectively disassemble adhesion complexes are considerably
slowed in their advance since they cannot detach from the
substratum (Kaverina et al., 1999; Ezratty et al., 2005). Adhesion
turnover also serves to recycle adhesion proteins to the cell
front so that they may aid in the construction of new complexes
(Margadant et al., 2011).

Disassembly seems to rely on “relaxation” signals carried
by microtubules. Early observations showed that adhesions are
destabilized as microtubules grow toward them. These filaments
may in fact stimulate loss of tension by bringing focal adhesion
kinase (FAK) and calpains to the adhesion site. Phosphorylation
of paxillin by FAK contributes to the weakening of the structure,
whereas calpains physically disrupt the link between actin and
the ECM by cleaving talin (Franco S. J. et al., 2004; Webb
et al., 2004). Ubiquitination also seems to partake in adhesion
disassembly, as several proteins, such as FAK, paxillin, and
integrins are ubiquitinated during this process (Huang, 2014).
The final step involves the endocytosis of integrins, mainly
by a clathrin-dependent pathway (Ezratty et al., 2009). Once
internalized, integrins can either be transported to the cell
front for the formation of new adhesion complexes, or directed
to autophagosomes and lysosomes for degradation (Tuloup-
Minguez et al., 2013; Maritzen et al., 2015).

Chemotactic G Protein-Coupled Receptors
With over 800 genes in Human, G-protein coupled receptors
(GPCR) constitute the largest surface receptor family
(Fredriksson et al., 2003). Their role is to help the cell

Abbreviations: CXCR4, C-X-C motif chemokine receptor 4; DFC1, double

FYVE domain- containing protein 1; ECM, extracellular matrix; EMT,

epithelial-to-mesenchymal transition; ER, endoplasmic reticulum; ERGIC, ER-

Golgi intermediate compartment; GPCR, G protein-coupled receptor; LC3,

microtubule associated protein 1 light chain 3; mTOR, mechanistic target

of rapamycin (serine/threonine kinase); NBR1, neighbor of BRCA1 gene 1;

PI3K, phosphatidylinositol 3-kinase; PI3P, phosphatidylinositol 3-phosphate; PIP3

phosphatidylinositol (3,4,5)-triphosphate; PKA, protein kinase A; UT, urotensin II

receptor; WIPI, WD repeat domain phosphoinositide interacting protein.

adapt to its environment by translating extracellular cues
to intracellular responses. GPCRs are involved in a wide
assortment of physiological processes and as such, their ligands
vary from hormones to lipids and even photons. Many GPCRs
can drive cell migration by enhancing motility and guiding the
orientation of actin polymerization and adhesion complexes
formation. Three main types of GPCRs have been found to
induce chemotaxis. These include receptors for chemokines,
some vasoactive peptides and bioactive lipids (Cotton and
Claing, 2009).

Chemokines constitute a large family of chemotactic cytokines
that can stimulate directed cell migration upon binding to their
GPCR. They are characterized by the presence of four cysteine
residues in their sequence and are named according to the
position of the two first ones. Therefore, they are classified in
four groups (CC, CXC, C, and CX3C) which bind to GPCRs
named accordingly (Murphy et al., 2000). Few chemokine GPCRs
have received as much attention as the C-X-C motif chemokine
receptor 4 (CXCR4). CXCR4 plays pleiotropic functions in
the peripheral immune system by stimulating the migration of
monocytes and lymphocytes (Bleul et al., 1996). It is also an
important regulator for homing of hematopoietic progenitor
cells to the bone marrow microenvironment (Lapidot et al.,
2005). In the central nervous system, CXCR4 participates in
guiding developing interneurons to their proper cortical layer,
as well as recruiting microglial cells during cortical development
(Li and Ransohoff, 2008; Tiveron and Cremer, 2008; Nash and
Meucci, 2014). Moreover, in CXCR4−/− mice, most GnRH
neurons fail to exit the vomeronasal organ during embryonic
development, and comparatively few GnRH neurons reach the
forebrain (Schwarting et al., 2006). In the adult brain, this
GPCR is believed to influence regeneration by recruiting brain-
resident and circulating cells to the site of the lesion (Stumm
and Höllt, 2007). CXCR4 is also notable for its involvement in
the internalization of the HIV as well as in the progression of a
wide range of cancers (Feng et al., 1996; Chatterjee et al., 2014).
As such, studies have shown that CXCR4 increases the migration
rate of several types of cancer cells (Salcedo et al., 2003).

A few vasoactive peptides, initially characterized for the effects
on the cardiovascular system, have more recently been shown to
increase cell migration. For example, by binding to their cognate
GPCRs, angiotensin II and endothelins can drive the migration
of smooth muscle cells and endothelial cells (Xi et al., 1999;
Daher et al., 2008). Urotensin II, the most potent vasoactive
peptide identified so far, is able to induce directed cell migration
of monocytes, endothelial cells as well as glioma cells (Segain
et al., 2007; Xu et al., 2009; Brulé et al., 2014; Lecointre et al.,
2015). Several bioactive lipids have also been found to induce
chemotaxis. One of them is lysophosphatidic acid, which, in
the nervous system, has been shown to stimulate the migration
of embryonic schwann cells and astrocytes (Sato et al., 2011;
Anliker et al., 2013; Yung et al., 2015). Lysophosphatidic acid also
drastically accelerates tumor growth by inducing angiogenesis
and tumor invasion, two processes that rely on increased
migration (Contos et al., 2000; Blackburn and Mansell, 2012).

Chemotactic GPCRs initiate signaling cascades that regulate
cell migration by activating heterotrimeric G proteins, composed
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of three subunits, α, β, and γ. Activation of a GPCR switches
out the GDP for a GTP in the Gα subunit, which causes the
dissociation of Gα from Gβγ. Each subunit can then go on to
regulate different intracellular signaling pathways (Wilkie et al.,
1992). Based on their sequences, Gα proteins can be split into
four main subtypes: αs, αi/o, αq/11, and α12/13 (Simon et al.,
1991). Though previous studies have shown that all of these
subtypes can, in one way or another, modulate cell migration,
it appears that GPCR-induced chemotaxis is mainly relayed by
Gαi and Gα12/13 (Cotton and Claing, 2009; Lecointre et al., 2015).
These G proteins have been linked to the activation of GTPases
belonging to the Rho family: RhoA, Rac1, and Cdc42. Together,
the GTPases orchestrate the construction of the dendritic actin
network in the lamellipodium, as well as the formation and
maturation of adhesions.

THE AUTOPHAGY MACHINERY

General Mechanisms of Autophagosome
Biogenesis
Macroautophagy (hereafter referred to as autophagy) is an
evolutionarily conserved lysosomal pathway involved in the
degradation of long lived proteins and cytoplasmic organelles
(Hale et al., 2013). This process, which is essential for normal
turnover of cellular compartments, is up-regulated in response
to nutrient starvation. The mechanistic target of rapamycin
(mTOR) kinase is a key regulator of cell metabolism that
represses autophagic activity when nutrient conditions are
adequate. mTOR is itself inhibited upon nutrient starvation,
which results in autophagy induction (Kim et al., 2011).
One of the first events in autophagy is the formation of
the phagophore, a cup-shaped isolation membrane. The edges
of these phagophore membranes elongate and thereby engulf
portions of cytoplasm. After the fusion of the membrane
edges, the structure becomes a completed autophagosome, which
later fuses with lysosomes, resulting in the degradation of its
luminal content. Several highly conserved autophagy (ATG)
proteins, which control key steps in the autophagy process,
have been identified (Nakatogawa et al., 2009). Initiation of
the phagophore requires the Beclin1-containing class-III PI3K
complex, generation of phosphatidylinositol 3-phosphate (PI3P),
and recruitment of the PI3P-binding proteins called WD repeat
domain phosphoinositide interacting (WIPI) and double FYVE
domain- containing protein 1 (DFCP1). These are followed by
the recruitment of the ATG5-ATG12-ATG16L1 ternary complex,
along with phosphatidylethanolamine-conjugated microtubule-
associated protein 1 light chain 3 beta (LC3-II), which are
essential for elongation of the phagophore membrane. While the
ATG5-ATG12-ATG16L1 complex decorates the phagophore and
dissociates after completion of autophagosome formation, part
of LC3-II remains associated with fully formed autophagosomes
(Abada and Elazar, 2014). In addition to its bulk degradation
property, autophagy also partakes in the clearance of specific
substrates. This selective autophagy mainly depends on cargo
receptors such as neighbor of BRCA1 gene 1 (NBR1) and p62,
which can bind to ubiquitin-tagged substrates. These cargo

receptors can also bind to LC3 via a LC3-interacting region (LIR)
motif, which therefore targets them to autophagosomes (Bjørkøy
et al., 2005; Pankiv et al., 2007; Kirkin et al., 2009; Zaffagnini and
Martens, 2016).

Sources of Membrane for the Expansion of
the Phagophore
Phagophores require lipids to mature into autophagosomes.
After more than 50 years of investigations, the origin of the
autophagosomal membranes is still a critical question. Originally,
the endoplasmic reticulum (ER) was proposed to be the primary
source of these membranes. Early electron microscopy studies
identified a close relationship between the ER and autophagic
structures, suggesting that autophagosomal membranes are
mainly delivered from the ER (Novikoff and Shin, 1978; Hayashi-
Nishino et al., 2009). Consistent with this idea, Axe et al.
(2008) showed that, in response to amino acid starvation,
the PI3P-binding protein DFCP1, translocates to PI3P-enriched
subdomains of the ER. These subdomains then constitute
a platform for accumulation of autophagosomal proteins,
expansion of autophagosomal membranes and emergence of
fully formed autophagosomes. Subsequent three-dimensional
tomography studies (Hayashi-Nishino et al., 2009; Ylä-Anttila
et al., 2009) demonstrated that subdomains of the ER
form a cradle-like curve encircling isolation membranes. The
associated ER and isolation membranes are interconnected by
a narrow membrane extension from the isolation membrane.
Recent studies found evidence that apart from the ER,
numerous other membrane sources are involved in the
formation of autophagosomes, including mitochondria, the
Golgi, recycling endosomes and endocytic vesicles budding
from the plasma membrane. Hailey et al. (2010) elegantly
demonstrated that, in starved cells, mitochondria directly
participate in autophagosome biogenesis. They found that the
early autophagosomal maker, ATG5, transiently localizes to
puncta on mitochondria, followed by the late autophagosomal
marker LC3. This study further showed that cell starvation drives
the delivery of lipid components from the mitochondrial outer
membrane to newly formed autophagosomes. It has recently
been reported that the Golgi may also contribute to the formation
of autophagosomes. Following starvation, activation of the class-
III PI3K complex promotes re-localization of COPII adaptors
from the ER exit sites to the ER-Golgi intermediate compartment
(ERGIC). The process leads to the generation of ERGIC-derived
COPII vesicles which becomes LC3-positive and contribute to
autophagosome biogenesis (Ge et al., 2015).

Recent reports demonstrated that recycling endosomes,
through the formation of tubular structures accumulating
autophagy proteins, also supply membrane for autophagosome
biogenesis. In a siRNA-mediated screen, Knaevelsrud et al.
identified the PX domain-containing protein, SNX18, as a
positive regulator of autophagy (Knævelsrud et al., 2013). The
membrane binding and tubulation activities of SNX18, as well
as its direct interaction with LC3, allow the formation of LC3-
ATG16L1-positive tubules emanating for recycling endosomes
that provide membrane input to forming autophagosomes. This
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study is in line with other findings (Longatti et al., 2012) showing
that vesicular transport from recycling endosomes, negatively
regulated by the Rab11 effector protein TBC1D14, contributes to
starvation-induced autophagy. Together, these data indicate that
the recycling compartment is not solely responsible for recycling
of plasma membrane receptors but also serves as a sorting
station for controlled delivery of membrane for autophagosome
biogenesis.

Work from Rubinsztein’s lab identified endocytic vesicles,
trafficking to recycling endosomes, as an important source of
membrane for autophagosome biogenesis. Endocytic vesicles can
form from regions of the plasma membrane through different
mechanisms, i.e., clathrin-dependent and clathrin-independent
vesicle budding (Ravikumar et al., 2010; Moreau et al.,
2012). Accumulation of ATG16L1 at clathrin-coated endocytic
structures, through an interaction between ATG16L1 and the
clathrin adaptor AP2, and vesiculation of ATG16L1-positive
precursors have been found to contribute to autophagosome
formation. Inhibition of clathrin-mediated endocytosis, using
siRNAs targeting the clathrin heavy-chain or the clathrin
adaptor AP2, causes defective autophagosome biogenesis, which
is associated with impaired uptake of plasma membrane into
pre-autophagosomal vesicles (Ravikumar et al., 2010). These
ATG16L1-positive vesicles then undergo SNARE-mediated
homotypic fusion, generating tubulovesicular structures that
increase in size, enabling the acquisition of LC3 protein
(Moreau et al., 2011) Similarly to ATG16L1-positive vesicles,
generation of clathrin-coated ATG9-positive vesicles from
the plasma membrane also participates in autophagosome
formation. Surprisingly, ATG16L1 and ATG9 proteins have been
found to localize to distinct clathrin-coated vesicles and to
traffic through different routes inside the cell. Although both
ATG9 and ATG16L1 proteins end up in recycling endosomes,
ATG9 is trafficked via EEA1-positive early endosomes, whereas
ATG16L1 has minimal residence in early endosomes (Puri
et al., 2013; Zavodszky et al., 2013). The SNARE protein named
VAMP3, which co-traffics with ATG9, seems to be critical for
the coalescence of ATG16L1 and ATG9 vesicles in recycling
endosomes (Puri et al., 2013). The impact of this coalescence on
the formation of tubules emanating from recycling endosomes,
driven by SNX18, deserves further investigations.

REGULATION OF THE AUTOPHAGY
MACHINERY BY G PROTEIN-COUPLED
RECEPTORS

To this day, very few GPCRs have been shown to directly
affect autophagic activity. These mainly include nutrient sensing
receptors that increase anabolic processes via stimulation of
the mTOR kinase, a well-known autophagy repressor (Jung
et al., 2010; Wauson et al., 2014). The amino-acid responsive
T1R1/T1R3 receptor is present inmost tissues and acts as a sensor
for the fed state and amino acid availability. It has been suggested
that this GPCR may impact autophagic activity through mTOR
stimulation. Reducing T1R3 levels in HeLa cells is sufficient to
impair mTOR activity and activate autophagy (Wauson et al.,

2012). Angiotensin receptors have also been found to modulate
autophagic activity in cardiomyocytes (Porrello et al., 2009),
podocytes (Yadav et al., 2010) and in vascular smooth muscle
cells (Yu et al., 2014), mainly through the generation of reactive
oxygen species.

We recently found that chemotactic GPCRs CXCR4 and
the urotensin II receptor (UT) also reduce autophagic activity
by inhibiting autophagosome biogenesis (Coly et al., 2016).
Unlike the studies cited above, these anti-autophagic effects
do not seem to be relayed by mTOR modulation, but rather
by inhibiting ATG16L1 recruitment to pre-autophagic vesicles
budding from the plasma membrane. While Ravikumar et al.
(Bjørkøy et al., 2005) demonstrated that ATG16L1 recruitment
is dependent on its interaction with the AP2-clathrin complex,
the data we obtained indicate that ATG5 is also implicated.
We demonstrated that activation of CXCR4 or UT reduces
the pool of ATG5 protein located at the plasma membrane,
thereby reducing the recruitment of ATG16L1. Accordingly,
overexpression of recombinant ATG5 totally abrogates the anti-
autophagic activities of CXCR4 and UT, and siRNA-mediated
knockdown of ATG5 mimics the inhibitory effects of these
GPCRs on the formation of pre-autophagic endosomes. What
is the exact role of ATG5 in mediating the formation of pre-
autophagic endosomes?We can speculate that ATG5’smembrane
binding activity (Romanov et al., 2012) might allow the initial
docking of an ATG5-ATG16L1 complex to the plasmamembrane
in order to maximize the probability of interaction between
ATG16L1 and AP2-clathrin. Alternatively, since ATG5 can co-
immunoprecipitate from cell lysates with ATG16L1 and clathrin,
and since the N-terminus region of ATG16L1 allows both AP2-
clathrin co-immunoprecipitation (Ravikumar et al., 2010) and
direct ATG5 binding (Mizushima et al., 1999; Otomo et al., 2013;
Kim et al., 2015), it is conceivable that ATG5 may act as a bridge
between ATG16L1 and AP2-clathrin.

G PROTEIN-COUPLED
RECEPTOR-INDUCED ACTIVATION OF
CALPAINS: A CRITICAL EVENT THAT
RELAYS PRO-MIGRATORY AND
ANTI-AUTOPHAGIC PROPERTIES

Pro-Migratory Properties of Calpains
Calpains are a ubiquitously expressed family of cysteine proteases
that mediate cleavage of specific substrates. Although calpain
proteolysis can lead to full degradation of some of its substrates,
others are cleaved in a limited fashion, resulting in protein
fragments that have altered distributions and/or functions.
Calpains have thus been found to be involved in a number of
processes such as development, cell death, and motility (Goll
et al., 2003). Modulating cell migration is one of the better known
roles of these proteases. Studies conducted in neutrophils have
shown that calpain inhibition increases random migration, but
decreases GPCR-induced directional migration upon exposure
to a gradient of interleukin 8 (Lokuta et al., 2003). In neurons,
calpain activity was also shown to be essential for SDF1-induced
actin reorganization and directional migration (Lysko et al.,
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2014). These results are in line with work highlighting the
role of the calpain 2 isoform during lamellipodium formation.
Calpain 2 controls the formation of cell protrusions by cleaving
cortactin, a key modulator of actin filament branching at the
cell front. Expression of a calpain-resistant form of cortactin
reduces the migration of fibroblasts by increasing the number
of transient and inefficient cell protrusions (Perrin et al., 2006).
Calpains also play an important role in the dynamics of adhesion
formation and disassembly. By modifying the cytoplasmic tail of
β-integrins, calpains seem to be essential for the formation of
integrin clusters at an early stage of adhesion complex assembly
(Bialkowska et al., 2000) Talin is another calpain target during
these initial steps. Once cleaved, talin can bind to β-integrin
tails, therefore constituting the first link between integrins and
actin filaments (Yan et al., 2001) In addition to their role during
this assembly phase, calpains are also one of the main actors
of adhesion disassembly. They contribute to adhesion turnover
by destabilizing the structural integrity of the complex. Several
proteins such as paxillin, vinculin and talin are in fact targeted
by calpains during this stage (Carragher et al., 1999; Franco S.
et al., 2004; Serrano and Devine, 2004). Inhibiting calpains with
either calpastatin or pharmacological means significantly slows
adhesion turnover (Bhatt et al., 2002). Similar results can be
obtained following calpain 2 knockdown, which results in large,
long lasting adhesion complexes that inhibit cell detachment
and therefore impair cell migration (Franco S. J. et al., 2004).
Despite the many roles of calpains during cell migration, their
regulation by chemotactic GPCRs remains unclear. However,
previous work revealed that calpain 2 is recruited at the
plasma membrane and activated following its phosphorylation
by ERK and dephosphorylation on a protein kinase A (PKA)
site (Glading et al., 2000; Shiraha et al., 2002). Interestingly,
as mentioned earlier, the pro-migratory properties of many
chemotactic GPCRs are relayed by Gi coupling, which has the
ability to activate ERK, through βγ subunits, and to inhibit
PKA, through the αi subunit (Goldsmith and Dhanasekaran,
2007; Cotton and Claing, 2009). We can therefore speculate
that the simultaneous induction of these signaling pathways by
chemotactic GPCRs may be determinant for the activation of
calpain 2 at the plasma membrane and regulation of adhesion
dynamics.

Anti-Autophagic Properties of Calpains
A growing amount of data suggests that calpains are major
inhibitors of the autophagy machinery. SiRNA-mediated
knockdown of calpain 1 is sufficient to induce autophagy under
nutrient rich conditions, correlated with increased levels of LC3-
II and ATG5-ATG12 complex (Xia et al., 2010). Using a cell-free
system, Yousefi et al. demonstrated that ATG5 can be cleaved
by both calpain 1 and calpain 2 (Yousefi et al., 2006). Cleavage
of ATG5 then generates a 24 kDa N-terminal product that
can translocate to the mitochondria and enhance susceptibility
toward apoptotic stimuli (Yousefi et al., 2006). In vitro
experiments also identified ATG3, ATG4, ATG7, ATG9, ATG10,
ATG12, and Beclin1 as direct calpain substrates (Norman et al.,
2010; Yang et al., 2010). It should be noted that calpains may
also exert their anti-autophagic properties by targeting non-ATG

proteins. The clathrin adaptors AP2 and PICALM, which
are critical for the formation of pre-autophagosomal vesicles
from the plasma membrane, have been described as calpain
substrates (Kim and Kim, 2001; Rudinskiy et al., 2009; Ando
et al., 2013). Does calpain-dependent repression of autophagy
then constitute a critical event for chemotaxis? In favor of this
hypothesis, we found that the anti-autophagic and pro-migratory
properties of two chemotactic GPCR, CXCR4, and UT, were
abrogated by pharmacological inhibition or siRNA knockdown
of calpains (Coly et al., 2016). We further demonstrated that
calpain activation, induced by CXCR4 or UT, reduces the pool
of ATG5 at the plasma membrane and inhibits the recruitment
of ATG16L1 protein to endocytic vesicles, thereby limiting
the formation of pre-autophagosomal precursors required for
the expansion of the phagophore and formation of mature
autophagosomes. In addition to reversing the anti-autophagic
effects of chemotactic GPCRs, calpain inhibition or ATG5
overexpression is also sufficient to block their pro-migratory
properties, as both these approaches reduce the cells’ migration
rate, as well as the number of adhesions per cell (Coly et al.,
2016). Despite early reports pointing to ATG5 as a calpain target,
our attempts at demonstrating its direct cleavage following
CXCR4 or UT activation were unsuccessful. One hypothesis
is that only a minor, plasma membrane-associated fraction of
ATG5 is cleaved by calpains. The cleaved products may also be
highly unstable, thereby hindering their detection. Alternatively,
the anti-autophagic action of calpains following GPCR activation
could depend on the cleavage of the adaptor proteins AP2
and PICALM, or on the cleavage of ATG7, which is essential
for conjugation of ATG5–ATG12 (Mizushima et al., 1998).
Since the recruitment of calpains at the plasma membrane
constitutes an early event during chemotaxis (Franco and
Huttenlocher, 2005), it can be anticipated that GPCR-induced
inhibition of autophagy may tightly control early steps of cell
polarization.

G PROTEIN-COUPLED
RECEPTOR-INDUCED INHIBITION OF
AUTOPHAGY: POTENTIAL IMPACT ON
CHEMOTACTIC MIGRATION AND
INVASION

Lamellipodium Expansion vs.
Autophagosome Biogenesis: Competition
for a Common Source of Membrane?
During GPCR-induced chemotactic migration, efficient
expansion of the lamellipodium requires addition of extra
membrane at the leading edge, through polarized, microtubule-
dependent exocytosis (Bretscher and Aguado-Velasco, 1998;
Pierini et al., 2000; Schmoranzer et al., 2003). Work from Veale
et al. identified VAMP3-positive recycling endosomes as an
important source of internal membrane that is incorporated
at the leading edge during macrophage migration (Veale
et al., 2010). The authors further demonstrated that, in
order for this to happen, the R-SNARE VAMP3 needs
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to form a complex with its cognate Q-SNARE complex
Stx4/SNAP23 located at the cell surface. Loss of any one
of the components of the VAMP3/Stx4/SNAP23 complex
inhibits efficient lamellipodium formation and alters cell
migration. Along with the incorporation of extra membrane,
this mechanism also allows the recycling of cell adhesion
components at the leading edge, including integrins (Veale et al.,
2010).

Since recycling endosomes, through the SNX18-dependent
formation of tubules, supply membrane for phagophore
expansion, it is conceivable that this compartmentmay constitute
a sorting station that deliver phospholipids in a competitive
manner, for either lamellipodium expansion or autophagosome
synthesis. The dynamic increase in plasma membrane surface
triggered by chemotactic GPCRs may then directly impact
the pool of phospholipids available for autophagic activity.
How could activation of GPCRs, located at the cell surface,
affect the trafficking of membrane from recycling endosomes?
Chemotactic GPCRs CXCR4 and UT alter, through the
activation of calpains, the recruitment of ATG16L1 in pre-
autophagosomal vesicles budding from the plasma membrane
(Coly et al., 2016). This may reduce the pool of ATG16L1
targeted to the recycling compartment and limit the coalescence
of ATG16L1 and ATG9 vesicles. Inhibition of ATG16L1 and
ATG9 coalescence would then favor the delivery of VAMP3-
positive vesicles at the cell front, at the expense of the phagophore
(Figure 1).

Front Cell’s Accumulation of Focal
Adhesion Components
Among the hallmarks of cell migration, the formation of
adhesion complexes at the cell’s leading edge is among the
most notable. Adhesions are critical in generating the traction
required for the cell’s forward movement. Several data have
demonstrated autophagic degradation of key proteins involved
in the initiation and the maturation of adhesion complexes,
indicating that autophagy can regulate adhesion dynamics.
The Src kinase, which is involved in adhesion signaling,
was shown to co-immunoprecipitate with LC3 and to be
degraded by autophagy (Sandilands et al., 2012). In fibroblasts,
β1 integrin-containing vesicles co-localize with LC3-stained
autophagic structures. Inhibition of autophagy by ATG5 or
ATG3 knockdown is able to slow β1 integrin degradation and
to promote it’s recycling to the plasma membrane (Tuloup-
Minguez et al., 2013). Kenific et al. (Shiraha et al., 2002)
recently demonstrated that the selective autophagy cargo
receptor NBR1 is essential for adhesion turnover and for the
autophagic capture of multiple adhesion proteins including
paxillin, vinculin and zyxin. Furthermore, paxillin was shown
to have its own LIR domain, which is also involved in its
autophagic degradation (Sharifi et al., 2016). In agreement
with a role of autophagy in adhesion disassembly, global
inhibition of autophagosome biogenesis, using knockdown
strategies against ATG proteins, results in the accumulation of
large and unproductive adhesions at the entire cell periphery
that reduce cell migration (Kenific et al., 2016a,b; Sharifi

et al., 2016). Also these migration studies could appear to
conflict with our report, (Coly et al., 2016) indicating that
autophagy inhibition by CXCR4 or UT stimulates migration,
they actually stress the fact that efficient chemotactic migration
may imply compartmentalized rather than general inhibition
of the autophagic machinery (Lecointre et al., 2015). We can
propose that, at the front-most part of the cell, chemotactic
GPCRs activated by a gradient of ligand could inhibit
autophagy to favor the efficient formation of adhesions, while
autophagy would remain active at distance from the site of
GPCR activation/signaling in order to enable focal adhesion
disassembly.

Front Cell’s Accumulation of Proteins
Participating in Actin Remodeling
Chemotactic GPCRs are known to induce actin polymerization
at the cell’s leading edge to allow the lamellipodium to protrude
toward the chemoattractant stimulus. Interestingly, a number
of proteins involved in actin dynamics and lamellipodium
expansion have been shown to be degraded by autophagy.
A Proteomic analysis allowed the identification of the actin
regulators twinfilin, WIPF1, cortactin and cofilin 1 in ATG16L1-
positive pre-autophagic vesicles budding from the plasma
membrane (Morozova et al., 2015). Recent studies also indicate
that the Rho GTPases Rac1 and RhoA can be regulated
by autophagy. Using keratinocytes, Carroll et al. showed
that Rac1 is inactivated during starvation induced autophagy
(Carroll et al., 2013). LC3 is able to block Rac1 activation
by binding to one of its effectors, Armus. LC3 can also
directly interact with Rac1, though whether this leads to Rac1
degradation remains to be determined. Active RhoA and its
regulator GEF-H1, can be ubiquitinated and recognized by
p62, therefore leading to their selective degradation by the
autophagic machinery (Belaid et al., 2014; Yoshida et al.,
2016). Autophagy inhibition by shRNA targeting of ATG5
leads to an accumulation of RhoA at the cell surface and
to the formation of actin rich lamellipodia. Interestingly,
Belaid et al. (Ando et al., 2013) found that the intense
actin polymerization caused by RhoA accumulation actually
impairs cell motility. Once again, this implies that autophagy
inhibition by chemotactic GPCRs may be fine-tuned and
compartmentalized at the cell front in order to support effective
cell migration.

Induction of the EMT
Epithelial to mesenchymal transition (EMT) plays a fundamental
role in embryonic development and tissue repair. Numerous
lines of evidence indicate that EMT also participates in tumor
progression and metastasis. Once undergoing EMT, tumoral
cells lose their apical-basal polarity, and acquire a mesenchymal
phenotype characterized by an elongated morphology and
increased motility (Kalluri and Weinberg, 2009). This allows
them to detach from the primary site and invade the surrounding
tissues and blood vessels. Interestingly, recent publications also
link EMT to glioblastoma progression. Although not of epithelial
origin, glioblastoma cells can engage an EMT-like process that
increases their invasive properties (Kahlert et al., 2013). EMT
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FIGURE 1 | Chemotactic GPCR-mediated autophagy inhibition: potential role in chemotactic migration. (A) Under basal conditions,

ATG5-ATG16L1-positive pre-autophagic endosomes bud from the plasma membrane and are directed to the recycling endosome compartment. From there,

SNX18-dependent tubules target vesicles containing ATG5-ATG16L1 and LC3 to the expanding phagophore. (B) Upon activation by chemoattractant stimuli,

chemotactic GPCRs locally inhibit the formation of pre-autophagic endosomes. The subsequent reduction of ATG proteins in the recycling compartment may trigger a

“targeting switch” which reduces membrane flux toward the phagophore to favor VAMP3-enabled recycling to the plasma membrane. Exocytosis allows integrins to

be recycled to nascent adhesions, while phospholipids are incorporated into the lamellipodium and contribute to its expansion. Autophagy inhibition at the leading

edge may also locally protect proteins involved in actin remodeling and adhesion assembly, which would otherwise be sequestered and degraded. Autophagy could

remain active at distance from chemotactic GPCRs in order to participate in the disassembly of large focal adhesions.

has been shown to be driven by a variety of signals, such
as transforming growth factor-β, insulin growth factor II, or
epidermal growth factor (Thiery et al., 2009). These EMT
inducers then lead to the activation of core transcription factors,
including Snail and Slug, ZEB1/2, and Twist (Tam andWeinberg,
2013).

A complex relationship exists between autophagy and EMT.
On one hand, cells that have undergone EMT require increased
autophagy to survive stressful environmental conditions during
their migration. On the other hand, recent observations
indicate that autophagy acts as an oncosuppressive mechanism
by inhibiting early steps of EMT (Gugnoni et al., 2016).
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This latter idea was first proposed by Lv et al. (2012) who
demonstrated that, in breast cancer cells, the intracellular
signaling protein DEDD (death-effector domain-containing
DNA-binding protein) inhibits EMT through the activation
of autophagy and consecutive degradation of Snail and
Twist. Snail and Twist were found to colocalize with the
autophagosomal marker LC3, and inhibition of autophagy
using 3-methyladenine significantly reduced their degradation
rates (Lv et al., 2012). Using mouse embryonic fibroblast
(MEF) cells, Qiang et al. found that ATG3, ATG5, ATG9,
or ATG12 knockout cells exhibit much higher invasive
properties than wild-type cells (Qiang et al., 2014). The authors
demonstrated that autophagy deficiency promotes EMT events
through the accumulation of p62 in the cytosol. Accumulating
p62 then binds to Twist1 and prevents its proteasomal
degradation. A recent study obtained in glioblastoma indicates
that autophagy inhibition, through the knockdown of ATG5
or ATG7, stimulates the expression of the EMT regulators
Snail and Slug, as well as cell invasion (Catalano et al.,
2015).

From these data, it can be expected that inhibition of
autophagy by chemotactic GPCRs, such as CXCR4 or UT (Coly
et al., 2016), may constitute a critical event participating in
EMT during tumor progression. This hypothesis is reinforced by
recent reports demonstrating that, in addition to classical EMT
inducers, CXCR4’s ligand, CXCL12, drives Twist-dependent
EMT-like events in human glioblastoma cells (Yao et al.,
2016), as well as EMT in numerous peripheral cancers
(Hu et al., 2014; Li et al., 2014; Roccaro et al., 2015)
and UT’s ligand, urotensin II, promotes the expression of
EMT markers in renal tubular epithelial cells (Pang et al.,
2016).

CONCLUDING REMARKS

Although there are still many gaps in our understanding of
how Atg proteins control chemotactic migration and cancer
cell invasion, it is now clear that the autophagy machinery has
major impacts on these processes. Specifically, degradation of
focal adhesion components, through selective autophagy, has
already been shown to participate in the turnover of adhesions
during cancer cell migration. Autophagic degradation of key
proteins participating in actin remodeling may also constitute
an efficient way of clearing these proteins from the cell rear
and concentrating them at the cell front, in order to initiate
the expansion of a single lamellipodium in the direction of the
chemotactic stimulus. The recent identification of the plasma
membrane as a donor compartment for the expansion of the
phagophore constituted an essential step in the comprehension of
how chemotactic receptors could locally control autophagic flux.
Deciphering the signaling cascades triggered by these receptors,
and their impacts on the trafficking and/or processing of the core
Atg proteins is an exciting challenge for the future and will help
to envisage innovative strategies to halt cancer metastasis.
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