
HIGHLIGHTS

• �We used a top-down approach to reduce the heterogeneity of the results of meta-analyses 
and used it to determine the methodology for literature selection and statistical analysis.

• �In the results of meta-analysis, we found that RAAT had significant superiority over CT 
in improving arm function (standardized mean difference [SMD], 0.63; 95% confidence 
interval [CI], 0.37–0.88; p < 0.001; I2 = 84%) and ADL (SMD, 0.24; 95% CI, 0.05–0.43; p 
= 0.010; I2 = 27%).

• �Through results of the meta-analysis, we found that RAGT, had a significant superiority 
over CT in improving balance (MD, 2.47; 95% CI, 0.41–4.53; p = 0.020; I2 = 50%), but no 
significant superiority was identified in improving gait function (SMD, 0.22; 95% CI, −0.07 
to 0.52; p 0.140; I2 = 38%) and ADL (SMD, 0.17; 95% CI, −0.04 to 0.38; p = 0.11; I2 = 0%).
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ABSTRACT

This meta-analysis aimed to compare the effects of robot-assisted training (RAT) with 
those of conventional therapy (CT), considering the potential sources of heterogeneity in 
the previous studies. We searched three international electronic databases (MEDLINE, 
Embase, and the Cochrane Library) to identify relevant studies. Risk of bias assessment 
was performed using the Cochrane’s Risk of Bias 1.0 tool. The certainty of the evidence 
was evaluated using the Grading of Recommendations, Assessment, Development, and 
Evaluations method. The meta-analyses for each outcome of the respective domains were 
performed using 24 randomized controlled trials (RCTs) on robot-assisted arm training 
(RAAT) for arm function, 7 RCTs on RAAT for activities of daily living (ADL), 12 RCTs on 
robot-assisted gait training (RAGT) for balance, 6 RCTs on RAGT for walking, and 7 RCTs 
on RAGT for ADL. The random-effects model for the meta-analysis revealed that RAAT has 
significant superiority over CT in improving arm function, and ADL. We also showed that 
RAGT has significant superiority over CT in improving balance. Our study provides high-
level evidence for the superiority of RAT over CT in terms of functional recovery after stroke. 
Therefore, physicians should consider RAT as a therapeutic option for facilitating functional 
recovery after stroke.

Keywords: Robotics; Upper Extremity; Lower Extremity; Recovery of Function;  
Stroke Rehabilitation

INTRODUCTION

Stroke is the primary cause of death and long-term disability worldwide in stroke survivors 
[1-3]. A significant proportion of stroke survivors have limited use of the affected upper and 
lower limbs. According to previous studies, upper limb deficits persist for 6 months after 
stroke onset in 30%–66% of patients with hemiplegia [4,5]. Cohort studies have revealed 
that 22% of patients with stroke do not regain walking ability [6]. Therefore, restoring the 
function of the affected upper and lower limbs after a stroke is of clinical importance.
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Robot-assisted training (RAT) enables highly repetitive, adaptive, quantifiable, and task-
specific training with feedback for enhancing brain neuroplasticity [7,8]. RAT may also have 
an advantage over conventional therapies (CTs) due to its potential to motivate patients [9]. 
Several previous meta-analyses have demonstrated that robot-assisted arm training (RAAT) 
is significantly more effective than nonrobotic therapy and therapist-mediated training in 
restoring upper extremity function, strength, and performance in activities of daily living 
(ADL) after stroke [10-12]. Previous studies demonstrated that robot-assisted gait training 
(RAGT) have positive effects on gait speed, gait independence, and balance recovery 
after stroke [13-15]. Therefore, RAT for restoring upper and lower limb motor deficits and 
subsequent functional decline following stroke has been applied worldwide in clinical 
settings [16]. In accordance with accumulated evidence of the therapeutic effectiveness of 
RAT, the Health Insurance Review and Assessment Service in South Korea has, as of February 
2022, established a selective health benefit for RAGT in patients with stroke and gait 
disturbance above a certain level.

However, the results of the meta-analyses presented in the aforementioned studies exhibited 
a high level of heterogeneity [10,12-15,17], making it difficult to generalize the effect of RAT. 
Therefore, in this study, we aimed to compare the effects of RAAT and RAGT with those 
of CT through a meta-analysis, considering the potential sources of heterogeneity among 
studies that demonstrated the effectiveness of RAT.

MATERIALS AND METHODS

The protocol used in this study was determined before performing meta-analyses as a part of 
the development of the Clinical Practice Guideline for Stroke Rehabilitation in Korea. Part 1: 
Rehabilitation for Motor Function (2022) [18]. The protocol was not registered on a formal 
registration website.

Strategies to minimize the heterogeneity of meta-analysis results and draw 
generalized statements about the effectiveness of RAT
To reduce the heterogeneity in the results of meta-analyses that confirm the effectiveness of 
RAT, we propose the following conditions that the meta-analysis should meet: 1) RAT and CT 
should be dose-matched. 2) Exclude studies in which RAT was combined with interventions 
other than CT, such as interventions providing RAT in a virtual reality environment, were 
excluded, because the effectiveness of RAT alone could not be estimated by pooling the 
results of those studies. 3) Despite two Cochrane reviews confirming the effectiveness of 
RAT, including preliminary and pilot studies [14,17], we chose to include only randomized 
controlled trials (RCTs) because we assumed that including such studies could introduce 
heterogeneity into the results of the meta-analysis. Furthermore, since crossover RCTs may 
have potential drawbacks compared to parallel RCTs, such as carryover, period, and sequence 
effects and period-by-treatment interactions [19], we planned to select only parallel RCTs for 
the meta-analysis in this study. 4) As the form and technological level of robots evolve, older 
studies risk diluting the therapeutic effects of contemporary robots. Therefore, we conducted 
a meta-analysis of studies published after 2000.

To draw statements about the generalized effectiveness of robotic therapy from the results of 
the meta-analysis in this study, we considered the following: 1) inclusion of studies in which 
RAT was administered both alone and in conjunction with CT, 2) comprehensive inclusion of 
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metrics for each of the following domains: arm function, balance, walking, and ADL, and 3) 
use of a random-effects model for the meta-analysis to deal with between-study variance [20] 
which reflects the heterogeneity of the environment in which the RAT is provided.

Literature selection
Search strategy
Utilizing previous meta-analyses and clinical practice guidelines [10-15,21,22], we 
identified and collected search terms presented elsewhere [18]. Six information search 
experts conducted a literature search using three overseas databases: the PubMed (https://
pubmed.ncbi.nlm.nih.gov/), EMBASE (http://embase.com), and Cochrane Library (http://
cochranelibrary.com). We conducted a comprehensive literature search for articles published 
before February 28, 2022. Literature selection was based on the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) statement, which is presented in Fig. 1. The 
search was limited to articles published in English.
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Studies included in quantitative synthesis (n = 58)
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Robot-assisted gait training (n = 29)
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Reports excluded: (Total n = 654)
1. Literatures include diseases other than stroke (n = 46)
2. Literatures do not include outcome parameters (n = 22)
3. Literatures do not include proper intervention (n = 185)
4. Literatures do not include proper control group (n = 9)
5. Literatures use the same data which is used in other 

studies (n = 2)
6. Cross-over RCT (n = 3)
7. Other types of documents (n = 387)

Fig. 1. PRISMA flow chart.
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Inclusion and exclusion criteria
Two reviewers (Y.S.D and L.H.H) independently reviewed the screened literature using our 
own Population, Intervention, Comparison, Outcomes and Study (PICOS) framework, which 
reflected the above strategies.

Population: We selected studies that enrolled patients with stroke onset age of 18 years and 
older and upper or lower limb dysfunction due to stroke.

Intervention: We defined RAT as “the application of electronic and computerized control 
systems to mechanical devices designed to assist human functions in rehabilitation,” which 
was used in a previous study [10].

Comparison: RAT (add-on or alone) vs. CT

We set the conditions for comparability between interventions as follows: 1) the duration of 
therapy provided in the RAT and CT groups should be the same and 2) in studies where RAT 
is provided as an add-on therapy, treatments other than RAT in the experimental group must 
have the same form as those in the CT group, and the total duration of therapy in the RAT 
group should be the same as that in the CT group.

Outcome: We included studies that assessed each of the following domains using relevant 
endpoints: arm function, balance, walking, and ADL.

1) �Arm function: Manual Function Test, Fugl-Meyer Assessment, Box and Block Test, 
Action Research Arm Test, Wolf Motor Function Test, and 9-Hole Peg Test

2) Balance: Berg Balance Scale
3) Walking: 10 Meter Walk Test, gait speed (average or maximum, m/s), 6 Minute Walk Test
4) �ADL: Functional Independence Measure, Barthel Index, Modified Barthel Index, Korean 

version of the Modified Barthel Index, Frenchay Activities Index, Frenchay Arm Test, 
and Motor domain of Functional Independence Measure

We did not use outcomes obtained through patient-reported or subjective measures, which 
pose a potential risk of bias in the meta-analysis. Because numerous factors can influence 
the long-term effects of an intervention, we included studies with functional outcomes 
immediately after the intervention as the primary endpoint.

Study design: parallel RCT
As stated previously, we did not include studies that combined RAT with other interventions 
such as virtual reality and functional electrical stimulation. Two reviewers (Y.S.D, and 
L.H.H) independently screened potentially eligible studies by manually reviewing titles and 
abstracts, and assessed eligibility through full-text screening. Disagreements were resolved 
through discussion when necessary.

Risk of bias assessment
Two reviewers (Y.S.D and L.H.H) independently evaluated the methodological quality of the 
included RCTs using the Cochrane Risk of Bias 1.0 tool and resolved any disagreements by 
discussion.

Data extraction and transformation
If a study presented multiple outcomes for the same domain, we ranked the outcomes for each 
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domain according to their order in the preceding list and used the highest-ranking outcome 
for the meta-analysis. The two reviewers reached mutual agreement on whether to use the 
post-intervention outcome or the difference in outcomes (calculated by subtracting the 
pre-intervention (baseline) outcome from the post-intervention outcome) for the respective 
domains (Y.S.D, and L.H.H). When the study did not directly provide the difference in 
outcome, we used the mean and standard deviation of both the post-intervention and pre-
intervention (baseline) results to compute the mean and standard deviation of the outcome 
change, following the formula given in the Cochrane Handbook [23]. Studies with more than 
two intervention groups or if outcomes for continuous variables were not presented as means 
and standard deviations, they were converted to values to be pooled using a valid method, as 
described in the handbook. We excluded the studies in which no endpoints were obtainable 
for inclusion in the meta-analysis using the aforementioned procedure.

Assessment of certainty of evidence
The certainty of evidence was evaluated using the Grading of Recommendations, 
Assessment, Development, and Evaluations (GRADE) method [24] into high, moderate, 
low, or very low. We used five considerations (risk of bias, imprecision, inconsistency, 
indirectness, and publication bias) of the GRADE for the selected RCTs [24]. When 
evaluating the imprecision item in GRADE, we verified whether the total number of study 
participants in each domain met the criterion for optimal information size. Both authors 
independently performed the entire procedure and reached a consensus.

Statistical analysis
The previously outlined strategies were also embodied in our statistical analysis 
methodology. We conducted an intention-to-treat analysis in which all the participants 
who were initially randomized were included in the analyses according to the groups to 
which they were assigned. The effect of RAT on the outcomes of each functional domain 
was assessed using the pooled standardized mean difference (SMD). In cases in which a 
singular type of outcome was drawn for a particular domain, MD was used. To account for 
the variability between studies, we used a random-effects model to calculate the pooled 
SMD for the outcomes of each functional domain, along with their corresponding 95% 
confidence intervals. Defining an I2 statistic ≥50 as statistical heterogeneity of the respective 
meta-analyses, following the same criteria as that of the previous study [10] and the Cochrane 
Handbook [23], we performed a subgroup analysis when the results of the meta-analysis 
showed statistical heterogeneity. We performed the subgroup analysis based on stroke 
chronicity, which was set at 3 months after onset, similar to the criterion in the Cochrane 
review [11,14]. While previous studies have performed subgroup analysis based on the type 
of robot and the part of the body trained [12], we did not perform further subgroup analysis 
to ensure the generalizability of the effects of the RAT and to avoid the risk of Type I error 
elevation due to multiple comparison. To evaluate the risk of publication bias in the results of 
the respective meta-analyses, we inspected the funnel plots for comparisons using more than 
10 studies. The meta-analysis was performed using RevMan 5.2 (Nordic Cochrane Centre, 
Copenhagen, Denmark). The statistical significance was set at p < 0.05.

RESULTS

Based on the aforementioned criterion, we successfully identified 29 studies on the 
effectiveness of RAAT and RAGT. The results of the risk of bias assessment for the 58 studies 
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are presented in Fig. 2. We decided to use the changes in the arm function and ADL domain 
outcomes because we found significant differences in the baseline values of the outcomes 
between the two groups in the selected literature on RAAT. We also chose to use the change 
in outcome because there were notable differences in the baseline values for the balance and 
walking domains between the two groups in the selected literature on RAGT. The baseline 
values of the outcomes corresponding to the ADL domain were relatively homogeneous; 
therefore, we decided to use the post-intervention outcomes. After excluding studies that 
were rated as “high risk” in four or more domains of the risk of bias assessment and those 
that did not provide suitable endpoints for meta-analysis, we included 25 RAAT [25-49] and 
16 RAGT [50-65] studies in the meta-analysis, which are detailed in Supplementary Table 1.

We found that RAAT had significant superiority over CT in improving arm function (SMD, 
0.63; 95% confidence interval [CI], 0.37–0.88; p < 0.001; I2 = 84%) and ADL (SMD, 0.24; 
95% CI, 0.05–0.43; p = 0.010; I2 = 27%) (Figs. 3 and 4). The meta-analysis of arm function 
showed a significant level of heterogeneity between studies, with an I2 of 84%; therefore, we 
conducted a subgroup analysis based on the criterion of 3 months since stroke onset (Fig. 5). 
There were six studies that only recruited patients with stroke chronicity < 3 months, and the 
meta-analysis found a significant superiority (SMD, 0.41; 95% CI, 0.06–0.75; p = 0.02, I2 = 
58%) of RAT over CT. There were 10 studies that only included patients with stroke chronicity 
> 3 months, and the meta-analysis also found a significant superiority of RAT over CT (SMD, 
0.80; 95% CI, 0.26–1.33; p = 0.004, I2 = 84%), but the heterogeneity between studies was not 
resolved. In the meta-analysis of ADL, the heterogeneity between studies was low, with I2 
of 27%. The quality of evidence was judged to be 'high,’ as there were no downgrades in the 
GRADE assessment for all outcome measures in each domain.

The meta-analysis revealed that RAGT had a significant superiority over CT in improving 
balance (MD, 2.47; 95% CI, 0.41–4.53; p = 0.020, I2 = 50%), but no significant superiority was 
identified in improving gait function (SMD, 0.22; 95% CI, -0.07 to 0.52; p = 0.140; I2 = 38%) 
and ADL (SMD, 0.17; 95% CI, -0.04 to 0.38; p = 0.11; I2 = 0%) (Figs. 6, 7, and 8). The I2 of the 
meta-analysis for balance was 50%, showing some heterogeneity between studies; therefore, 
we performed a subgroup analysis based on the criterion of 3 months since stroke onset (Fig. 9).  
Three studies recruited patients with stroke chronicity < 3 months, and the meta-analysis 
of these studies had an I2 of 7%, indicating a homogeneous selection of studies. The meta-
analysis found a significant superiority (SMD, 5.75; 95% CI, 1.72–9.79; p = 0.005; I2 = 7%) of 
RAT over CT. Three studies recruited only patients with stroke chronicity >3 months, and the 
meta-analysis of these studies had an I2 of 0%, implying a homogeneous selection of studies; 
however, there was no significant superiority of RAT over CT (SMD, -0.62; 95% CI, -2.55 to 1.34; 
p = 0.51; I = 0%). The results of the meta-analysis of gait function and ADL showed relatively 
low heterogeneity between studies. The quality of evidence was judged to be ‘high,’ as there 
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Fig. 3. Effect of robot-assisted arm training on arm function after stroke. 
SD, standard deviation; CI, confidence interval.

Fig. 4. Effect of robot-assisted arm training on activities of daily living after stroke. 
SD, standard deviation; CI, confidence interval.
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were no downgrades in the GRADE assessment for all outcome measures in the respective 
domains. We found no graphical evidence of publication bias in this meta-analysis (Fig. 10).

DISCUSSION

In the present study, we found that RAT was superior to CT in facilitating the recovery of 
several functional domains after stroke. The results of this meta-analysis are consistent 
with those of previous meta-analyses that found RAAT to be significantly superior to CT in 
restoring arm function and ADL performance after stroke [10,12,17,83]. The results of this 
meta-analysis are also consistent with those of previous meta-analyses showing a statistically 
significant superiority of RAGT over CT for balance [13,15], but are not consistent with those 
of previous meta-analyses showing a statistically significant superiority for gait [13,14]. The 
difference between the results may be attributed to the conditions proposed in this study to 
reduce the heterogeneity of the results of the meta-analysis and the additional conditions 
applied during the literature selection process. Mehrholz et al. [14] pooled the outcomes 
of gait independence, gait velocity, and walking capacity as the respective outcomes and 
found that RAT had an effect on the first two outcomes, but there was no significant effect 
on walking capacity. In contrast, in this study, we pooled all the results of these outcomes 
together in the walking domain.
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Fig. 5. Subgroup analysis results of robot-assisted arm training on arm function according to the chronicity of stroke. 
SD, standard deviation; CI, confidence interval.
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Subgroup analysis of arm function showed that RAAT was superior to CT regardless of 
chronicity, suggesting that RAAT can promote the recovery of arm function by providing 
repetitive and task-specific therapy, even in patients with chronic stroke. This is consistent 
with the results of a recent study that found a positive effect of RAAT over CT on arm function 
in the chronic phase over 3 months [83]. In the subgroup analysis of balance, the superior 
effect size of RAGT over CT was not statistically significant in the chronic phase of stroke. 
These results suggest that the degree to which RAGT affects balance is greater in the acute 
or subacute phase than in the chronic phase, which is consistent with previous research [15]. 
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Fig. 6. Effect of robot-assisted gait training on balance after stroke. 
SD, standard deviation; CI, confidence interval.

Fig. 7. Effect of robot-assisted gait training on walking after stroke. 
SD, standard deviation; CI, confidence interval.
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The underlying mechanisms by which the effects of RAAT on the recovery of arm function 
and RAGT on the recovery of balance are affected differently by the chronicity of stroke 
should be confirmed in future studies.

We used a top-down approach to reduce the heterogeneity of the results of the meta-analyses 
and determine the methodology for literature selection and statistical analysis. However, 
we found a substantial heterogeneity in the results of this meta-analysis. Various factors 
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Fig. 8. Effect of robot-assisted gait training on activities of daily living after stroke. 
SD, standard deviation; CI, confidence interval.

Fig. 9. Subgroup analysis results of robot-assisted gait training on balance according to the chronicity of stroke. 
SD, standard deviation; CI, confidence interval.
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may have contributed to the heterogeneity. First, the heterogeneity of the meta-analyses 
may be attributed to the heterogeneity of the interventions. The manner in which RAT is 
delivered varies depending on the trial design (add-on vs. alone), robot type (end-effector 
vs. exoskeleton), training part (proximal vs. distal vs. both), and laterality (unilateral vs. 
bilateral), making it difficult to control the intervention [12], which is a common feature 
of rehabilitative therapies [84]. We also did not distinguish between varying levels of 
RAT intensity and duration across studies. Second, heterogeneity may occur when the 
results from assessment tools with different levels of construct validity, reliability, and 
responsiveness are pooled [85]. In this study, we measured arm function, balance, walking, 
and ADL using a variety of clinical assessment tools according to the respective domain, 
which corresponds to the construct in the context of measurement [86]. Because the four 
constructs cannot be measured directly, it is necessary to secure the validity, reliability, 
and responsiveness of the assessment tools that indirectly measure each construct so that 
the construct can be meaningfully correlated with the number obtained by the assessment 
tool [85]. Even metrics that measure the same construct reflect it to varying degrees, since 
those have distinct degrees of construct validity. This could be a source of heterogeneity 
when combining clinical assessment tool outcomes. Reliability encompasses internal 
consistency and test-retest, inter-rater, and intra-rater reliabilities, which refers to the 
precision or accuracy of measurement procedures [85,87]. Even if the same construct is 
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assessed using clinical assessment tools with the same level of construct validity, there 
will be heterogeneity in the outcomes if the reliability level of the measurement varies. 
Responsiveness refers to an instrument's ability to detect changes resulting from an 
intervention [87], including floor effects, ceiling effects, and minimal clinically important 
differences. When clinical assessment tools with varying levels of responsiveness to each 
construct are used, heterogeneity may occur during the pooling of outcomes, even when 
SMD is used. Additionally, the ceiling or floor effect of the instrument can result in skewed 
outcome distributions, which can lead to misleading results when the number of studies used 
for meta-analysis is small [23]. This may have been another source of heterogeneity. Third, 
in our review process, we did not distinguish between studies on first-ever stroke and those 
on recurrent stroke, which may be another source of heterogeneity in the meta-analyses. We 
should also consider that I2, which indicates heterogeneity in the results of meta-analyses, 
has the risk of being a biased estimate in small meta-analyses [88].

Physicians should consider RAT as a therapeutic option to facilitate functional recovery after 
stroke, as high-level evidence supports the superiority of RAT over CT. Despite the significant 
heterogeneity, the generalizability of the effect sizes from the meta-analysis was still 
considered valid because the meta-analysis was conducted using a random-effects model. 
The results of this meta-analysis will be updated in future studies. We propose that future 
studies should consider the factors that may cause heterogeneity in the results of the meta-
analysis more comprehensively. In addition, it is necessary to consider a valid methodology 
that accounts for the heterogeneity of interventions and outcome measures in rehabilitation 
medicine, which is a barrier to meta-analysis and must be overcome to determine the 
generalized effectiveness of rehabilitative therapies.

SUPPLEMENTARY MATERIAL

Supplementary Table 1
Characteristics of included studies
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