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A R T I C L E  I N F O   

Keywords: 
Liposomes 
Zeta potential 
Nano-QSPR 
KwLPR 
PCA biplot 
Nanodescriptors 
Nanocarriers 

A B S T R A C T   

Liposomes, nanoscale spherical structures composed of amphiphilic lipids, hold great promise for various 
pharmaceutical applications, especially as nanocarriers in targeted drug delivery, due to their biocompatibility, 
biodegradability, and low immunogenicity. Understanding the factors influencing their physicochemical prop-
erties is crucial for designing and optimizing liposomes. In this study, we have presented the kernel-weighted 
local polynomial regression (KwLPR) nano-quantitative structure-property relationships (nano-QSPR) model to 
predict the zeta potential (ZP) based on the structure of 12 liposome formulations, including 1,2-dioleoyl-sn-glyc-
ero-3-phosphoethanolamine (DOPE), 3ß-[N-(N′,N′-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), 1,2- 
dioleoyl-3-trimethylammonium-propane (DOTAP), and L-α-phosphatidylcholine (EPC). The developed model is 
well-fitted (R2 = 0.96, RMSEC = 5.76), flexible (Q2

CVloo = 0.83, RMSECVloo = 10.77), and reliable (Q2
Ext = 0.89 

RMSEExt = 5.17). Furthermore, we have established the formula for computing molecular nanodescriptors for 
liposomes, based on constituent lipids’ molar fractions. Through the correlation matrix and principal component 
analysis (PCA), we have identified two key structural features affecting liposomes’ zeta potential: hydrophilic- 
lipophilic balance (HLB) and enthalpy of formation. Lower HLB values, indicating a more lipophilic nature, 
are associated with a higher zeta potential, and thus stability. Higher enthalpy of formation reflects reduced zeta 
potential and decreased stability of liposomes. We have demonstrated that the nano-QSPR approach allows for a 
better understanding of how the composition and molecular structure of liposomes affect their zeta potential, 
filling a gap in ZP nano-QSPR modeling methodologies for nanomaterials (NMs). The proposed proof-of-concept 
study is the first step in developing a comprehensive and computationally based system for predicting the 
physicochemical properties of liposomes as one of the most important drug nano-vehicles.   

1. Introduction 

Liposomes, discovered in the 1960 s by the British hematologist Dr. 
Alec D. Bangham [1] are colloidal spherical structures with a diameter 
between 15 and 100 nm – so classified as nanomaterials (NMs) – 
composed of amphiphilic lipids molecules, such as phospholipids, that 

self-assemble in solution [2,3]. The liposomal membrane consists of a 
lipid bilayer organized around an inner aqueous core, with polar groups 
(heads) facing outwards and hydrophobic groups (tails) oriented in-
wards to the membrane [2]. Due to their biocompatibility, biodegrad-
ability and low immunogenicity, liposomes are increasingly being 
considered for various pharmaceutical applications, such as targeted 
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drug nanocarriers, medical imaging, vaccine carriers, and cosmetics. 
Their primary role is to improve the bioavailability of poorly soluble 
medical substances, but they can also increase the cellular uptake of 
drugs with a low ability to penetrate biological membranes [4,5]. The 
first milestone in liposome-based nanomedicine was the introduction of 
Doxil® to the U.S. market in 1995 (and still extensively used clinically) 
for treating ovarian cancer and AIDS-related Kaposi’s sarcoma [6]. 
Moreover, liposomes can be adjusted to the applications – their safety, 
stability, and efficiency are determined by: (i) the selection of lipids, 
head groups, chain lengths, and the ratio of liposome components, (ii) 
the size, surface charge, lipids organization, and surface modification 
[2]. 

In the case of colloidal suspensions, like liposomes, the general 
particle charge indicator that provides the initial information on 
whether the liposome is stable or not is the zeta potential (ZP). The zeta 
potential is defined as the electric potential at the shear plane, which is 
an imaginary surface separating the thin liquid layer (constituted of 
counter-ions) bound to the solid surface in motion. It is currently 
assumed that zeta potential over |30| mV (optimum > |60|) is required 
for total electrostatic stabilization, from |5| to |15| mV occurs with 
limited flocculation, and between |5| and |3| mV – maximum floccula-
tion. The greater the ZP the more likely the suspension is to be stable 
because the charged particles repel one another and thus overcome the 
natural tendency to aggregate [7]. 

Developing effective nano-vehicles requires a broad understanding 
of their interactions with the biological environment. Likewise, nano-
toxicology studies the impact of nanomaterials on living organisms to 
determine and recognize their toxicity. Bondarenko et al. [8] emphasize 
that these nanotechnology sub-disciplines, nanomedicine and nano-
toxicology, share overlapping interests and challenges. Nanomedicine 
can apply existing knowledge and methodology to design safer, more 
effective, and stable drug formulations on the nanoscale. 

One of the essential nanotoxicological approaches, utilizing machine 
learning and artificial intelligence, is nano-quantitative structure-ac-
tivity/property relationships (nano-QSAR/QSPR). Nano-QSAR/QSPR 
aims to use experimental data to obtain a model based on nano-
material descriptors (nanodescriptors) numerically expressing the vari-
ability of nanoforms’ structure to predict the physicochemical properties 
or biological activity of NMs. An established nano-QSAR/QSPR model 
allows for identifying the most significant structural features affecting 
the properties of nanomaterials and determining their potential toxicity 
mechanisms [9,10]. Puzyn et al. [11] proposed the first nano-QSAR 
model to predict the cytotoxicity of metal oxide nanomaterials toward 
Escherichia coli. Since then, this methodology has been widely used to 
evaluate the critical physicochemical properties of nanoforms 
(including nano-mixtures) [12,13], their impact on the environment 
[14,15], or assess the risk at different levels – from in vitro tests to the 
prediction of doses activating key events in adverse outcome pathways 
(AOP) [16–19]. Recently, similarity-based techniques such as quanti-
tative read-across structure-activity relationships (q-RASAR) have 
gained popularity. This method applies chemical similarity concepts of 
read-across in an unsupervised step to compute nanodescriptors and 
then develops a supervised learning model, especially useful for limited 
data of NMs [20–23]. 

Considering our previous experience in modeling the zeta potential 
of metal oxide nanoparticles [12,24,25] and polymeric nanomaterials 
[26], in the proof-of-the-concept presented here, we have implemented 
the nano-QSPR method to predict the ZP of liposomes consisting of 1, 
2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 3ß-[N-(N′, 
N′-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol), 1,2-dio-
leoyl-3-trimethylammonium-propane (DOTAP), and L-α-pho 
sphatidylcholine (EPC). We have employed the kernel-weighted local 
polynomial regression (KwLPR), as this method solves several problems 
of modeling small datasets typically encountered in 
nanotechnology-related research [27]. 

To the best of our knowledge, there have been no attempts to model 

the zeta potential of liposomes using nano-QSPR. Although the design of 
experiments (DoE) approach has been used to optimize the composition 
of liposomes to achieve adequate zeta potential value [28], there is no 
information on how lipids’ molecular structure affects this endpoint. 
Therefore, we have adopted molecular nanodescriptors, originally 
dedicated to small-molecule compounds, to quantitatively describe li-
posomes based on constituent lipids’ molar fractions. Since the slow 
development of interpretable nanomaterial descriptors (especially for 
more complex structures) has been identified as an important feature 
limiting the achievement of nanoinformatics milestones [29,30], our 
nanodescriptors are intuitive and easily interpretable. Thus, the estab-
lished nano-QSPR model makes it possible to understand interactions 
between the composition of liposomes and their properties at the next, 
more advanced molecular level. 

In this study, we have proposed a workflow dedicated to liposomes as 
one of the most important nanocarriers, opening new opportunities for 
developing computational tools for nanomedical applications using the 
well-known nanotoxicological method, nano-QSAR/QSPR. 

2. Results and discussion 

The composition of 12 liposome formulations and their ZP values are 
shown in Table 1. As this is a proof-of-concept study, the data came from 
a single publication, performed in the same laboratory by the same 
group, following a single protocol [28]. Conducting experiments under 
differing conditions could introduce a substantial source of uncertainty 
in the results [9]. 

We have adopted molecular descriptors originally dedicated to 
small-molecule compounds to compute liposomes’ nanodescriptors 
based on constituent’s lipids molar fractions (details of the established 
formula are given in the Materials and Methods section). Thus, each 
liposome was described by physicochemical (PCH), geometrical (G), 
hydrogen bonding (H), and quantum-mechanical descriptors (QM). 
Additionally, the effect of peptide concentration (the delivery sub-
stance) was evaluated as a potential factor affecting zeta potential. All 
nanodescriptors and their notations are summarized in Table 2. 

Along with the standardized correlation matrix analysis (Supple-
mentary Information, Fig. S1), the factor loadings gained from the 
principal component analysis (PCA) were applied to the feature 
selection. 

The combination of PC1 and PC2 failed to capture any interesting 
trends (Supplementary Information, Fig. S2), while the PC1-PC3 biplot 
(explaining in total 58.8% of data variance) proved the relevance of 
certain nanodescriptors in these PCs, as well as in determining the zeta 
potential value. 

As shown in Fig. 1, both principal components differentiated the li-
posomes in terms of zeta potential values. Liposomes with the lowest ZP 
values are in the upper left corner of the PCA biplot (high PC3 values), 

Table 1 
Characterization of 12 liposomes used for the development of the nano-QSPR 
model.  

Formulation Zeta 
potential 
[mV] 

Lipids Peptide 
concentration 
[μg/mL] DOPE DC- 

Chol 
DOTAP EPC 

1 72 0 0 1 0 10 
2 70 0 1 0 0 100 
3 69 0 0 1 0 100 
4 66 0.33 0.33 0.33 0 100 
5 64 0 1 0 0 10 
6 64 0 0.33 0.33 0.33 10 
7 61 0.25 0.25 0.25 0.25 55 
8 57 0.33 0 0.33 0.33 100 
9 41 0.33 0.33 0 0.33 100 
10 30.3 0.03 0.07 0.13 0.77 13.4 
11 7 0 0 0 1 10 
12 1 0 0 0 1 100  
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while those with the highest ZP values are in the bottom part with low 
values of the third principal component. The nanodescriptors with the 
highest contribution, defined by the value of normalized factor loading 
in PC3, were: (i) PCH3 – hydrophilic-lipophilic balance (HLB) and (ii) 
QM9 – enthalpy of formation, so both were selected as independent 
variables to quantify the relationship between liposome molecular 
structure and ZP. 

Based on selected nanodescriptors, we have developed the KwLPR 
nano-QSPR model quantifying relationships between the liposome’s 
structure and its zeta potential. 

Close to unity values of the determination (R2 = 0.96), leave-one-out 
cross-validation (Q2

CVloo = 0.83), and external validation coefficients 
(Q2

Ext = 0.89), and small differences between R2 and Q2
CVloo proved that 

the nano-QSPR model is well-fitted, flexible, stable and reliable. Similar 
values of root mean squared calibration error (RMSEC = 5.76), root 
mean squared error of leave-one-out cross-validation (RMSECVloo =

10.77), and root mean squared error of external validation (RMSEExt =

5.17) indicated the model’s ability to generalize information. 
The plot of experimental versus predicted values (Fig. 2a) showed a 

high correlation between observed and predicted zeta potential values 
of the liposomes, in both training and validation sets. 

The range of applicability was evaluated using a Williams plot 
(Fig. 2b). No residual value exceeded a value of 3 standard deviations 
from the residual average. In addition, none of the liposomes were 
significantly different from compounds in the training set – all were 
characterized by leverage values h < h∗ = 1. The results demonstrated 
high prediction precision of the nano-QSPR model, so it can be used to 
predict the zeta potential of both liposomes from the dataset and new 
lipid compositions. 

To show the independence of the results from the split, we also tested 
the 1:4 splitting algorithm (Supporting Information, Table S1, Fig. S3). 

In preliminary studies, we have also considered simpler regression 
methods like linear regression (LR), partial least squares regression 
(PLS), and distance-weighted k-nearest neighbors’ algorithm (k-NN), 
but their statistics did not meet the nano-QSPR modeling requirements 
(Supplementary Information, Table S2). Additionally, other methods 
such as the read-across and q-RASAR [21,22,31], which have recently 
been used to analyze limited datasets of NMs, were tested. However, 
KwLPR has outperformed all other approaches in terms of performance 
statistics. 

As a non-parametric method, the KwLPR algorithm does not offer a 
single global model, but the interpretation of the PCA biplot confirmed 
the described relationships between structure and ZP. The results sug-
gest that liposomes with lower HLB values, pointing to a more lipophilic 
nature [32], tend to have higher zeta potential, implying increased 
stability. In turn, enthalpy of formation refers to heat absorbed during 
liposome formation. Higher enthalpy makes the liposome a 
higher-energy compound and, thereby, more reactive. Consequently, 
liposomes characterized by high enthalpy are inherently less stable and 
have lower zeta potential. No significant correlation was found between 

Table 2 
Notation of 24 nanodescriptors considered in the nano-QSPR modeling.  

Notation Nanodescriptor Notation Nanodescriptor 

PCH1 Molar refractivity [cm3/ 
mol] 

H1 Hydrogen bond donor 
count 

PCH2 logD H2 Hydrogen bond acceptor 
count 

PCH3 Hydrophilic-lipophilic 
balance (HLB) 

QM1 HOMO [eV] 

PCH4 logP QM2 LUMO [eV] 
G1 Van der Waals volume [A3] QM3 Ionization potential [eV] 
G2 Van der Waals surface area 

[A2] 
QM4 Electron affinity [eV] 

G3 Solvent accessible surface 
area [A2] 

QM5 Hardness [eV] 

G4 Topological polar surface 
area [A2] 

QM6 Softness [eV] 

G5 Minimum projection area 
[A2] 

QM7 Electronegativity [eV] 

G6 Maximum projection area 
[A2] 

QM8 Polarizability [au] 

G7 Minimum projection radius 
[A] 

QM9 Enthalpy of formation 
[Hartree] 

G8 Maximum projection radius 
[A] 

PEPTIDE Peptide concentration 
[µg/mL]  

Fig. 1. PCA biplot for the first and third principal components.  
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selected nanodescriptors, which proved that they reflect different as-
pects of liposome behavior and do not show a direct relationship. As 
expected [28], the peptide is not an important nanodescriptor in 
determining the zeta potential of liposomes. 

The study of Soema et al. [28] showed that cationic lipids (DOTAP 
and/or DC-Chol) in liposome composition contribute to an increase in 
zeta potential value, while their absence/addition of EPC (zwitterionic 
lipid) causes its decrease. Extending those findings with the knowledge 
obtained from this research leads to the conclusions that: (i) liposomes 
containing cationic lipids in their structures, showing significant lip-
ophilicity and low enthalpies of formation, have high zeta potential, and 
thus stability, (ii) liposomes lacking cationic lipids/consisted of zwit-
terionic ones, exhibiting high hydrophilicity and enthalpies of forma-
tion, have low zeta potential values (so stability). 

To date, nano-QSPR modeling of zeta potential has been mainly 
concentrated on metal oxide NMs generally considered more straight-
forward to characterize than soft NMs, which possess complex structure, 
composition, and dynamic behavior. Metal oxide NMs’ modeling often 
relies on nanodescriptors derived from their simple properties like 
enthalpy of formation [33,34], electronegativity [34] ionic radius, a 
charge of metal ion, the electronegativity of metal, etc. [15]. Addi-
tionally, DFT calculations using molecular nanoclusters are commonly 
used to characterize metal-based NMs and widely accepted for building 
nano-QSAR/QSPR models [12,33,34]. However, this approach cannot 
be directly applied to soft NMs due to inherent differences in their 
nature. 

Within the realm of soft NMs, the development of nano-QSPR 
methodology has been limited to just one model specifically designed 
to predict the zeta potential of polymeric NMs [26], highlighting the 
shortcomings of this field. Moreover, that model has its limitations, i.e., 
it reflects core and coating to be made of one component, while lipo-
somes are usually multi-component NMs. In this context, our study is 
pioneering as it addresses the application of the nano-QSPR approach to 
model the zeta potential of liposomes. 

While previous investigations have mainly focused on optimizing the 
composition of liposome formulations and their effect on ZP (by DoE 
approach) [28], we have taken a step further by recognizing the influ-
ence of the liposome’s molecular features on the modeled property 
through their quantitative description by nano-QSPR modeling. The 
obtained nano-QSPR model shows that in silico methods can be suc-
cessfully applied to assess the stability (expressed by ZP) of liposomes. 
However, it should be acknowledged that a larger dataset would be 
required to broaden its range of applications and improve the reliability 
and confidence of predictions even if the proposed model met statistical 

criteria. Nevertheless, our findings fill a critical gap in the existing 
nano-QSPR methodology for modeling the zeta potential of NMs and 
open the door to a deeper understanding of liposomes’ physicochemical 
properties, contributing to advances in the design, characterization, and 
application of the most used targeted drug nano-vehicles. 

3. Conclusions 

In this proof-of-concept study, we successfully quantified the rela-
tionship between liposome molecular structure and its zeta potential 
using the KwLPR nano-QSPR approach, overcoming the challenges of 
limited datasets in nanotechnology research. The performance charac-
teristics of the developed nano-QSPR model demonstrate that it is well- 
fitted (R2 = 0.96, RMSEC = 5.76), stable (Q2

CVloo = 0.83, RMSECVloo =

10.77), and able to generalize information (Q2
Ext = 0.89 RMSEExt =

5.17). We have established a simple, intuitive method to compute mo-
lecular nanodescriptors for liposomes based on constituent lipids’ molar 
fractions. The most important of these, HLB and enthalpy of formation, 
were identified based on the correlation matrix and PCA biplot inter-
pretation. We indicated that liposomes with lower HLB values (more 
lipophilic) are correlated with higher ZP, and thus stability. In turn, an 
increase in enthalpy causes a decrease in ZP and stability. Based on 
initial findings [28], the desired stable structure of liposome (liposome 
nano-vehicle) should consist of cationic lipids, be strongly lipophilic, 
and have a low enthalpy of formation value. The presented methodology 
states a computationally-based framework for modeling liposomes’ 
physiochemical properties, such as zeta potential, filling a gap in ZP 
nano-QSPR modeling methodologies for NMs. We have demonstrated 
that our approach enhances understanding of factors affecting proper-
ties and enables more efficient optimization of liposomes. Our findings 
significantly contribute to the development of computational tools for 
the design of liposome nano-vehicles, which is particularly important in 
nanomedicine. 

4. Materials and methods 

4.1. Dataset 

We used empirically measured zeta potential values for 12 liposomes 
from the literature [28]. The pH of the experiment was 7.4. Each liposome 
was composed of one to four different lipids: 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine (DOPE), 3ß-[N-(N′,N′-dimethylaminoethane)-carbamoyl] 
cholesterol (DC-Chol), 1,2-dioleoyl-3-trimethylammonium-propane 
(DOTAP), and L-α-phosphatidylcholine (EPC), in various molar fractions, 

Fig. 2. (a) Scatter plot of experimentally determined versus predicted zeta potential values for training and validation compounds of the nano-QSPR model; (b) 
Williams plot illustrating the applicability domain of the nano-QSPR model. 
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with the addition of HLA-A2.1-restricted influenza peptide GILGFVFTL 
(M158–66). Formulations containing only DOPE do not form liposomes, so 
they were not included in the dataset [28]. 

The dataset was ranked to decrease the value of zeta potential and 
then divided into training and validation sets according to the 1:3 (T:V) 
splitting algorithm. 

4.2. Nanodescriptors computation 

To describe a whole liposome, we have developed the established 
formula (Eq. 1) that involves multiplying the value of a lipid’s descriptor 
by its molar fraction and then summing the values thus obtained for all 
lipids which build the liposome, resulting in the one nanodescriptor 
representing the structure of the liposome. We treated the peptide 
concentration as a separate, additional nanodescriptor. There were, in 
total, 24 nanodescriptors representing the properties of liposomes. 

DL =
∑n

i
di

ni
∑

ni
(1)  

where: DL denotes the nanodescriptor of the whole liposome, n is the 
number of lipids forming the liposome, and di represents the descriptor 
for the i-th lipid. 

Each liposome was described using two sets of molecular nano-
descriptors. The first set included 14 physicochemical, geometrical, and 
hydrogen bonding nanodescriptors, achieved using CHEMICALIZE 
(Csizmadia, P. & F., Hungary) [35] software. The second set, which 
consisted of 9 quantum-mechanical nanodescriptors, was computed 
using the GAUSSIAN 16 (Frisch, M., U.S.) [36] software based on the 
pre-optimized geometry of molecular structures via the Density Func-
tional Theory (DFT) method with hybrid density functional B3LYP with 
the 6–31 G basis set (i.e., B3LYP/6–31 G++) [37]. The molecular 
structures of the lipids were generated using MOLDEN 6.1 (Schaftenaar, 
G., Holland) [38] molecular editor. 

Data autoscaling (standardizing) was performed to guarantee that all 
nanodescriptors are equal and gain the same resources of variability in 
revealing high-dimensional associations between these variables and 
zeta potential. That means that they were transformed so that the 
average value of each was equal to 0 and the standard deviation was 
equal to one. In this way, we ensure an equal scale and range of all 
variables [39]. A full list of computed molecular nanodescriptors’ values 
can be found in Supplementary Information, Table S3. 

4.3. Data analysis and nano-QSPR model development 

We performed the principal component analysis to verify the ho-
mogeneity of the dataset and find trends and patterns within the data. 
The results of the PCA were visualized as a biplot, which yields mech-
anistic insight into the relationships between descriptors and links them 
with modeled quantity. It allows not only to obtain information on 
whether the correlation between original variables and the principal 
component (PC) is positive or negative but also introduces the strength 
of this correlation (expressed by vector length) and the degree of cor-
relation among the variables (expressed by angles between vectors: an 
adjacent angle – high positive, a straight angle – high negative, and a 
right angle – no correlation between two variables) [27]. 

To overcome data shortage and deliver the best possible, in terms of 
accuracy and predictive ability of the nano-QSPR model for predicting 
the zeta potential of liposomes, the kernel-weighted local polynomial 
regression (KwLPR) approach, was applied. The KwLPR approach was 
purposefully developed to deal with the limited training data set. As 
discussed elsewhere [27,40], an integral part of the KwLPR algorithm is 
to use only the most similar compounds to directly estimate the property 
of interest (here, the zeta potential of liposomes). Since the KwLPR is a 
single-model equation-free approach, mechanistic interpretation should 
be based on the PCA biplot analysis [27]. The nano-QSPR model was 

validated against the Organization for Economic Cooperation and 
Development (OECD) standard principles [41]. Multiple classical 
rigorous metrics were used to check the model’s goodness-of-fit 
(determination coefficient R2, root mean square calibration error 
RMSEC), robustness (leave-one-out cross-validation coefficient Q2

CVloo, 
root mean square error of leave-one-out cross-validation RMSECVloo) and 
predictive capability (external validation coefficient Q2

Ext, root mean 
square error of prediction RMSEExt) [39]. All statistical values were 
calculated according to the formulas summarized in Supporting Infor-
mation, Fig. S4. 

In essence, a good nano-QSAR/QSPR model should be characterized 
by values of R2, Q2

CVloo, and Q2
Ext as close to one as possible, and com-

parable and as small as possible values of mean squares errors. Among 
these metrics, error-based are more important, because the occurrence 
of significant differences between their values indicates that nanoforms 
belonging to the training set are overfitted, and thus model’s low ability 
to generalize information [39]. 

The nano-QSAR/QSPR model’s applicability domain (AD) describes 
the boundaries of the theoretical area in the feature space of the nano-
materials in which the predictions are reliable. This space is determined 
by plotting the leverage coefficients h (h = XT(XTX)) on the abscissa 
axis and the values of standardized residuals ypred − yobs on the ordinate 
axis (Williams plot). Leverage coefficients reveal the structural simi-
larity of NMs to the training set. The critical value of leverage is 
expressed by the formula: h∗ = 3pn− 1, where p is the number of de-
scriptors in the model and n is the number of compounds in the training 
set. Nanoforms with values greater than h∗ are considered as lying 
outside the AD. The ordinate axis represents the model’s prediction 
precision with standardized residuals expected to fall within 3 standard 
deviations. Defining the AD allows for mapping the error’s surface based 
on descriptors used and evaluating model quality [39]. 

4.4. Software 

All analyses were performed using R Statistical Software (v4.2.2, R 
Core Team, 2022) [42]. The correlation matrix was visualized via 
corrplor R package [43]. The KwLPR nano-QSPR modeling was per-
formed using KwLPR.Rmd script [27]. Scatter plots of experimentally 
determined versus predicted zeta potential values and Williams plots 
were created using ggplot R package [44]. PCA analysis was performed 
and visualized using factoextra [45], factoMineR [46], and ggrepel [47] 
R packages. 
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