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Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high
prevalence and impact on society. ASDs are characterized by deficits in both social
behavior and cognitive function. There is a strong genetic basis underlying ASDs that
is highly heterogeneous; however, multiple studies have highlighted the involvement of
key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic
plasticity in the pathophysiology of neurodevelopmental disorders. In this review article,
we focus on the major genes and signaling pathways implicated in ASD and discuss the
cellular, molecular and functional studies that have shed light on common dysregulated
pathways using in vitro, in vivo and human evidence.

Highlights

• Autism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the
United States.
• ASDs are highly heterogeneous in their genetic basis.
• ASDs share common features at the cellular and molecular levels in the brain.
• Most ASD genes are implicated in neurogenesis, structural maturation,

synaptogenesis and function.

Keywords: autism, ASD, developmental neurobiological disorders, neurogenesis, dendrite growth, neuron
morphogenesis, synapse, synaptic plasticity

INTRODUCTION

Autism spectrum disorder (ASD) comprises a heterogeneous class of neurodevelopmental
disorders characterized by impaired social interactions, restrictive interests and repetitive
behaviors (Landa, 2008). ASD typically presents with other mental and physical disabilities such
as anxiety, attention-deficit/hyperactivity disorder (ADHD), intellectual disability (ID), epilepsy
and impairments in motor coordination. In up to 25% of individuals diagnosed with ASD, an
identifiable or genetic variant can be identified, providing valuable insights into the mechanisms
involved in proper neurodevelopment (Huguet et al., 2013). A large number of ASD-linked genes
are also associated with broad processes such as metabolism, chromatin remodeling, mRNA
regulation, protein synthesis and synaptic function.

The human brain contains about 86 billion neurons making trillions of connections
(Azevedo et al., 2009). Most neurons are produced in the ventricular zone (VZ) and
migrate radially out into the developing neocortex, and it is estimated that about 75% of
rodent, and up to 90% of human neurons use glial-guided migration (Letinic et al., 2002).
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The movement of neurons along migratory routes is guided by a
number of guidance molecules that direct their movement into
the cortex and the formation of an organized 6-layered structure
(Marín and Rubenstein, 2001; Huang, 2009; Valiente and Marin,
2010).

After neuronal migration, neurons must undergo extensive
morphological changes. Long axonal processes are extended
and are required to connect to target neurons with precision,
while complex dendritic arbors must grow and branch to
occupy specified dendritic field volumes. These processes take
place during prenatal and early postnatal periods and lay
the foundations for neuronal connectivity within and across
brain regions. Ultimately, with activity-dependent structural
remodeling, neurons form synaptic connections and incorporate
into functional neuronal networks for proper brain function. It’s
of no surprise that disruptions in any of these intricate processes
would cause abnormalities in brain development and function,
leading to neurodevelopmental disorders including ASD.

While ASD shares characteristic features at the behavioral
level, its underlying causes are highly heterogeneous.
Developmental dysregulation in ASD may affect processes
ranging from progenitor cell proliferation and neuronal
differentiation to neuron migration, axon guidance, dendrite
outgrowth, synaptogenesis, synaptic function and neural
circuitry.

Studies of ASD-related brain pathologies indicate that
abnormal acceleration of brain growth in early childhood
(Wegiel et al., 2010) accompanied with impaired neuron
morphological development and brain cytoarchitecture are
common features in ASDs (Bauman and Kemper, 1985; Bailey
et al., 1998; van Kooten et al., 2008). Additionally, impairments
in synapse formation and synaptic plasticity (Bourgeron, 2007,
2009), which ultimately lead to functional and cognitive
impairments, are fundamental causative factors underlying ASD
pathology.

Analysis of the Simmons Foundation Autism Research
Initiative (SFARI) gene database shows that ASD causative
genes display vast diversity involving up to one thousand
genes (Banerjee-Basu and Packer, 2010; Abrahams et al., 2013).
Additionally, a large number of rare genetic variants in protein-
coding genes are causative for ASD, none of which individually
account for more than 1% of the total number of ASD
diagnoses. Therefore, the complexity and heterogeneity of autism
genetics is a major challenge when investigating the underlying
neurobiological pathways that are shared within ASD (Happe
et al., 2006).

The ability to classify ASD patients according to genetics
has been enhanced by the substantial amount of work done to
understand ASD-linked genes, and the role of their encoded
genes, in the underlying neuropathologies. For example, well
known ASD-linked genes, such as neurexin, neuroligin and
Shank have been well characterized for their roles in synaptic
formation and function (Toro et al., 2010). Additionally,
co-expression network analyses of ASD-linked genes have
identified that early developmental periods when neurogenesis
and synaptogenesis occur are commonly disrupted processes in
ASD (Parikshak et al., 2013). Genes involved with regulating

developmental processes such as Chromodomain Helicase
DNA-binding protein 8 (CHD8), T-Box Brain Protein 1 (TBR1),
and Fragile X Mental Retardation 1 (FMR1), have also been
linked to ASD (Parikshak et al., 2013; Willsey et al., 2013). These
findings suggest that multiple processes during prenatal and
early postnatal brain growth are linked to ASD, underscoring
the vast heterogeneity of causative factors leading to ASD
pathogenesis. ASD-risk genes, their associated disorders and
the neurodevelopmental processes they affect are shown in
Table 1.

ALTERATIONS IN NEUROGENESIS AND
NEURON MIGRATION IN ASD

Increased Neuronal Proliferation and
Macrocephaly in ASD
A growing body of literature has provided strong evidence that
subsets of individuals with ASD show aberrant brain growth
patterns. In patients, cerebral size may be normal at birth but
display a period of increased overgrowth and a subsequent
period of decline compared to unaffected control patients. An
increase in neuronal numbers in prefrontal cortex has recently
been observed, indicating that excess neurogenesis may be
the underlying cause for an increase in cerebral size in ASD
(Courchesne et al., 2011). Additionally, children diagnosed with
ASD sometimes show regions of abnormal laminar positioning
of cortical projection neurons (Wegiel et al., 2010). Both the
development of proper lamination and the number of cortical
neurons rely on temporally controlled proliferation of neural
progenitors, therefore defects in neural progenitors may underlie
ASD subtypes associated with overgrowth in the developing
brain.

Projection neurons comprise roughly 80% of neurons in the
cortex and when taking into account their dendrites, axons,
myelin and synapses, they indeed could contribute to an increase
in both the gray and white matter volumes in adolescents
with ASD. Indeed, support for this theory has recently been
shown with the comparison of neuron numbers in postmortem
tissue from ASD and normal adolescents, with a surprising
67% more neurons detected in the prefrontal cortex of ASD
patients (Courchesne et al., 2011). An aberrant increase in
neuron numbers during prenatal neurodevelopment supports a
role for a disruption of neurogenesis, which occurs mostly during
gestational weeks 7–20 in humans, which coincides with the end
of the embryonic period and early fetal period. Because new
cell production is estimated to outnumber cell elimination by
at least 100-fold in the developing brain, the role of cell death
may play less of a role in macrocephaly (Rakic and Zecevic,
2000). It is important to note that programmed cell death can
eliminate up to 50% of particular neuron subtypes (De Zio et al.,
2005; Yamaguchi and Miura, 2015), suggesting that a shift in the
balance between neuron generation and elimination could play a
role in macrocephaly.

Radial glia cells must undergo a regulated series of symmetric
divisions to generate more radial glia, and asymmetric divisions,
to produce intermediate progenitors and post-mitotic neurons.
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TABLE 1 | Autism spectrum disorder (ASD) genes and associated disorders.

Protein Gene symbol SFARI score Associated disorders Affected developmental processes

Astrotactin 2 ASTN2 3 ASD, ADHD, DD, EP, ID, OCD, SCZ Neuron migration, Cell-Cell adhesion
Autism susceptibility candidate 2 AUTS2 S ASD, ADHD, DD, EP, ID, SCZ Neuron migration, Neurite growth
Cadherin 10 CDH10 4 ASD Cell-Cell adhesion
Cadherin 13 CDH13 N/A ASD Cell-Cell adhesion
Cadherin 9 CDH9 4 ASD Cell-Cell adhesion
Chromodomain helicase DNA-binding
protein 8

CHD8 1S ASD, DD, ID, SCZ Cell-Cell adhesion

Contactin-associated protein-like 2 CNTNAP2 2S ASD, ADHD, DD, EP, ID, OCD, SCZ,
TS

Neuron migration, Synapse formation,
Synaptic function

Postsynaptc density 95 KDa DLG4 N/A ASD, EP, ID, SCZ Synaptogenesis
Distal-less homeobox 1/2 DLX1/2 5 ASD Neuron migration
Fragile X mental retardation gene 1 FMR1 S ASD, ADHD, DD, EP, ID Translation, Synapse

Formation, Synaptic plasticity
Gephyrin GPHN 3 ASD, EP, ID, SCZ Synaptogenesis
KIDLIA KIAA2022/NEXMIF 3 ASD, ID Neurite growth
Lissencephaly 1 LIS1 N/A ASD, DD, ID, EP Neurogenesis, Neuron migration,

Intracellular transport
Methyl CpG binding protein 2 MECP2 S ASD, ADHD, DD, EP, ID SCZ Transcription, Neurite growth,

Synaptogenesis, Synaptic plasticity
NudE nuclear distribution E homolog 1 NDE1 N/A ASD, ADHD, DD, SCZ Neurogenesis, Neuron migration,

Intracellular transport
Neurofibromatosis 1 NF1 4S ASD Neurite growth
Neuroligin 1/2/3/4/4Y NRLG1/2/3/4/4Y N/A Cell-Cell adhesion, Synaptogenesis
Neurexin 1/2/3 NRXN1/2/3 2 ASD, ADHD, BPD, DD, EP, ID, SCZ,

TS
Cell-Cell adhesion, Synaptogenesis

Phosphatase and tensin homolog PTEN 1S ASD, ADHD, DD, EP, ID Neurogenesis, Neurite growth,
Translation, Synaptogenesis

Reelin RELN 2 ASD, DD, EP, ID Neuron migration, Neurite growth
Shank1/2/3 SHANK1/2/3 1S ASD, BPD, DD, EP, ID, SCZ Synaptogensis, Synaptic plasticit
Synapsin 1/2/3 SYN1/2/3 4 ASD, EP, ID Synaptogenesis, Synaptic Function
Thousand-and-one amino acid kinase 2 TAOK2 N/A ASD Neurite growth
T-Brain-1 TBR1 1 ASD, ADHD, DD, EP, ID Neuron migration
Tuberous sclerosis 1 TSC1 S ASD, DD, ID Neurite growth, Synaptogenesis,

Synaptic plasticity
Tuberous sclerosis 2 TSC2 S ASD, DD, ID, EP Neurite growth, Synaptogenesis,

Synaptic plasticity
Ubiquitin protein ligase E3A UBE3A 3S ASD, DO, EP, ID Neurite growth, Synaptic plasticity
WD repeat and FYVE domain containing 3 WDFY3 3 ASD Neurogenesis
δ-catenin CTNND2 2 ASD Neurite growth

Summary of the genes reviewed including their associated disorders and the developmental processes they affect. The SFARI score = 1, high confidence; 2, strong
candidate; 3, suggestive evidence; 4, minimal evidence; 5, hypothesized but untested; S, mutations are associated with a high degree of increased risk and are frequently
associated with additional features not required for an ASD diagnosis; N/A, not applicable; ASD, Autism Spectrum Disorder; ADHD, Attention Deficit Hyperactivity
Disorder; DD, Developmental Delay; ID, Intellectual Disability; EP, Epilepsy; OCD, Obsessive Compulsive Disorder; SCZ, Schizophrenia; TS, Tourette’s Syndrome.

Recently born projection neurons, principally produced via
symmetric divisions of intermediate progenitor cells in the
sub-ventricular zone (SVZ), will migrate in an ‘‘inside-out’’
fashion to establish the six layered neocortex. This mode
of migration forms deeper layer neurons first, followed
by later born neurons that migrate to form the outer
cortical layers (Gupta et al., 2002; Nadarajah and Parnavelas,
2002; Kriegstein and Noctor, 2004). Thus, alterations in
neurogenesis could lead to changes in total number neuron
numbers yielded from the progenitor populations, and/or
in the overall laminar structure. For example, a study
identified abnormalities in lamination of the neocortex and
excess neuron numbers in seven out of eight ASD cases
that they examined, via magnetic resonance imaging (MRI)
and postmortem histology (Hutsler et al., 2007). Cerebral
dysplasia in multiple regions has been reported in ASD cases,
indicative of dysregulated neurogenesis, neuronal migration

and/or maturation (Wegiel et al., 2010). Additionally, Stoner
et al. (2014) identified regions of disorganized cortical lamination
in ten out of the eleven ASD cases they examined. These
studies have provided strong evidence to support the theory
of dysregulated proliferation from neural progenitors as an
underlying pathology associated with macrocephaly and cortical
lamination defects in ASD. Although astrocytes are generated
from the same progenitor pool as neurons, the underlying cause
of macrocephaly may be largely due to increased numbers
of cortical projection neurons, as an associated increase in
glia cells is not observed (Courchesne et al., 2011; Morgan
et al., 2014). Additionally, data suggests that the cerebral white
matter, which contains glia and the myelinated projections
from cortical neurons, is not increased in ASD patients
with macrocephaly; however, reports do indicate delayed
maturation and a compromised integrity of the white matter
(Hazlett et al., 2005; Friedman et al., 2006; Bakhtiari et al.,
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2012). These findings suggest that a preferential up-regulation
in neuronal differentiation and proliferation play a major role
in ASD.

The phosphatase and tensin homolog (PTEN) gene was the
first gene to be clearly associated with macrocephaly in ASD
(Goffin et al., 2001; Butler et al., 2005; Buxbaum et al., 2007;
Varga et al., 2009). Pten was originally identified as a tumor
suppressor and key negative regulator of phosphatidylinositol
3-kinase (PI3K) signaling, with Pten mutations found in
multiple cancers (Zhao et al., 2004). In Pten-deficient
mouse models, enhanced levels of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) lead to activation of protein kinase
B (AKT) and downstream mammalian target of rapamycin
(mTOR). The mTOR pathway is well known for its ability
to regulate cell growth and proliferation and consistently
Pten-deficient animals show neuronal over-growth, brain
enlargement, seizures and premature death (Kwon et al., 2006;
Ogawa et al., 2007; Garcia-Junco-Clemente and Golshani,
2014).

CHD8 has emerged as a key ASD-linked gene. Strikingly,
80% of individuals with mutations in CHD8 alleles display
macrocephaly, which composes a much higher percentage
of total macrocephaly cases in ASD patients without CHD8
mutations (Bernier et al., 2014). Using a mouse model, Katayama
et al. (2016) have shown increased brain weight, mirroring the
macrocephaly observed in humans. Using transcriptome analysis
of the entire brain, the authors concluded that major targets of
Chd8 were genes regulated by the RE-1 silencing transcription
factor (REST), which is a neuronal transcriptional repressor
(Katayama et al., 2016).

WD repeat and FYVE domain containing 3 (WDFY3)
was identified through surveys of de novo variants linked
to ASD (Iossifov et al., 2012, 2014), which is implicated
in macrocephaly and altered neural progenitor proliferation.
Wdfy3 is a scaffold protein, involved in macroautophagy of
large aggregation-prone proteins (Filimonenko et al., 2010).
Decreased Wdfy3 expression in mice produces pronounced
effects on neuronal proliferation and migration. Wdfy3 mutant
mice also display macrocephaly resulting from a shift of
radial glia divisions from asymmetric to symmetric (Orosco
et al., 2014). This change in division ultimately produces
greater numbers of neuronal progenitors and therefore brain
size. Wdfy3’s function in regulating cellular division is
unclear, however expression studies have shown that it is
up-regulated during cellular division and Wdfy3 plays a
role in autophagy and regulation of proteins that control
the cell cycle, ultimately resulting in a shortened cell cycle
in Wdfy3 mutant mice (Orosco et al., 2014), and that
additionally, because progenitor expansion and neurogenesis
initiates anterolaterally and concludes posteromedially (Caviness
et al., 2009), Wdfy3 mutant mice show a more pronounced
affect in the anterolateral areas. This finding is in line with MRI
performed in ASD adolescents, wherein temporal and frontal
cortical areas showed the largest size increases (Carper et al.,
2002; Hazlett et al., 2005; Schumann et al., 2010). Notably, these
region-specific changes of cerebral growth could be associated
with key behavioral symptoms observed in ASD. In humans,

areas such as the superior temporal sulcus and parts of the
prefrontal and temporal cortex, which are key regions involved
in reward and reinforcement pathways as well as social and
emotional pathways are susceptible in ASD patients (Pelphrey
and Carter, 2008; Redcay, 2008; Gotts et al., 2012; Gasquoine,
2014).

The association of macrocephaly with clinical phenotypes
in autism has been characterized in an inconsistent manner
and previous studies have indicated higher levels of cognitive
function in patients with macrocephaly and ASD compared
to normal controls (Courchesne and Pierce, 2005; Sacco
et al., 2007). An increase in head circumference has been
shown in ASD patients with special capabilities, compared
to those without them (Ben-Itzchak et al., 2013a). However,
additional studies have not discovered similar correlations
with increased head circumferences and special abilities
(Gillberg and de Souza, 2002; Ben-Itzchak and Zachor,
2007).

Genes Associated with Mitotic
Dysregulation of Neural Progenitors and
Microcephaly in ASD
Microcephaly has not been studied as thoroughly as
macrocephaly in ASD patients. The reports have indicated
an increased prevalence of microcephaly in ASD, with up to 20%
of cases, in comparison to 3% reported in the general population.
Additionally, microcephaly is more frequent in individuals with
ID and higher ASD severity (Fombonne et al., 1999; Cody et al.,
2002; Miles et al., 2005; Ben-Itzchak et al., 2013b).

Autosomal recessive primary microcephaly (MCPH) is
a condition that displays with significantly reduced head
circumference that develops during the prenatal period (Tunca
et al., 2006). The development of the forebrain is prominently
affected in this form of microcephaly ultimately results in ID
(Roberts et al., 2002; Bond et al., 2003). Disruption in genes
encoding proteins that localize to the centrosome are known to
result in MCPH (Kaindl et al., 2010), including Microcephalin 1
(MCPH1).MCPH1 is a gene expressed during fetal development
and mutations in MCPH1 produce microcephaly (Jackson
et al., 1998, 2002). Studies have found rare variants in the
MCPH1 gene that are linked to ASD (Ozgen et al., 2009;
Neale et al., 2012), and play a role in DNA-damage repair,
chromosome condensation, and the regulation of DNA damage
genes (Thornton and Woods, 2009; Richards et al., 2010).
Mechanistically, it has been shown that Mcph1 regulates
neuroprogenitor division by coupling centrosomal maturation
and mitotic spindle orientation with mitotic entry (Gruber et al.,
2011).

Abnormal Spindle Primary Microcephaly (ASPM, MCPH5)
is involved in orientation of the mitotic spindle, regulation of
mitosis and cytokinesis (Fish et al., 2006; Passemard et al.,
2009, 2016; Higgins et al., 2010). Mutant Aspm mice have
mild microcephaly without aberrant increase in cell death,
suggesting that disruptions in the proliferation of embryonic
neuronal progenitor cells underlie MCPH (Pulvers et al.,
2010). Additionally, Aspm positively regulates Wnt signaling
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FIGURE 1 | Radial-glia guided neuronal migration. Radial glia cells (green), extend long basal process to the pial surface, with their somas located in the ventricular
zone (VZ). Neurons (blue) are born in the VZ and migrate along radial glia fibers. The cortical plate is formed in an inside-out fashion such that later-born neurons that
will reside in the upper layers pass through earlier-born neurons in deeper layers (lighter blue shading). The marginal zone contains horizontally-oriented Cajal-Retzius
cells (orange) which release the extracellular signaling glycoprotein Reelin.

(Major et al., 2008), and over-expression of β-catenin, a positive
transducer of the Wnt pathway, can rescue neurogenesis deficits
in mice (Buchman et al., 2011).

Mutations inWD Repeat Domain 62 (WDR62) are associated
with microcephaly and other cortical abnormalities in humans
(Bilgüvar et al., 2010; Yu et al., 2010). Wdr62 deficient mice
have reduced brain size due to decreased neural progenitor cell
population cells show mitotic spindle instability, mitotic arrest
and cell death after loss of Wdr62 expression (Chen et al., 2014).
Mutations or loss of Wdr62 expression therefore leads to mitotic
delay and death of neural progenitor cells, thereby resulting in
microcephaly.

Alterations in Neuron Migration in ASD
Excitatory Projection Neuron Migration
The time of birth of neocortical neurons, as well as their
proper movement from the proliferative zone, dictates their
final position within the layers of the cerebral cortex (Angevine
and Sidman, 1961). Neurons born later during neurogenesis
will ultimately reach the superficial layers above earlier born

neurons, due to an ‘‘inside-out’’ mode of neuronal migration.
Initially, multipolar neurons will migrate via cellular locomotion.
As neurons continue into the neocortex, they adhere to and
migrate along radial glia, which provide aid in the direction
of their migration (Rakic, 1972; Hatten, 1999; Kriegstein and
Noctor, 2004; Ayala et al., 2007). Neurons adopt a bipolar
morphology as they move along radial glia and detach upon
reaching their proper laminar position (Figure 1). Additionally,
daughter neurons in different cortical layers that were generated
from the same mother progenitor cell will align radially
into highly connected mini-columnar structures, most likely
constituting a functional unit in the brain (Gao et al.,
2013).

Studies have shown that defects in neuronal migration are
associated with changes in neuron density and soma size,
irregular minicolumns and heterotopias (mis-localized neurons;
DiCicco-Bloom et al., 2006; Uppal et al., 2014; Chen et al., 2015;
Reiner et al., 2016). In humans for example, two separate studies
have demonstrated evidence of aberrant cell patterning in the
boundary of cortical gray–white matter, suggesting defects in
neuronal migration (Hutsler et al., 2007; Avino and Hutsler,
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2010). In another study, an abnormal lamination of neurons,
but not glia, was detected in the cortex of adolescent ASD brain
samples (Stoner et al., 2014).

Reelin is one of the best known regulators involved in
neuronal migration (Folsom and Fatemi, 2013; Sekine et al.,
2014). Reelin is a glycoprotein that is released fromCajal–Retzius
cells in the outer marginal zone. Reelin binds to the receptors
Apoer2 and Vldlr on the cell membrane of target neurons,
thereby inducing tyrosine phosphorylation of the adaptor protein
Dab1, which subsequently initiates signaling cascades (Forster
et al., 2006; Pardo and Eberhart, 2007). Reelin is involved in the
termination of migration, proper neuronal layering, as well as
transition to a bipolar morphology prior to neuronal migration
along radial glia. Studies using postmortem human samples
suggest aberrant Reelin signaling in ASD patients (Persico
et al., 2001; Bonora et al., 2003; Fatemi et al., 2005). Reelin
mutations in humans produce disruptions in neuron migration
and connectivity, lissencephaly and cerebellar hypoplasia (Hong
et al., 2000). In the well-studied Reelin knockout (KO) mice,
neuronal migration abnormalities result in an inversion of
cortical layering (Falconer, 1951; D’Arcangelo et al., 1995;
Hirotsune et al., 1995). Behavioral studies in Reelin KO mice
show aggressive behavior, an abnormal gait, social aggression,
and impairments in learning and memory (Salinger et al.,
2003). T-Box Brain Protein 1 (TBR1) encodes a brain-specific
T-box transcription factor, which plays an important role
in neurodevelopment and migration and has been identified
as a causative gene for ASD (Neale et al., 2012; Deriziotis
et al., 2014; De Rubeis et al., 2014). Tbr1 is involved in the
differentiation of neurons from intermediate progenitors early
in the development of the neocortex (Dwyer and O’Leary,
2001; Han et al., 2011; Willsey et al., 2013). Tbr1 regulates the
expression of many ASD-linked genes (Chuang et al., 2015),
including the activation of Autism Susceptibility Candidate 2
(AUTS2), which has been identified as an ASD and ID associated
gene (Bedogni et al., 2010; Srinivasan et al., 2012). Interestingly,
TBR1 KO mice do not express subplate, layer 6 or Cajal-Retzius
cell markers and show a large decrease in Reelin expression,
however upper cortical layers are typically normal (Hevner et al.,
2001).

Multiple mutations within AUTS2 have been identified in
patients, strongly linking it as a causative factor for ASD (Sultana
et al., 2002; Huang et al., 2010; Pinto et al., 2010; Talkowski et al.,
2012; Cheng et al., 2013; Liu et al., 2015). The Auts2 protein is
predominantly nuclear localized and evidence suggests a role for
Auts2 in regulating gene expression during brain development
(Bedogni et al., 2010; Srinivasan et al., 2012; Gao et al., 2014).
Binding of Auts2 with polycomb repressive complex 1 (PRC1)
inhibits PRC1 activity leading to activation of gene transcription
(Gao et al., 2014). In addition to the nuclear component,
Auts2 protein is also found in the cytoplasm, where it lays a
role in regulating cortical neuronal migration and neurite growth
(Hori et al., 2014).

In a cohort of Amish children, mutations within contactin-
associated protein-like 2 gene (CNTNAP2) were found to
be implicated in ASD and epilepsy (Strauss et al., 2006).
CNTNAP2 is a scaffolding protein that’s part of the Neurexin

family, whose members have previously been associated with
multiple ASD-linked proteins (Jamain et al., 2003; Comoletti
et al., 2004). Ectopic neurons were identified in patients
with CNTNAP2 mutations, suggesting its involvement in
the regulation of neuronal migration (Strauss et al., 2006).
Additionally, CNTNAP2 mutations are linked to ADHD as
well as epilepsy and seizures, conditions that are commonly
co-morbid with ASD (Jackman et al., 2009; Elia et al.,
2010; Mefford et al., 2010). Additionally, disruptions in
CNTNAP2 are associated with impairments in sociability
and language processing (Whalley et al., 2011; Toma et al.,
2013; Condro and White, 2014). CNTNAP2 KO mice show
an abnormal localization of neurons in the corpus callosum
and mis-localization of the Cux1-positive upper layer neurons
into the deeper layers, V–VI (Peñagarikano et al., 2011).
CNTNAP2 is part of a neuron-glia adhesion complex with
contactin 2, therefore it may play a key role in radial
glia-guided neuronal migration (Poliak et al., 1999; Denaxa et al.,
2001).

Astrotactin 1 (ASTN1) is a neuronal cell surface antigen
that regulates neuron-glia interactions that plays a major
role in neuron migration (Edmondson et al., 1988; Zheng
et al., 1996). Astn1 KO mice have slower cerebellar granule
cell migration, aberrant Purkinje cell morphology, decreased
glia-neuron interactions and impairments in coordination
compared to normal mice (Adams et al., 2002). Astn1 interacts
with Astn2 and can regulate its expression at membrane
surface, which ultimately regulates neuron-glia adhesion during
migration along radial glia (Wilson et al., 2010). Genome wide
association studies identified ASTN2 as an ASD candidate gene
(Lesch et al., 2008). Patients with ASTN2 deletions are often
classified with ASD or other co-morbid diagnoses such as
ADHD, obsessive compulsive disorder and delayed language
development (Lionel et al., 2014).

NudE nuclear distribution E homolog (NDE1) is involved
with the regulation of neuron proliferation, migration, and
intracellular transport as part of the Lis1/Nde/Ndel1/cytoplasmic
dynein complex (Feng et al., 2000; Kitagawa et al., 2000;
Niethammer et al., 2000; Sasaki et al., 2000; McKenney et al.,
2010). Lissencephaly 1 (LIS1) was the first gene identified with
an involvement in disrupted neuron migration (Reiner et al.,
1993) via its interactions with cytoplasmic dynein, Nde1, Ndel1
and cytoplasmic linker protein 170 (CLIP-170; Reiner, 2000;
Coquelle et al., 2002). Multiple studies have shown a major
role for Lis1 in regulating neuronal migration (Cahana et al.,
2001; Tsai et al., 2007; Hippenmeyer et al., 2010) and a cross
between an Nde1 KO mouse with Lis1 heterozygous mouse
produced a severe disruption of the morphology of the VZ
progenitors and radial glia, as well as a significant decrease in
brain size (Pawlisz et al., 2008). This was shown to be regulated
via stabilization of the dystrophin/dystroglycan glycoprotein
complex (Pawlisz and Feng, 2011) and an alteration of theMAPK
scaffold protein Kinase Suppressor of Ras (KSR), subsequently
producing hyperactivation of MAPK/ERK pathway (Lanctot
et al., 2013). In support of these findings, additional studies
have shown that dysregulation of the MAPK/ERK pathway
affects social behavior in mice and produces ASD phenotypes,
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while multiple links between ASD and hyperactivation of
the Ras signaling have been reported (Levitt and Campbell,
2009; Rauen et al., 2010; Crepel et al., 2011; Faridar et al.,
2014).

Inhibitory Neuron Migration
Interneurons, which are primarily inhibitory, utilize tangential
migration to migrate into the neocortex and across the plane
of radial glia fibers (Lavdas et al., 1999; Marín and Rubenstein,
2001; Nery et al., 2002; Kriegstein and Noctor, 2004; Ayala
et al., 2007). Upon reaching the cerebral cortex, interneurons
will migrate along radial glia fibers to their final location (de
Carlos et al., 1996; Wichterle et al., 2001; Polleux et al., 2002;
Poluch and Juliano, 2007). Therefore, when radial glia-mediated
migration becomes disrupted, interneurons will also be become
mis-localized.

Distal-less homeobox (Dlx) genes are part of the
homeodomain transcription factor family which is related
to the Drosophila distal-less (Dll) gene (Panganiban and
Rubenstein, 2002). Dlx1/2 are found largely in the ganglionic
eminences (GE) of the developing brain and play an
important role in regulating the migration of inhibitory
interneurons from the medial GE into the cortex. Dlx1 KO
mice exhibit a decrease in GABAergic neurons and present
with epilepsy, a commonly observed pathology in ASD
patients (Cobos et al., 2005). Dlx1/Dlx2 double KO mice
show major aberrations in the migratory stream of GABAergic
neurons and also an accumulation of neuronal precursor
cells in the GE (Anderson et al., 1997; Ghanem et al.,
2007). Arx, an X-linked homeobox gene and immediate
downstream target of Dlx, may regulate Dlx’s role in
tangential neuronal migration (Colasante et al., 2008).
Patients identified with mutations in Arx display ID, autistic
features and epilepsy (Strømme et al., 2002; Turner et al.,
2002).

ALTERATIONS IN NEURITE GROWTH AND
SPINE FORMATION IN ASD

Neurons are highly specialized cells with distinct morphologies
comprised of three distinct sections: the soma which contains the
nucleus and the majority of the cellular organelles; a long axonal
process to transmit information; and a complex dendritic arbor
to receive information from neighboring neurons. The dendrites
are highly branched and elaborate and therefore occupy a large
area within neural tissues (Tahirovic and Bradke, 2009).

Dendrite growth can be viewed as discreet steps. After
birth from neural progenitors, neurons start as a simple
round soma and must first undergo cellular polarization.
Neurons first adopt a multipolar morphology with the extension
of minor neurites. The movement of migrating neurons is
achieved through the formation, maintenance and constant
transformation of microtubules in response to extracellular
cues and intracellular polarity signals. During migration,
the cell first extends a leading process. Stabilization of a
single neurite is required for newly generated neurons to
exit the multipolar stage to enter the cortical plate. This

stabilization ultimately results in formation of the leading
process while the trailing process eventually develops into
the future axon (Shim et al., 2008; Witte and Bradke, 2008).
Next, in order to move forward, the nucleus undergoes a
translocation into the stabilized leading neurite. During this
process, termed nucleokinesis, the attachment of microtubules
from the centrosome to the nuclear envelope exerts a traction
force, pulling the nucleus into the leading neurite attached to
a radial glia process (Bellion et al., 2005; Tahirovic and Bradke,
2009).

Once neurons reached their destined cortical layers,
substantial dendritic outgrowth is undertaken to form dendritic
arbors characteristic of a neuron subtype. At this stage, neurons
are tasked with the processes of growing each branch to the
correct size, initiating a new branch at the right site to complete
a specific branching pattern, and directing each branch’s growth
into an appropriate spatial location (Tahirovic and Bradke, 2009;
Jan and Jan, 2010). The early postnatal stages of neurite growth
are depicted in Figure 2.

Dendrites are vastly different from axons in their ultimate
morphology, function and developmental processes. In
mammalian neurons, a notable distinction is the manner in
which the microtubules are organized. Initially all neurites
contain microtubules oriented with their plus-end localized
distally from the soma. The neurite specified to become the axon

FIGURE 2 | Stages of neurite growth. Representative neocortical mouse
pyramidal neuron morphologies at different early postnatal time points during
development. P = postnatal.
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will maintain this distal plus-end orientation, while neurites that
become dendrites will adopt a mixed orientation (Baas et al.,
1988, 1989; Burton, 1988). Additionally, in comparison to axons,
dendrites have an enrichment of cellular organelles that are
transported with the aid of microtubule motors like dynein, such
as Golgi outposts and mitochondria, which are utilized to supply
the necessary for cellular materials required for growth (Horton
and Ehlers, 2004; Horton et al., 2005; Kapitein et al., 2010).

The morphology of the dendritic arbor is largely developed
early during the embryonic period; however, dendrites are
highly dynamic and they maintain the overall morphology with
various mechanisms into adulthood. Disruptions in dendritic
growth, or breakdown of the mechanisms to maintain their
morphology can be deleterious, resulting in aberrant network
function. Abnormalities in neuronal connectivity between
the higher-order association areas have been considered one
of the major defects in ASD (Geschwind and Levitt, 2007).
MRI studies have shown both large and small changes in
connectivity of neuronal networks; however, the neurobiological
basis for this disconnectivity remains to be fully elucidated
(Casanova and Casanova, 2014; Maximo et al., 2014). A
large number of autism studies have focused on dendritic
development, although mostly relating to spine morphology
and synaptic function, which will be discussed in detail below
(Persico and Bourgeron, 2006; Kelleher and Bear, 2008;
Bourgeron, 2009). However, the current body of research
suggests that this is not the only morphological defect, as
children with autism are frequently identified with large-
scale anatomical abnormalities, suggesting dysregulation
in dendritic growth and development. For example, both
macrocephaly and microcephaly are identified in ASD
adolescents, with 15% of ASD patients presenting with
macrocephaly, while 20% display microcephaly (Lainhart
et al., 1997; Fombonne et al., 1999; Cody et al., 2002; Pardo and
Eberhart, 2007).

One of the proposed causes leading to macrocephaly has
been suggested to be a result of increased dendrite number and
size, which may be a product of excessive dendrite arborization,
and/or decreased dendrite pruning (Jan and Jan, 2010). Other
factors can play a role in macrocephaly, such as increased
numbers of neurons and glia, however the number of dendrites
may better explain certain forms of macrocephaly. Brain volumes
in infants diagnosed with ASD are typically normal, however they
display aberrant overgrowth as development progresses. This
later onset of increased brain volume should not result from an
increase in neuronal number, as the largest areas of the brain have
mostly completed neurogenesis prior to birth, except for areas
like the hippocampus where smaller amounts of neurogenesis
occur later in life (Ming and Song, 2005; Zhao et al., 2008).
The timing of increase brain size can be explained by aberrant
dendrite growth and branching, which largely occurs postnatally.
In humans, neurons grow and continue to elaborate their
dendritic arbors, axons and form new synaptic connections until
the age of five, with experience-based remodeling of synapses
until 20 years of age (Stiles and Jernigan, 2010; Tau and Peterson,
2010; Pescosolido et al., 2012). Dendrites continue to extensively
grow after birth, in an activity-dependent manner. Therefore,

a large contribution to the increase in brain size postnatally
likely results from increased dendritic growth (Redmond et al.,
2002).

Previous genetics studies have described multiple high-risk
genes for autism that play roles in diverse functions, including
synaptic connectivity and synapse function, dendritic and axonal
growth, trafficking, transcription and translation (Volders et al.,
2011; de Anda et al., 2012; Miao et al., 2013; Bakos et al.,
2015). Recently, estimates have suggested that 88% of the genes
that are considered to be high-risk for ASD play a role in
early neurodevelopmental functions such as neurogenesis and
differentiation of neuroblasts. Importantly, ∼80% of these genes
are involved in later phases of neurodevelopment and regulate
processes involved in neurite growth and synapse formation
(Casanova and Casanova, 2014).

Dendrites from an individual neuron can have a thousand
or more spines, with each spine forming an excitatory synaptic
connection upon maturing. Spines and synapses are produced
in excess numbers during development, but synaptic numbers
are later fine-tuned through activity-dependent stabilization or
elimination (Changeux and Danchin, 1976). Spines are highly
dynamic and undergo constant turnover and morphological
plasticity with a dependency on both developmental stage and
activity.

Dendritic spines are typically classified as thin, stubby and
mushroom, with the latter considered more mature. Mushroom
and stubby morphologies are more permanent and form strong
excitatory connections (Trachtenberg et al., 2002; Kasai et al.,
2003). Alternatively, thin spines are highly dynamic, shorter
lasting, and form weak synaptic connections or no connection
at all. Within the spine head, actin becomes enriched helps play a
key role in spine formation and structural dynamics (Chazeau
and Giannone, 2016). Previous studies have shown that spine
formation maintenance are a major cellular processes affected
in ASD (Kelleher and Bear, 2008; Bourgeron, 2009; Phillips and
Pozzo-Miller, 2015). Using Golgi staining, postmortem analysis
of cortical neurons from ASD brain samples showed an increase
in dendritic spine density compared to normal patients (Hutsler
and Zhang, 2010). Some of the high-risk autism genes implicated
in dendritic growth and branching spine formation and synapse
maturation are described below.

Methyl CpG binding protein 2 (MECP2) is an X-linked
gene that codes for a protein that functions as a transcriptional
repressor and an activator (Chahrour et al., 2008). Mutations
in MeCP2 were initially linked to Rett syndrome (RTT), a
neurodevelopmental condition that presents with motor and
speech impairments, cognitive deficits and autism (Amir et al.,
1999). RTT is typically caused by loss-of-function mutations in
MeCP2; however, there are rare cases that are also caused by
MeCP2 duplications.

Using Golgi staining in brain slices from MeCP2 KO
mice, reductions in dendritic growth and branching have
previously been reported in both apical and basal arbors of
motor cortical neurons (Kishi and Macklis, 2004; Stuss et al.,
2012). Additionally, to investigate MeCP2 duplication, mice
over-expressing the human MeCP2 gene have shown excessive
dendritic branching, indicating that MeCP2 over-expression can
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induce dendritic overgrowth (Jiang et al., 2013). It is possible
that in subtypes of neurons MeCP2 can act as a repressor while
acting as an activator in others, or it can change roles at different
periods in neuronal development. For instance, MeCP2 can
activate genes involved in early dendrite growth and repress
genes later during dendritic remodeling. An important aspect to
these findings is thatMeCP2 overexpression affects the dendrites,
having no impact on axon growth, suggesting a defined role
for MeCP2 in dendritic development. Recent work has provided
evidence for the role MeCP2 plays in dendritic development,
showing that MeCP2 also regulates the expression of genes post-
transcriptionally. These findings show that MeCP2 regulates
microRNA (miRNA) processing via a direct interaction with
DiGeorge syndrome critical region 8 (DGCR8), which plays a
role in mediating the genesis of miRNAs thought to regulate
dendrite morphogenesis (Gregory et al., 2004; Cheng et al.,
2014).

RTT animal models also show changes in excitatory
hippocampal synapse numbers. The loss of the X-linked RTT
protein MeCP2 has also been show to result in abnormal
dendritic spine morphology and a decrease in spine density
(Zhou et al., 2006; Chapleau et al., 2012; Stuss et al.,
2012). Additionally, MeCP2 over-expression produces dendritic
overgrowth in mice and these animals show a greater rate of
spine turnover, with a bias toward spine removal (Jugloff et al.,
2005; Jiang et al., 2013). Taken together, MeCP2, the established
factor underlying RTT with autism, has a clear role in dendritic
morphogenesis and synapse formation, both of which should
play a major function in the cognitive impairments seen in RTT
patients.

Fragile X mental retardation gene 1 (FMR1) is the gene
underlying the disorder Fragile X syndrome (FXS), which results
in ID with 15%–30% of patients also displaying ASD phenotypes
(Krawczun et al., 1985; Persico and Bourgeron, 2006; Kelleher
and Bear, 2008; Santoro et al., 2012). FXS is usually results from
an expansion of a CGG triplet in the 5′-UTR region of the
FMR1 gene, however a few missense mutations and deletions
have been identified (Santoro et al., 2012). Fragile X mental
retardation protein (FMRP), the FMR1 gene product, plays a
key role in negatively regulating translation, especially local
translation at the synapse (Santoro et al., 2012). In terms of
FMRP’s role in dendritic growth, mouse studies have shown
somewhat contradictory results. In visual cortex pyramidal
neurons of FMR1 KO mice, one study has shown defects
in dendritic spines, with no observable changes in dendritic
morphology (Irwin et al., 2002). Conversely, multiple other
studies have shown that FMRP is critical for dendritic growth
and branching. In FMR1 KO mice, visual cortex pyramidal
neurons show reduced basal dendrite length and branching
(Restivo et al., 2005). Using neural stem cells isolated from
FMR1 KO mice, or from postmortem tissues of FXS human
fetuses, differentiated neurons showed fewer and less complex
neurites with smaller somas (Castrén et al., 2005). An important
caveat to these studies was that they involved loss-of-function
or deletion of FMRP; however, FXS in humans is rarely
caused by deletions or missense mutations in the FMR1 gene,
but rather via an expansion of the CGG triplet repeat. This

has been addressed in studies using transgenic mice with a
FXS knock-in mutation consisting of 120–140 CGG repeats.
Indeed, these animals display significantly impaired dendritic
morphogenesis in addition to alterations in dendritic spine
density and morphology (Berman et al., 2012). The studies from
Drosophila have elucidated the mechanistic function of FMRP
in dendritic growth and have shown that FMRP is involved
with transportation of the mRNA for Ras-related C3 botulinum
toxin substrate 1 (Rac1), a GTPase. In agreement with this,
Rac1 was found to bind FMRP and affect dendrite arborization,
indicating that FMRP’s role in dendrite morphogenesis could in
part be through its interaction with Rac1 (Lee et al., 2003). These
findings strongly support a role for FMRP in dendritic arbor
morphogenesis.

FMRP is localized within dendrites and in addition to
abnormal dendritic growth and branching, brains from FXS
patients display an immature synaptic phenotype (Rudelli et al.,
1985). FXS patients have an increased spine density on both
apical and basal dendrites in neocortex and more spines
characterized by an immature morphology. Additionally, Golgi
studies from human FXS patients reveal a significant increase
in long spines with less shorter spines compared to controls in
multiple cortical areas (Hinton et al., 1991; Irwin et al., 2001).
In FMR1 KO mouse models, spine phenotypes correlate with
those observed in humans with FXS as these mice have an
increase in longer spines and a corresponding decrease in shorter
spines. Additionally, dendritic spines in FXS mice display a
more immature morphology with fewer mushroom and stubby
spines present (Irwin et al., 2001, 2002; McKinney et al., 2005).
In addition, changes in synaptic proteins such as postsynaptic
density-95 kDa (PSD-95) have been observed in FXS (Ifrim et al.,
2015).

Although FMRP’s role in impaired spine formation and
morphology in FXS has not been completely elucidated, FMRP
has been identified to interact with multiple proteins that
are linked to dendritic and spine regulation. Cytoplasmic
FMRP-interacting protein 1 (CYFIP1), a binding partner of
FMRP, is a protein that has recently generated interest as
its genetic locus is chr15q11.2, a susceptibility area in ASD.
When bound to FMRP, CYFIP1 can inhibit translation and
regulates actin dynamics. This can therefore regulate the
growth and removal, as well as the labiality and morphology
of spines (De Rubeis et al., 2013). A down-regulation of
CYFIP1 mRNA has been detected in subgroups of FXS patients
with ASD (Nowicki et al., 2007). Conversely, over-expression
of CYFIP1 results in higher dendritic complexity in vitro,
while neurons that are haploinsufficient for CYFIP1 show
decreased dendritic complexity and an increase in the relative
levels of immature to mature dendritic spines (Pathania et al.,
2014).

Pten is a phosphatase that de-phosphorylates PIP3, which
serves to inhibit PI3K/AKT/mTOR signaling (Kwon et al.,
2006; Ogawa et al., 2007; Garcia-Junco-Clemente and Golshani,
2014). Mice lacking Pten selectively in the central nervous
system show an increase in activation of the AKT/mTOR/S6K
pathway, an increase in neuron size, macrocephaly, as well
as decreased and disorganized dendritic and axonal growth
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(Kwon et al., 2006). Pten KO during early development, as well
as in adult mice disrupts neuron morphogenesis, suggesting
that Pten plays an important role in dendritic growth and
maintenance in adulthood in addition to its function during
early neurodevelopment (Kwon et al., 2006; Chow et al., 2009).
Therefore, Pten, a protein with a clear link to autism, has a
definitive role in dendrite morphogenesis.

TSC1 and TSC2 are tumor-suppressing genes that have been
linked to brain tumors in tuberous sclerosis complex (TSC;
Huang and Manning, 2008). However, their involvement in
neurodevelopmental disorders including epilepsy, autism and ID
has become increasingly studied (Kwiatkowski and Manning,
2005; Persico and Bourgeron, 2006). In pheochromocytoma 12
(PC12) cells, an inducible neuron-like cell line, transfection
of TSC1 antisense oligonucleotides was shown to increase
neurite outgrowth through RhoA activation, while knockdown of
Tsc2 decreased neurite growth (Floricel et al., 2007). In another
study, overexpression of Tsc1/Tsc2 was found to impair axon
formation. Knockdown of Tsc1/Tsc2 in vitro induced multiple
axons, while genetic deletion in vivo in the mouse induced
ectopic axons (Choi et al., 2008). There is strong evidence that
TSC genes are linked to ASD risk and play a major role in neurite
growth, therefore it will be important to further elucidate their
mechanistic role in neuron morphogenesis and ASD in future
research.

Mammalian target of rapamycin (mTOR is a serine/threonine
kinase that regulates cellular growth and is induced by growth
factors and environmental cues (Laplante and Sabatini, 2012).
Via regulation of the cytoskeleton, mTOR plays an important
function in regulating dendritic outgrowth, and proteins known
to inhibit mTOR signaling have been associated with aberrant
dendrite and spine development in ASD (Thomanetz et al.,
2013; Skalecka et al., 2016), including Pten and Tsc 1/2 (Weston
et al., 2014). Pten serves to inhibit the PI3K/AKT/mTOR
signaling pathway, thereby affecting growth and protein
translation, and Pten mutations have been discovered in multiple
individuals diagnosed with ASD. Additionally, mice carrying
PTEN mutations or genetic deletions show impaired social
interactions and increased sensory responses. Loss of Pten
produces an increase in dendritic growth, synaptic connectivity
and disorganized dendritic and axonal processes (Kwon et al.,
2006; Orloff et al., 2013). Conversely, knockdown of Pten
in the amygdala decreases spine density, with an increase in
mushroom spines and decrease in thin protrusions (Haws
et al., 2014). Additionally, it has been previously shown
that the TSC pathway plays an important role in regulating
synaptic function, and in hippocampal neurons, loss of Tsc 2
expression produces an expansion of neuronal somas as well
as spines (Tavazoie et al., 2005). These findings provide
strong evidence that mTOR, and its interacting proteins, are
involved in regulating both dendritic and spine development in
ASD.

Neurofibromatosis is a condition in which tumors grow
in the nervous system. Mutations in Neurofibromatosis-1
(NF1) produce neurofibromas and between 30% and 65%
of children with NF1 mutations display learning disabilities
and display significantly higher rates of autism, suggesting

a causal relationship to autism (Rosser and Packer, 2003;
Garg et al., 2013). Neurofibromin, the protein product
of the NF1 gene, is a GTPase activating protein that
negatively regulates the Ras signaling pathway (Costa and
Silva, 2003). NF1 conditional KO mice display impaired
dendritic morphogenesis and Golgi staining from NF1 KO
mouse brains reveals shorter apical dendrites in pyramidal
neurons. NF1’s function in dendrite morphogenesis has been
shown to act through cAMP/PKA/Rho/ROCK signaling (Brown
et al., 2012). RhoA plays a major role in actin dynamics
and neurite growth and branching. With the inhibition of
RhoA, an increase in the branching of neuronal processes
is observed, and with the activation of RhoA, a decrease
in the length and complexity of processes is observed
(Li et al., 2000; Nakayama et al., 2000; Wong et al.,
2000).

Loss of expression of KIAA2022/KIDLIA was previously
identified by our group and others as the causative protein for
severe ID and autistic behavior in multiple families (Cantagrel
et al., 2004, 2009; Ishikawa et al., 2012; Van Maldergem
et al., 2013; Charzewska et al., 2015; Kuroda et al., 2015).
Clinical examinations of patients with KIDLIA mutations or a
loss of expression, display enlarged ventricles, Virchow-Robin
spaces, a thin corpus callosum and small cerebellar vermis.
Additionally, strabismus has been observed in patients, with
some dysmorphic features including a round face during early
postnatal periods, febrile seizures, severely impaired or no
language, stereotypical hand movements and delayed acquisition
of motor milestones (Cantagrel et al., 2004, 2009). Interestingly,
a patient with decreased expression of KIDLIA had only mild
cognitive deficits with a significant delay in language acquisition
as well as repetitive and stereotyped behaviors, indicating that the
effects may be gene-dosage dependent (Van Maldergem et al.,
2013).

With shRNA-mediated knockdown of KIDLIA in rat
hippocampal neurons in culture, significant impairments in
dendritic growth and branching are observed (Van Maldergem
et al., 2013; Gilbert and Man, 2016). Mechanistically, we’ve
recently reported that loss of KIDLIA significantly impairs
actin dynamics and produces an aberrant increase in total
and membrane-localized N-cadherin. N-cadherin was found to
bind much greater levels of δ-catenin, thereby releasing the
latter’s inhibition on downstream RhoA (Gilbert et al., 2016).
Additionally, microcephaly has been reported in human patients
with a loss of KIDLIA expression (Cantagrel et al., 2004; Van
Maldergem et al., 2013; Kuroda et al., 2015). These findings
suggest that the regulation of neuronal morphogenesis through
dendrite growth and synapse formation are major underlying
factors contributing to the cognitive impairments observed
in patients with genetic deletions or functional mutations in
KIDLIA.

Ubiquitin protein ligase E3A (UBE3A) is the causative gene
for Angelman syndrome, a developmental disorder characterized
by language impairments, ataxia, ID and hyperactivity (Williams
et al., 2006). Individuals identified with Angelman syndrome
are often co-diagnosed with autism (Steffenburg et al., 1996;
Peters et al., 2004). In addition, Ube3A over-expression leads
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to autism in humans and in animal models (Bucan et al., 2009;
Smith et al., 2011; Noor et al., 2015). UBE3A is an imprinted
gene that encodes an E3 ubiquitin ligase, that typically expresses
from both maternal and paternal alleles in most tissues, but is
only expressed from the maternal allele in brain (Mabb et al.,
2011). Previous studies have shown that Ube3A is required for
normal dendritic morphogenesis in the mouse (Miao et al., 2013)
and shRNA-mediated knockdown of Ube3A in vivo impairs
dendritic growth cortical pyramidal neurons in the mouse (Miao
et al., 2013). Additionally, studies in Drosophila strongly support
a role for Ube3A in dendritic growth and branching. Both
over-expression and loss of the Ube3A Drosophila homolog
have been shown to result in decreased dendrite branching
in larval sensory neurons (Lu et al., 2009). These studies
suggest that Ube3A plays a significant role in dendrite growth
and support that dysregulated neuron morphogenesis may
underlie developmental disorders like Angelman syndrome and
ASD.

Thousand-and-one amino acid kinase 2 (TAOK2) belongs
to the family of MAP kinase kinase kinases (MAPKKK)
and is located in chromosome 16, an area associated with
increased ASD-risk (Weiss et al., 2008) and schizophrenia
(McCarthy et al., 2009). Both Taok1 and Taok2 activate
mitogen-activated protein kinase (MAPK) pathways via JNK
and p38 which results in regulation of gene transcription
(Chen and Cobb, 2001; Chen et al., 2003). Additionally,
FMRP regulates Taok2 mRNA (Darnell et al., 2011), the
protein underlying FXS, providing an additional link to its
involvement in neurodevelopmental disorders. A recent study
in vivo has shown that knockdown or overexpression of
Taok2 showed opposing effects on basal dendrite development
in the neocortex (de Anda et al., 2012). Specifically, primary
dendrite numbers were reduced after Taok2 knockdown,
while the number of primary dendrite numbers was
increased with over-expression. Additionally, this effect was
preferential for the basal dendrites on basal dendrites, as
Taok2 knockdown produced no changes in apical dendrite
morphology on the same neurons. The role of Taok2 on dendrite
growth was dependent on interactions with Neuropilin 1, a
membrane receptor that binds Semaphorin 3A, which leads
to initiation of the JNK cascade (de Anda et al., 2012).
Interestingly, this finding shows that Taok2 expression
selectively affects specific dendritic areas, i.e., the basal
dendrites, providing evidence that specialized molecular
pathways are used for the formation of different dendritic
areas.

Reelin, as discussed previously for its role in neuron
migration, seems to also play a significant function in dendrite
arborization in hippocampal and cortical neurons (Niu et al.,
2004; Jossin and Goffinet, 2007; MacLaurin et al., 2007; Chameau
et al., 2009; Hoe et al., 2009; Matsuki et al., 2010). Reelin, and
its downstream signaling pathway through Vldrl/Apoer2-Dab1,
serves to promote dendrite development. Reeler mice contain
a loss-of-function mutation in RELN, and display decreased
dendrite branching in the hippocampus (Niu et al., 2004).
Additionally, Reelin has also been shown to affect cortical
dendritic growth in vivo (Hoe et al., 2009) and Reelin application

to Reelin KO mouse brain slices can promote dendritic growth
(Nichols and Olson, 2010). The role of alterations in neurite
growth and branching and the associated ASD-linked genes, are
described in detail later.

ALTERATIONS IN SYNAPTIC
COMPONENTS IN ASD

Synapses are highly specialized structures required for signal
transduction and plasticity within neuronal networks, making
up the functional contact sites between neurons. A synapse
is composed of the axon terminal, the presynapse, a synaptic
cleft which contains adhesion proteins and the extracellular
matrix, and the postsynaptic density with receptors on a
target neuron’s dendrites. The presynapse containsmitochondria
and is characterized by a pool of synaptic vesicles filled
with neurotransmitters. Action potentials arriving at the axon
terminal mediate calcium influx, which causes the vesicles
to fuse with specialized regions of the plasma membrane
called active zones to release their content into the synaptic
cleft. A precise coupling between the electrical stimulus
(action potential) and release of neurotransmitter is crucial
for proper signal transmission to the postsynaptic neuron.
The postsynapse is characterized by the presence of receptors
that bind neurotransmitters released from the presynapse,
which initiates signaling cascades that ultimately propagate the
electrical signal in postsynaptic neuron. Receptors are clustered
in a region called the postsynaptic density (PSD) in the excitatory
synapse.

Synapses are classified as excitatory and inhibitory, depending
on whether they use glutamate or γ-aminobutyric acid (GABA)
as their main neurotransmitter, respectively. Additionally, the
formation and structure of excitatory and inhibitory synapses
is uniquely different. Whereas excitatory synapses made on
dendritic spines, inhibitory synapses are formed directly on
the dendritic shaft. Additionally, both excitatory and inhibitory
synapses have distinct proteomic profiles to specialize each
synapse with the appropriate receptors and signaling molecules.
Synaptic dysfunctions, whether they arise from functional
mutations in pre- or postsynaptic proteins, are a common
underlying pathology in ASD and are discussed in detail
below.

Presynaptic Proteins Linked to ASD
Neurexins (NRXN) are synaptic adhesion proteins that localize to
the membrane of the presynapse and bind Neuroligins (NLGNs),
which are localized on the postsynaptic membrane. There are
three genes within the NRXN family (NRXN1, NRXN2, and
NRXN3) with multiple mutations or copy number variations
having been identified in NRXN family members in ASD
diagnoses (Feng et al., 2006; AutismGenome Project Consortium
et al., 2007; Bremer et al., 2011; Yangngam et al., 2014). NRXN1
mutations have also been identified in multiple neuropsychiatric
disorders, including Tourette syndrome, schizophrenia, ADHD
and bipolar disorder (Stone et al., 2008; Guilmatre et al., 2009;
Zhang et al., 2009; Sundaram et al., 2010; Lionel et al., 2011).
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NRXN1α KO mice exhibit reduced excitatory synaptic
strength, with a decrease in the input–output relationship
of evoked postsynaptic potentials and miniature excitatory
postsynaptic current (mEPSC) frequency (Etherton et al.,
2009). In behavioral tests, NRXN1 KO mice display an
increase in grooming behavior, however no change in
spatial learning or social behavior (Etherton et al., 2009). In
α-NRXN triple KO mice, where NRXN1α/2α/3α were deleted,
synapse formation was normal but α-Nrxns were required
to couple Ca2+ channels to vesicle exocytosis (Missler et al.,
2003).

The synapsins (SYN) are a family of presynaptic proteins
involved in vesicle-mediated neurotransmitter release and
neurite outgrowth (Rosahl et al., 1995). In mammals, the
synapsin family of proteins contains three members (synapsin
1, synapsin 2, and synapsin 3). Primary neuron cultures from
SYN1/2/3 triple KO mice display severely altered synaptic
vesicle localization and a significant decrease in the number
of synaptic vesicles (Fornasiero et al., 2012). Additionally,
mutations in SYN1 (A51G, A550T, Q555X and T567A)
have been identified in a family with epilepsy and autistic
phenotypes, suggesting its link as a causative factor for ASD
(Fassio et al., 2011). Additionally, the nonsense mutation,
Q555X, reduces CaMKII and MAPK/ERK activity, which
regulates synaptic vesicle trafficking and neurite growth, and
the A550T and T567A missense mutations have been shown
to impair synapsin localization to the presynapse (Fassio et al.,
2011).

In synapsin KO mice, studies have shown behavioral deficits
in social novelty and avoidance behavior in social approach
as well as epileptic activity, all of which are typical in
ASD (Greco et al., 2013; Ketzef and Gitler, 2014). SYN1/3
double KO mice show an impairment in social transmission
of food preference, while SYN1/2 double KO mice have a
decrease in environmental interest. Additionally, SYN2 KO
mice have impairments in social recognition tests and display
an increase in repetitive self grooming (Greco et al., 2013).
These findings suggest that synapsins play an important role
in the underlying pathology leading to behavioral phenotypes
typical in ASD.

Postsynaptic Proteins Linked to ASD
Neuroligins (NLGN) are cell adhesion proteins that localize
to the postsynaptic membrane and play an integral function
in synapse formation via binding their presynaptic partners,
NRXNs. In humans NLGN family is composed of five genes
(NLGN1/2/3/4/4Y). The large extracellular domain of Nlgns
have a high sequence similarity to acetylcholinesterase and
is required to bind to β-Nrxn during synapse formation
(Dean and Dresbach, 2006). Nlgns-1, -3 and -4 are localized
to excitatory synapses, while Nlgn2 is found at inhibitory
synapses (Missler et al., 2003) Previous studies have shown
that overexpression of Nlgn1 can increase excitatory
synaptic strength and the synaptic NMDAR/AMPAR
ratio both in vitro and in vivo (Schnell et al., 2012).
Conversely, Nlgn2 overexpression increases inhibitory
synaptic strength. Additionally, Nlgn1 expression can promote

synapse maturity but does not induce synapse formation of
glutamatergic synapses (Chubykin et al., 2007; Schnell et al.,
2012).

The Shank family are scaffolding proteins localized to
the postsynapse and interact with NMDA receptors as well
as Nlgn-Nrxn complexes. The Shank protein can interact
with multiple important postsynaptic proteins including the
actin cytoskeleton via ankyrin repeats, Ca2+ signaling via
calpain/calmodulin and the glutamate receptor-interacting
protein (GRIP) through its SH3 domain (Lim et al.,
1999; Yoo et al., 2014). SHANK1, SHANK2 and SHANK3
comprise the Shank family of proteins and they are found
throughout the brain, however each isoform varies in its
distribution.

SHANK3 was the first gene in the Shank family of synaptic
scaffolding proteins to be linked to ASD. During spine
formation, Shank3 is an important scaffolding protein and
loss of Shank3 in vitro results in a decrease in both the
length and density of spines. Conversely, over-expression of
Shank3 results in more mature and larger spines (Betancur
et al., 2009). SHANK3 resides on chromosome 22q13.3, and
ASD-linked region with deletions linked to Phelan-McDermid
syndrome. This syndrome is characterized by developmental
delay, severely impaired language, ASD and ID (Phelan,
2008).

Transgenic mice harboring various SHANK mutations or
deletions have elucidated Shank’s in synapse formation, function
and its role in ASD. Transgenic mice with genetic KO of the
longest isoform of SHANK3, have been shown to recapitulate
the phenotypes observed from SHANK3 mutations in humans.
Although social impairments in thesemice have varied, they have
all shown increased repetitive grooming, a behavior typical in
ASD mouse models (Bozdagi et al., 2010; Peça et al., 2011; Wang
et al., 2011; Yang et al., 2012).

Postsynaptic density protein-95 (PSD-95, DLG4) is an
important postsynaptic scaffolding protein that localizes
to excitatory synapses. PSD-95 is composed of three PDZ
domains that target it to the postsynapse, an SH3 domain,
and a guanylate kinase domain on its C-terminal. Nlgn,
NMDARs and potassium channels all interact with the
PDZ domains on PSD-95. PSD-95 localizes to spine heads
in excitatory synapses and has been shown to promote
synapse stabilization. The E3 ubiquitin ligase, murine double
minute-2 (Mdm2) ubiquitinates PSD-95 and subsequently
binds with protocadherin-10 (Pcdh10), sending it to the
proteasome to be degraded. Pcdh10 is an ASD-linked gene
(Morrow et al., 2008) and its expression is regulated via
the interaction of myocyte enhancer factor-2 (MEF2) and
FMRP (Tsai N. P. et al., 2012). Additionally, in FMRP KO
neurons, dysregulated Mdm2 prevents MEF2-induced PSD-95
ubiquitination and synapse elimination (Tsai N. P. et al.,
2012), providing evidence for altered activity-dependent
synapse elimination in an ASD model. PSD-95 KO mice
(DLG4 KO) show multiple behavioral and molecular
abnormalities that are linked to ASD pathology. DLG4
KO mice display impaired communication and social
interactions, decreased motor coordination, as well as
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increased anxiety and repetitive behaviors. Additionally,
DLG4 KO mice display defects in dendritic spine morphology
in the amygdala and aberrant expression of multiple
synapse-related genes in the forebrain (Feyder et al.,
2010).

Gephyrin is a key postsynaptic scaffolding protein in
inhibitory synapses. Gephyrin’s three major domains include
a N-terminal G-domain, a C-terminal E-domain, with a
large linker region connecting the two domains. Gephyrin
interacts with glycine receptors with high affinity and the
α and β subunits of the GABAA receptor. Nlgn2 binds to
gephyrin via a cytoplasmic motif region and activates collybistin,
and the Nlgn2/gephyrin/collybistin complex is necessary for
clustering of inhibitory receptors (Poulopoulos et al., 2009). In
gephyrin KO mice, there is a decrease in GABAA and glycine
receptor clustering, whereas glutamate receptor localization
remains normal (Kneussel et al., 1999; Grosskreutz et al.,
2003).

Rare exonic deletions within the gephyrin (GPHN) gene
have been reported in subsets of patients with ASD (Lionel
et al., 2013). A de novo 273 kb deletion in GPHN displayed
developmental delay, cyclical seizures, repetitive behaviors
increased anxiety and obsessive compulsive disorders, in one
family (Lionel et al., 2013).

Adhesion Complexes Involved in ASD
CNTNAP2 is a member of the Nrxn superfamily and plays
an important role regulating the clustering of potassium
channels and neuron-glia interactions. CNTNAP2 was first
linked to ASD Amish children presenting with developmental
disorders, seizures, and impaired language were found to
have a homozygous mutation in CNTNAP2 (Strauss et al.,
2006). After genetic deletion of CNTNAP2, mice show
significantly decreased numbers of dendritic spines as well as
a decrease in the GluA1 subunit of AMPARs. Additionally,
an aggregation of GluA1 was observed in the cytoplasm,
suggesting that synaptic deficits may be in part due to a
trafficking problem (Varea et al., 2015). CNTNAP2 KO mice
show common ASD behavioral phenotypes, including repetitive
movements as well as social deficits (Peñagarikano et al.,
2011).

Cadherins (CDH) are transmembrane proteins that function
in cell-cell adhesion and play roles in neuron migration,
dendritic growth, spinemorphology, synaptogenesis and synapse
remodeling (Tan et al., 2010; Redies et al., 2012; Bian et al.,
2015; Egusa et al., 2016; Gilbert et al., 2016). In genome-wide
association studies, common variants inCDH9 andCDH10 genes
on chromosome 5p14.1 have been identified to link with ASD
(Wang et al., 2009). Additionally, deletions within 16q23 in
CDH13 have also been identified in ASD patients (Sanders et al.,
2011). Neural cadherin (N-cadherin) is a calcium dependent
cell-cell adhesion glycoprotein that plays important roles in
neurodevelopment (Garcia-Castro et al., 2000). δ-catenin, a
neuron specific member of the p120 family of catenins, is a
known interactor of the cytoplasmic juxtamembrane region of
N-cadherin (Lu et al., 1999). The δ-catenin gene, CTNND2, is
candidate gene in ASD and functions within a protein network

that has a major role dendritic and spine growth and dynamics
(Bian et al., 2015; Turner et al., 2015; Yuan et al., 2015).
Over-expression of δ-catenin induces dendritic and spine growth
in primary neuron cultures (Martinez et al., 2003; Arikkath
et al., 2009), while knockdown of δ-catenin serves to impair
dendritic growth (Elia et al., 2006; Arikkath et al., 2008). Figure 3
depicts key synaptic proteins and signaling pathways linked
to ASD.

DYSREGULATION OF SYNAPTIC
PLASTICITY AND NEURONAL ACTIVITY IN
ASD

Based on the different ASD-linked pathways discussed
previously, it can be inferred that changes in synaptic plasticity
via altered synaptic strength and/or number, may be an
underlying pathology in ASD patients and mouse models.
Interestingly, many ASD-linked mutation results in altered
gene transcription and protein synthesis of synaptic related
transcripts, effects which can also be observed with changes
in neuronal activity (Kelleher and Bear, 2008; Akins et al.,
2009; Darnell et al., 2011; Qiu et al., 2012; Gilbert and Man,
2014).

Initial findings from FMR1 mutant mice, the mouse model
of FXS, did not show impairments in LTP using a standard
HFS paradigm (Godfraind et al., 1996; Li et al., 2002). However,
using a low threshold stimulation protocol, LTP induction was
reduced in multiple brain areas, including the hippocampus and
somatosensory cortex (Larson et al., 2005; Zhao et al., 2005;
Lauterborn et al., 2007). Additionally, mGluR-LTP was impaired
in the basolateral amygdala and visual cortex (Wilson and Cox,
2007; Suvrathan et al., 2010). These findings provide evidence
that different brain regions or synapse-specific deficits occur
in mice with loss of FMRP. The most prominent change in
synaptic plasticity has been observed with enhancedmGluR-LTD
the cerebellum and in CA1 of the hippocampus (Huber et al.,
2002; Koekkoek et al., 2005). An enhancement of LTD in the
CA1 region has led to the theory that synaptic loss of FMRP
produces increased signaling through mGluRs (Huber et al.,
2002; Bear et al., 2004; Osterweil et al., 2010). Additionally,
genetic reduction, or mGluR5 inhibition, rescues behavioral
deficits in FMR1 mice (Dolen et al., 2007; Michalon et al.,
2012). These rescue experiments therefore suggest the ability
to reverse some of the impairments in FXS patients. The
different impairments in synaptic function found across various
brain regions in FMR1 mice provide evidence of a correlation
between impaired synaptic plasticity and behavioral deficits in
ASD. These studies also provide evidence that the FMR1 KO
mouse may be a good model to explore the pathophysiology of
ASD and investigate possible treatment strategies (Bhakar et al.,
2012).

Synaptic plasticity has been studied in great detail in the
UBE3A maternally deficient mice, the Angelman syndrome
mouse model. In the CA1, HFS-LTP is reduced in transgenic
mice and the reduction in CA1 LTP could be rescued
with stronger stimulation protocols (Weeber et al., 2003).
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FIGURE 3 | Synaptic proteins and signaling pathways linked to autism spectrum disorder (ASD). ASD-linked synaptic proteins and signaling pathways that relate to
synaptogeneis and synaptic function. Stars mark ASD-linked proteins discussed in this review article. Abbreviations: AMPAR, AMPA receptor; NMDAR, NMDA
receptor; mGluR, metabotropic glutamate receptor; PSD-95, postsynaptic scaffolding protein 95 kDa; CNTNAP2, contactin-associated protein-like 2 gene; PI3K,
phosphoinositide-3 kinase; Ras, RhoGTPase; GTP, Guanosine-5′-triphosphate; NF1, Neurofibromatosis type 1; PTEN, phosphatase and tensin homolog; Akt,
serine/threonine specific kinase; TSC, tuberous sclerosis complex; mTOR, mammalian target of rapamycin; Raf, Rapidly accelerated fibrosarcoma serine threnonine
kinase, MEK, Mitogen-activated protein kinase kinase; ERK, extracellular signal–regulated kinase; 40S, ribosomal subunit; FMRP, fragile-X mental retardation protein;
CREB, cAMP response element-binding protein; CBP, CREB binding protein; MeCP2, methyl CpG binding protein 2; KIDLIA, KIAA2022 gene with intellectual
disability (ID) and language impairment in autism; P, phosphate group.

These findings indicate that Ube3a’s role in synaptic plasticity
may be as a modulator of LTP, not necessarily required
for LTP induction. In the same study, a reduction in
calmodulin-dependent protein kinase II (CaMKII) activity
was observed in transgenic mice, and genetic reduction of
CaMKII’s inhibitory autophosphorylation rescued deficits in
LTP and learning and memory tasks in transgenic animals
(van Woerden et al., 2007). These findings provide evidence
that altered CaMKII activity mediates the impairment in
synaptic plasticity in UBE3A deficient mice; however, it remains
to be elucidated how loss of UBE3A alters the activity of
CaMKII.

Both of the TSC1 or TSC2 KO mice are embryonic lethal;
however, mice harboring TSC1 or TSC2 heterozygous
mutations display synaptic dysfunction and cognitive
impairments (Kobayashi et al., 2001; von der Brelie
et al., 2006; Ehninger et al., 2008). In TSC2 heterozygous
rats, LFS-LTD was decreased and L-LTP was enhanced

in the CA1 of the hippocampus; however, E-LTP was
unaffected (von der Brelie et al., 2006; Ehninger et al.,
2008), suggesting changes in protein synthesis pathways
necessary for L-LTP expression. Additionally, in TSC2
heterozygous mice, mGluR-LTD was decreased but LFS-LTD
was unchanged (Auerbach et al., 2011). A reduction in
mGluR-LTD in TSC2 heterozygous animals opposes what
is observed in the FMR1 KO mice; however, mGluR-LTD
in both animals don’t show sensitivity to protein synthesis
inhibitors (Auerbach et al., 2011). An additional study
using mice with a specific deletion of TSC1 in cerebellar
Purkinje cells displayed deficits in social interactions,
an increase repetitive behavior as wells as defects in
ultrasonic vocalizations. These animals however were
not investigated for changes in synaptic plasticity in the
cerebellum (Tsai P. T. et al., 2012). These findings suggest
that impaired synaptic plasticity is a major pathology in TSC
mouse models of autism, underlying the observed deficits in
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social interaction in both in TSC1 and TSC2 heterozygous
animals.

In MECP2 KO mice, reductions in LTP and LFS-LTD in
CA1 of the hippocampus have been reported. It’s interesting
to note that younger mice (∼3–5 weeks of age) show no
impairments in synaptic plasticity, indicating that impaired
synaptic plasticity correlates with the delayed deficits observed
in human RTT patients (Chen et al., 2001; Asaka et al., 2006). A
mouse model containing a truncation of MeCP2 (MeCP2308/Y)
showed a reduction in LTP as well as paired-pulse stimulation,
but no changes in mGLuR-LTD (Shahbazian et al., 2002;
Weng et al., 2011). Interestingly, another study has shown that
impaired LTP in CA1 of the hippocampus could be rescued by
genetically reintroducing MeCP2 (Guy et al., 2007; Weng et al.,
2011).

Shank proteins regulate levels and modulate the signaling of
both metabotropic and ionotropic glutamate receptors at the
synapse, and synaptic plasticity has been studied in multiple
Shank3 mouse models (Tu et al., 1999; Uchino et al., 2006).
Investigation of mEPSCs, paired pulse ratio (PPF and PPD),
input/output curves and population spikes have indicated
different abnormalities in synaptic transmission in hippocampal
CA1 synapses of mice with different Shank3 mutations (Wang
et al., 2011). Additionally, hippocampal LTP is reduced
in the CA1 of the hippocampus in subsets of mice with
Shank3 truncations, as well as LFS- LTD and mGLuR-LTD
(Bozdagi et al., 2010; Bangash et al., 2011; Wang et al., 2011).

It has been hypothesized that disruptions in neuronal
circuits involved with language and social behavior in
subtypes of autism may be caused by unbalanced high
levels of excitation, or disproportionately weak inhibition
(Rubenstein and Merzenich, 2003; Gao and Penzes, 2015). With
a more excitable cortex, the brain would have wide-ranging
abnormalities in perception, memory, cognition and motor
control, and would be highly susceptible to epilepsy (Rubenstein
and Merzenich, 2003). In support of this theory, a decrease
in glutamate decarboxylase 67 (GAD67) mRNA in autistic
cerebellar Purkinje cells has been identified in human
autism samples (Yip et al., 2007). Additionally, another
study has shown a decrease in GABAergic inhibition
in autism patient samples (Hussman, 2001), indicating
that decreased GABAergic inhibition may disrupt the
excitation/inhibition balance within neuronal networks in
autism.

As a novel form of synaptic regulation opposing the
Hebbian type plasticity, homeostatic synaptic plasticity (HSP)
is a negative feedback response that serves to compensate
for changes in network activity (Turrigiano et al., 1998; Hou
et al., 2008, 2011, 2015; Yu and Goda, 2009; Pozo and
Goda, 2010; Wang et al., 2012; Gilbert et al., 2016). In
response to global decreases or increases in network activity
from a homeostatic set-point, synaptic strengths are scaled
up or down, respectively (Turrigiano et al., 1998). HSP may
be important for maintaining network activity homeostasis
and avoiding potential epileptogenic states and sleep may
be necessary for synaptic homeostasis (Tononi and Cirelli,
2003; Kuhn et al., 2016). The studies in Drosophila for

example, have shown that the size and number of synapses
decrease after sleep and increase within a few hours of
waking (Gilestro et al., 2009). Interestingly, Nlgns regulate
levels of glutamatergic and GABAergic currents after sleep
deprivation, indicating they play an important role in this
sleep-dependent HSP (Huber et al., 2004; Gilestro et al.,
2009; El Helou et al., 2013) and Nlgn defects could result
in disturbances in sleep and circadian rhythms, a common
disorder found in ASD patients (Bourgeron, 2007). FMRP,
the RNA-binding protein involved with regulating dendritic
protein translation, has also been shown to be required for
increases in synaptic strength after neuronal activity blockade
or application of retinoic acid in the mouse hippocampus,
indicating that some symptoms of FXS may be due to
impaired HSP (Soden and Chen, 2010). Release of brain-derived
neurotrophic factor (BDNF) from postsynaptic neurons has
previously been indentified to be required for a retrograde
homeostatic up-regulation of presynaptic function. Increased
BDNF levels in ASD patient blood samples has been observed as
well as higher plasma levels of serotonin and N-acetylserotonin
(NAS), a potent agonist of the BDNF receptor tyrosine
receptor kinase B (TrkB; Jang et al., 2010; Halepoto et al.,
2014; Kasarpalkar et al., 2014; Pagan et al., 2014). Excess
levels of NAS could therefore increase TrkB-induced PI3K
signaling, resulting in increased protein translation, similar to
findings observed with mutations in components of the mTOR
pathway.

FINAL CONCLUSIONS

ASD is diagnosed at the behavioral level with the presentation
of its core phenotypes of impaired social interactions, restrictive
interests and repetitive behaviors. Although the etiological
factors of ASD are highly heterogeneous, recent research
has strongly pointed to common cellular events that are
impaired in ASD, including neurogenesis, morphogenesis,
synapse maturation and synaptic plasticity. In this regard, loss-,
or gain-, of-function mutations in single genes that are causative
for ASD have given researchers unique opportunities to make
important mechanistic insights. A common theme emerging
within the field is that in the developing brain, alterations
in dendritic growth, synapse formation and synaptic function
result in neuronal network dysfunction, ultimately leading to
complex social and cognitive dysfunction. Further elucidation
into these pathways, as well as advancements in gene therapies
and targeted drugs to modulate these processes, could provide
exciting and promising new therapies for the treatment of
ASDs.
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