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Spin dynamics of the block orbital-selective Mott
phase
J. Herbrych1,2, N. Kaushal1,2, A. Nocera1,3, G. Alvarez2,3, A. Moreo1,2 & E. Dagotto1,2

Iron-based superconductors display a variety of magnetic phases originating in the compe-

tition between electronic, orbital, and spin degrees of freedom. Previous theoretical investi-

gations of the multi-orbital Hubbard model in one-dimension revealed the existence of an

orbital-selective Mott phase (OSMP) with block spin order. Recent inelastic neutron scat-

tering (INS) experiments on the BaFe2Se3 ladder compound confirmed the relevance of the

block-OSMP. Moreover, the powder INS spectrum revealed an unexpected structure, con-

taining both low-energy acoustic and high-energy optical modes. Here we present the the-

oretical prediction for the dynamical spin structure factor within a block-OSMP regime using

the density-matrix renormalization-group method. In agreement with experiments, we find

two dominant features: low-energy dispersive and high-energy dispersionless modes. We

argue that the former represents the spin-wave-like dynamics of the block ferromagnetic

islands, while the latter is attributed to a novel type of local on-site spin excitations controlled

by the Hund coupling.
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Inelastic neutron scattering (INS) measurements are crucial for
the study of quantum magnetism in condensed matter physics.
This powerful experimental technique provides detailed

information of momentum and energy resolved spin excitations.
The importance of INS studies is best illustrated in the case of
high critical temperature superconductors. Shortly after the dis-
covery of the copper-oxide compounds it became evident that the
standard BCS theory of the electron–phonon coupling could not
explain the experimental findings. Simultaneously, INS results
showed that superconductivity appears in close proximity to the
antiferromagnetic (AFM) ordering of S= 1/2 Cu2+ moments
providing robust evidence that the new pairing mechanism is
based on spin fluctuations1–4.

The discovery of iron-based superconductors (FeSC) added an
extra complication to this “simple” picture. Although the phase
diagrams of Cu-based and Fe-based materials are qualitatively
similar5, there are important conceptual differences. The most
significant are in the minimal models that describe the
materials6,7. While cuprates have a single Fermi surface (FS), the
iron-based compounds have a complicated FS with electron and
hole pockets originating in the five 3d orbitals of iron. As a
consequence, the FeSC have to be described by means of multi-
orbital Hubbard models, involving not only a standard Hubbard
U repulsion but also a Hund coupling. The competition between
electronic, orbital, and spin degrees of freedom can lead to many
exotic magnetic phases8–13.

Past experience in cuprates showed that the analysis of lower
dimensional systems, such as chains and ladders, can provide
useful information to better contrast theory with experiments14.
One reason is that theoretical many-body calculations based on
model Hamiltonians can be accurately performed in one-
dimension, particularly numerically. For this reason, it was
exciting when a one-dimensional family of compounds contain-
ing two-leg ladders was unveiled also in the iron-superconductors
context. Specifically, we refer to the low-dimensional FeSC in the
123 family, AFe2X3, where A are alkali metals A= K, Ba, Rb, Cs,
and X are chalcogenides X= S, Se. These compounds are build of
double chains (i.e., they are ladders) of edge sharing FeX4 tetra-
hedra15. Recently, a superconducting state was identified under
pressure for BaFe2S316,17 and BaFe2Se318,19. The pressure-
dependent phase diagram of these materials resembles that
of copper-oxide ladders, e.g., the telephone number compound
Sr14−xCaxCu24O41

20. Similar to their copper-oxide counterparts,
the iron-123 family is insulating at ambient pressure. This
behavior is unusual since, unlike the cuprates, the parent com-
pounds of FeSC are typically bad metals. In addition, it was
argued that orbital-selective Mott physics (OSMP)21 is consistent
with results for BaFe2Se322–25. Within such a phase, itinerant and
localized conduction electrons coexist.

It should be remarked that INS experiments on 123 materials
have been performed up to now only on powder samples and, as a
consequence, detailed data of the momentum dependence of the
spin excitations over the whole Brillouin zone is not yet available.
Nevertheless, the static (π, 0) stripe AFM order—with ferro-
magnetic rungs and antiferromagnetic legs—was identified for
BaFe2S326, RbFe2Se327, CsFe2Se328,29, and also for KFe2S322.
However, in the special case of BaFe2Se3 remarkably an exotic
block magnetism was found19,22,25,30,31 involving anti-
ferromagnetically coupled ferromagnetic islands made of 2 × 2
iron clusters. This unusual magnetic state was also observed in
the vicinity of superconductivity32–34 in two-dimensional (2D)
materials with
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ordered iron vacancies, such as

Rb0.89Fe1.58Se235 and K0.8Fe1.6Se236–38. In addition, for BaF-
e2Se325, BaFe2S326, and RbFe2Se327 the INS revealed the existence
of low-energy acoustic and high-energy optical modes separated
by an energy gap. It is important to remark that the generic

features of the INS spectra of the aforementioned compounds are
similar, but the physical origin of the acoustic modes can differ
significantly—these modes reflect on the long-distance properties
of the magnetic order in the system. Moreover, the origin and
characteristics of the optical modes, that are induced by short-
distance properties, have not been clarified so far.

In this work, we will address the spin dynamical properties of
the exotic block magnetic state found in BaFe2Se3. The static
(time independent) properties of this phase were previously
qualitatively studied in ref.23 via a three-orbital Hubbard model
in one-dimension (1D) that unveiled an OSMP regime. Here, we
will use the same Hamiltonian to investigate the momentum and
energy resolved spin dynamics. To test the general features of our
findings, we present also results obtained in a quasi-1D ladder
geometry. In agreement with experimental findings, we have
observed two distinct modes of spin excitations: a low-energy
dispersive mode and high-energy dispersionless optical modes.
The low-energy acoustic mode reveals the frustrated nature of the
block magnetism which can be described by a spin J1–J2 Hamil-
tonian. On the other hand, we argue that the optical mode is
controlled by local orbital physics and it cannot be properly
captured by a Heisenberg-like model. The main features of our
analysis are simple and generic and should characterize any
multi-orbital model as long as its ground state is in a magnetic
block phase.

Results
Model and observables. We will focus on a specific three-orbital
Hubbard model on a one-dimensional lattice, but our conclusions
are generic for a broad group of models and materials in the
OSMP magnetic block-phase regime. As mentioned before, the
model chosen was previously studied with regards to its time-
independent properties, and it is known that it displays an OSMP
regime in the ground state23. The kinetic part of the Hamiltonian,
Hkin, is defined as:

Hkin ¼ �
X
‘;σ;γ;γ′

tγγ′ cy‘;γ;σc‘þ1;γ′;σ þH:c:
� �

þ
X
‘;γ;σ

Δγn‘;γ;σ ; ð1Þ

where cy‘;γ;σ creates an electron with spin σ= {↑, ↓} at orbital γ=
{0, 1, 2} and site ‘ ¼ f1; ¼ ; Lg of a 1D chain. n‘;γ;σ ¼ cy‘;γ;σc‘;σ;γ
is the local ð‘; γÞ electron density with spin σ. Note that another
common labeling of these orbitals could be based on the cano-
nical t2g manifold, i.e., {yz, xz, xy}, respectively. tγγ′ denotes a
symmetric hopping amplitude matrix defined in the orbital space
γ: t00= t11=−0.5, t22=−0.15, t02= t12= 0.1, and t01= 0, all in
eV units (Fig. 1a displays a schematic representation of the
Hamiltonian). The crystal-field splitting is set to Δ0=−01, Δ1=
0, and Δ2= 0.8, also in eV units. The total kinetic-energy band-
width is W= 2.45 eV. These phenomenological values of para-
meters were chosen before23 to reproduce qualitatively the band
structure properties of higher dimensional selenides at an elec-
tronic density �n ¼ 4=3 per orbital, namely an electron-like pocket
at k= 0 and hole-like pockets at k= ±π (see Fig. 1b, and also
ref.39 and references therein). It should be pointed out that the
existence of an OSMP highlights the striking orbital sensitivity on
electron correlations in multi-orbital Hubbard models, and its
presence is not limited to our use of 1D geometries nor to our
choice of tγγ′ hoppings. For example, the OSMP was proven to be
relevant40 for 2D alkaline iron selenides as well, with and withoutffiffiffi
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ordered vacancies. We wish to emphasize that our

predictions primarily depend on the existence of an OSMP
magnetic block-phase state, rather than on the details of the
Hamiltonian that leads to its stabilization. In this context, we
believe that our results are universal for iron-based super-
conductors. To support this claim, we will present calculations for
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several models showing that all the many reported results lead
essentially to the same qualitative conclusions.

The interaction portion of the Hamiltonian Hint is given by

Hint ¼ U
P
‘;γ

n‘;γ;"n‘;γ;# þ ðU′� JH=2Þ
P
‘;γ<γ′

n‘;γn‘;γ′

�2JH
P
‘;γ<γ′

S‘;γS‘;γ′ þ JH
P
‘;γ<γ′

Pþ
‘;γP‘;γ′ þH:c:

� �
;

ð2Þ

where n‘;γ ¼
P

σ n‘;γ;σ , the local spin ð‘; γÞ is S‘;γ =

ð1=2ÞPa;b c
y
‘;γ;aσ

abc‘;γ;b (with σab as a Pauli spin matrices), and
P‘;γ = c‘;";γc‘;#;γ is the pair-hopping. We will consider an SU(2)
symmetric system, i.e., U′=U− 2JH, where U stands for the on-
site same-orbital repulsive Hubbard interaction. Finally, we set
the Hund coupling to JH=U/4, a value widely used before and
considered to be realistic for Fe-based materials41,42. We refer the
interested reader to refs.23,43,44 for details of the JH–U phase
diagram of the above Hamiltonian. Here, if not stated differently,
we will use U/W= 0.8 where previous studies found23 a block-
OSMP, i.e., antiferromagnetically (AFM) coupled ferromagnetic
(FM) blocks (magnetic unit cells), ↑↑↓↓↑↑↓↓, in the localized
orbital γ= 2 (see Fig. 1c). Note that the block order is usually
studied in the context of Heisenberg-like spin Hamiltonians (such
as dimerized25,35 or J1–J2 models45). Here, the block phase is a
consequence of nontrivial electronic correlations within the
OSMP phase. Since the latter is a feature of multi-orbital systems
that cannot be analyzed using purely spin systems, we believe that
our setup is more suitable for the study of iron-based materials.

In this work, we will investigate the zero-temperature
frequency ω-dependent spin structure factor (SSF) S(q, ω),
defined as the Fourier transform of the real-space total (on-site,
S‘ ¼

P
γ S‘;γ) spin correlation functions (see Methods). Further-

more, we will study the contributions from the individual orbitals
to the total SSF, i.e., Sγγ′ðq;ωÞ. γ= γ′ denotes the spin fluctuations
within each of the orbitals, while γ ≠ γ′ are spin fluctuations
between different orbitals. As a consequence Sðq;ωÞ=P

γ Sγγðq;ωÞ þ
P

γ≠γ′ Sγγ′ðq;ωÞ. From the experimental perspec-
tive, only the total SSF has a meaning46 because neutrons couple
to electrons in all orbitals in neutron scattering experiments.

However, the theoretical investigations of orbital-resolved SSF
can provide further insight into the OSMP physics.

The Hamiltonians are diagonalized via the DMRG method,
where the dynamical correlation functions are obtained with the
help of dynamical DMRG techniques (see Methods and
Supplementary Note 1 for details of the numerical simulations).

Dynamical spin structure factor. In Fig. 2, we present one of the
main results of our effort: the frequency-momentum dependence
of the dynamical SSF in the block-OSMP phase (i.e., at U/W=
0.8). Figure 2a depicts the total SSF, S(q, ω), while Fig. 2b shows
only the contribution from the localized orbital, S22(q, ω). Several
conclusions can be obtained directly from the presented results:
(i) A robust contribution to the total SSF arises from the localized
orbital. Moreover, all the qualitative features of S(q, ω) are already
present in S22(q, ω). In fact, S(q, ω) and S22(q, ω) become almost
indistinguishable if normalized by the local magnetic moment
squared (i.e., S2= 3/4 for the S= 1/2 localized electron, and S2=
2 for the total moment23). (ii) The energy range for the spin
dynamics is much smaller when compared with the energy
bandwidth W= 2.45 eV of the Hamiltonian. (iii) Clearly the
dynamical SSF has two distinct modes: a low-frequency, ω≲ ωc

= 0.08 eV, dispersive (acoustic) band and a high-frequency, ω ~
0.11 eV, dispersionless (optical) band. Similar results were pre-
viously reported experimentally in INS investigations of BaF-
e2Se325 (with 2 × 2 FM blocks), BaFe2S326, and RbFe2Se327 (with
2 × 1 FM blocks). The different types of blocks in the INS
investigations, and the similarity of results between neutrons and
our calculations, suggest that our results apply to a broad variety
of iron chalcogenides. Moreover, the INS measurements where
performed on powder samples and, as a consequence, no detailed
analysis of the spin excitations over all crystal momenta q (over
the whole Brillouin zone) have been reported. In this respect, our
results define clear theoretical predictions on what future single-
crystal experiments should display.

In Fig. 3a, we present the ω dependence of the total SSF at
special values of the momenta q. It is evident that the acoustic
mode is strongly momentum dependent in the range 0 < q/π≲ 1/
2, while it reduces drastically its intensity for q/π > 1/2. To
understand these results, we can reanalyze the SSF spectrum

Localized electrons

Single-occupied site

Block-OSMP

0

1
ba

c

0 Band structure

n = 4/3 Fermi level

E
ne

rg
y 

�(
k

) 
[e

V
]

–1

Wavevector k
π/2–π/2–π π

Double-occupied site

Itinerant
electrons

1D 3-orbital Hubbard model

Hopping
matrix

– 1

t��′

Kinetic part

Δ2

Δ1

Δ0

t22
t12

t11

t00

t02

� = 2

� = 1

� = 0
– 1 + 1

Interaction part

On-site
interaction

U

U

U

U

–2JH

–2JH

JH

JH

U ′ – JH/2

U ′ – JH/2
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using two-sites as a rigid block, namely creating an effective
magnetic unit cell of FM blocks with momentum ~q. The acoustic
mode as a function of ~q then is located between 0< ~q < π,
resembling a gapless continuum of spin excitations. Such an
interpretation is consistent with “collective” spin waves based on
FM blocks. On the other hand, the high-energy optical
contribution is q-independent for q/π≳ 1/2, with vanishing
intensity in the q → 0 limit. As discussed later, this mode can be
associated to local (on-site) spin excitations affecting the
Coulomb potential portion of the Hamiltonian, independently
of the dimensionality of the system. The q-dependence of both
modes is also clearly visible in the static SSF obtained from the
energy integration of the dynamical SSF, i.e., SαðqÞ=ð1=πÞR dωSðq;ωÞ. In Fig. 3b, we present the acoustic (α=A)
and optical (α=O) contribution to the total (α= T) static SSF,
coming from the integration over the frequency ranges 0 < ω < ωc,
ωc < ω <∞, and 0 < ω <∞, respectively. From the dynamical SSF
spectra, it is evident that SO(q) provides the sole contribution to
the total static SSF for momentum 0.75 < q/π < 1. As a
consequence, at least within a block-OSMP state it is remarkable
that already in the static SSF one can observe the clear presence of
an optical mode, a novel result which is intrinsic of block phases
to our knowledge. In the same panel, we also present the total
static SSF independently obtained from the expectation value of
the ground state (GS), i.e., Sstat(q)= 〈GS|Sq·S−q GSj i, where Sq is
the Fourier transform of the S‘ operators for the same system size
L. The agreement between Sstat(q) and ST(q) serves as nontrivial
accuracy test of the dynamical DMRG method, since the former
can be obtained with much higher accuracy.

Orbital contribution. Before addressing the optical and acoustic
modes in more detail, we will comment on the orbital γ con-
tribution to S(q, ω). As already shown in Fig. 2, the main

contribution to the total SSF originates in the localized orbital
γ= 2. Our results (Fig. 3c) indicate that the spin fluctuations for
the itinerant electrons (orbitals γ= 0 and γ= 1) follow the
behavior of the localized orbital. As argued below, this is a con-
sequence of the Hund coupling which aligns ferromagnetically
spins at different orbitals. However, the nature of these orbitals is
metallic and magnetic moments are not well formed. As a con-
sequence, the spectral weight of the total itinerant contribution
(two orbitals) is approximately the same as the localized (one
orbital). On the other hand, the inter-orbital SSF Sγ≠γ′ have a large
contribution only to the acoustic mode, especially near the q/π=
1/2 point.

Acoustic mode. Consider now the properties of the acoustic
mode. Motivated by the results presented above, with the main
contribution to the SSF arising from the localized orbital, we
express the eigenstates in terms of the basis states of localized
orbital |·〉γ=2 (see Methods section). Since the electrons are indeed
localized with occupation nγ=2= 123 in the OSMP, in the low-
energy portion of the spectrum the basis states with empty and
double occupied orbital γ= 2 should not be present. Within such
a representation the GS of the block-OSMP phase can be iden-
tified as a superposition of ""##j iγ¼2 and ##""j iγ¼2 states, which
constitutes ~50% of the true GS. One can improve further the
qualitative description by investigating a simple toy model. Let us
consider two FM coupled S= 1/2 spins as
one S= 1 object, i.e., 1j i ¼ ""j iγ¼2, �1j i ¼ ##j iγ¼2, and 0j i=
1=

ffiffiffi
2

p "#j iγ¼2þ "#j iγ¼2

� �
. In this setup, a 4-site S= 1/2 system

reduces to two antiferromagnetically coupled S= 1 spins. The
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ground state of the latter is simply

GSj iγ¼2¼ ca 0j i 0j i � cb 1j i �1j i þ �1j i 1j ið Þ; ð3Þ

where ca ¼ cb ¼ 1=
ffiffiffi
3

p
(see Fig. 4a for a schematic representa-

tion). Note that the above state, in agreement with numerics, is a
singlet. The last two terms of Eq. (3) correspond to the “perfect”
block order, i.e., ""##j iγ¼2þ ##""j iγ¼2, while the first term depicts
the x–y component of the block order,

0j i 0j i ¼ 1
2 "#"#j iγ¼2þ #"#"j iγ¼2

�
þ "##"j iγ¼2þ #""#j iγ¼2

�
:

ð4Þ

Our L= 4 Lanczos investigation of the full Hamiltonian (1) and
(2) indicates that such a state has coefficients equal to ec 2a ’ 1=6
and ec 2b ’ 1=4, which yields now a better overlap, ~70%, with the
true GS. Finally, the first excited state—contributing to the
acoustic mode—can be identified as a triplet of the form Aj iγ¼2

=ecA ""##j iγ¼2� ##""j iγ¼2

� �
, where ec 2A ’ 4=9 (Fig. 4b). This

large overlap of Aj iγ¼2 with the full solution is also captured by
the toy model since |1〉|−1〉− |−1〉|1〉 is one of the first excita-
tions in our two-site S= 1 problem. Note that the above

description of the GSj iγ¼2 Aj iγ¼2

� �
as a spin singlet (triplet) is

not obvious from the signs of the localized orbital basis repre-
sentation. While the above states capture the essence of the
problem, the itinerant orbitals have to be included in the
description to account for the true nature of the singlet-triplet
excitation.

Although simplified, descriptions such as those above of the
low-energy spectrum can yield nontrivial consequences. A similar
ground state to our GSj iγ¼2 with π/2 pitch angle was previously
observed in the frustrated ferromagnetic S= 1/2 J1–J2 Heisenberg
model with ferromagnetic J1 and antiferromagnetic J245,47–50. In
Fig. 5a, we present a comparison of the multi-orbital system Eqs.
(1) and (2) SSF vs J1–J2 results obtained for J2/|J1|= 1. Within the
latter, the dynamical SSF yields a continuum of excitations with
maximum intensity at q/π= 1/2 and vanishing intensity in the q/
π → 1 limit. In fact, the dynamical SSF of the J1–J2 model is very
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similar to the acoustic mode found in our multi-orbital system,
i.e., compare panels (b) and (c) of Fig. 5. To strengthen this
argument, in Fig. 5b and c, we present the dynamical SSF factor
plotted against the quantum dispersion relation of the J1–J2 model
ω(q)= ϵq − ϵGS, where ϵq is the energy of the lowest eigenstate at
a given q. To match the energy scales, we set |J1|= J2= 0.6Jeff,
where Jeff ¼ 4 t222=U is the natural superexchange scale within the
localized orbital, as a crude approximation. As clearly shown in
Fig. 5b, ω(q) quantitatively captures the main features of the
acoustic portion of the spectrum.

We remark that the present comparison with the J1–J2 model is
at a phenomenological level, since this effective description of the
lowest mode of the spin dynamics was not rigorously derived
from our multi-orbital Hamiltonian Eqs. (1) and (2). The acoustic
mode reflects the frustrated nature of the magnetism within the
block-OSMP phase. Also, the J1–J2 model may be relevant in a
wide range of interaction U within the OSMP phase, beyond the
block ordering region 0.4≲U/W≲ 1.5. For example, previous
results showed that in the range 1.5≲U/W≲ 20, the system is in
a ferromagnetic-OSMP23, where the spins within the localized
orbital γ= 2 have ferromagnetic ordering. Clearly, a J1–J2 model
with small or vanishing J2 will also exhibit a similar ordering.
Finally, note that although the alternative S= 1 toy model is
useful in the description of elementary states of the block-OSMP
system, its validity is limited for the dynamical spin response: it is
well known that the dynamical SSF of the S= 1 AFM Heisenberg
model exhibits “sharp” magnon lines, in contrast to the S(q, ω) of
the S= 1/2 model that contains a continuum of excitation (at
least at low-ω), in agreement with our results for the three-orbital
Hamiltonian.

Optical mode. Let us now turn to the high-energy optical mode
of the dynamical SSF spectrum. The states contributing to this
mode are also triplet excitations. In the L= 4 Lanczos analysis, we
found that this high-energy mode arises from a state of the form

Oj iγ¼2 ≃ 1=2 #""#j iγ¼2þ "##"j iγ¼2

� �
. It is evident that Oj i

breaks the FM magnetic unit cells present in the GS. Note, again,
that the discussed states do not have doubly occupied or empty
sites, reflecting the Mott nature of orbital γ= 2. It should be also
pointed out that using a small L= 4 system with OBC, we have
found another state that contributes to the optical mode, i.e.,eO�� E

γ¼2
= 1=2 #"#"j iγ¼2þ "#"#j iγ¼2

� �
. However, such a state is

not present in the system with periodic boundary conditions.
To understand properly the optical mode it is not enough to

focus solely on the localized orbital. A detailed analysis of the
remaining “metallic” orbitals γ= 0, 1 indicates that: (i) the GSj i
and the Aj i states obey the Hund’s rule: spins in different orbitals
of the same site are ferromagnetically aligned (see Fig. 4a for a
schematic representation). (ii) However, the Oj i states, Fig. 4c, do
not fulfill this rule because part of the spins are antiferromagne-
tically aligned. As a consequence, the main difference in energy
between the GSj i and Oj i arises from the local (on-site) Hund
exchange portion of the electronic interaction. We confirm this
by calculating separately the expectation values of all terms
contributing to the Hamiltonian (see Methods section). The main
difference between the energy of the GSj i and Aj i arises from the
kinetic portion. On the other hand, the difference in Oj i
originates, as expected, from the Hund coupling part of the
interaction energy. The local on-site nature of the optical mode is
also visible in the orbital-resolved SSF. In Fig. 3c, we present the
spin correlations between different orbitals at different sites, i.e.,
Smix. As clearly visible, the Smix(q → π) → 0, indicating a drastic
reduction of spectral weight at large momentum. These findings
indicate that the optical mode is not present in the inter-orbital

inter-site spin correlations. As a consequence, the only remaining
possibility of the origin of the optical mode are the intra-site
fluctuations between orbitals. Our investigation of orbital-
resolved SSF (Fig. 3c) shows that each orbital contributes to the
optical mode with a similar weight. Finally, the lack of
momentum dependence of the optical mode (at least for q/π >
1/2) suggests that such excitations are local (on-site) fluctuations
of spin between different orbitals at the same site.

In addition, we have shown that the frequency ωO= ϵO − ϵGS
of the corresponding Oj i excitation is directly proportional to the
value of the Hund exchange JH, contrary to the Aj i excitation
with energy ωA ¼ ϵA � ϵGS. In Fig. 6a, we present the dynamical
SSF at q/π= 1/2 for various values of U within the block-OSMP
calculated via the Lanczos method on L= 4 sites, at a fixed JH/U
= 1/4. Our results in Fig. 6b indicate that this behavior is valid
throughout the entire block-OSMP phase, 0.4≲U/W≲ 1.5.

Ladder geometry. Finally, let us comment on the lattice geometry
dependence of our results. In Fig. 7, we present the SSF for the
two-leg ladder two-orbital Hamiltonian introduced in ref.39 for
the BaFe2Se3 compound. The lattice is sketched in Fig. 7a and
hopping values are given in the Methods section. It was pre-
viously shown39 that at density �n ¼ 1:75=2, JH=U/4, and U/WL

= 2 with WL= 3.82 eV the system is in an enlarged block phase,
similar to the 2 × 2 block state of BaFe2Se325. Before addressing
specific results, it is important to remark that the DMRG
numerical studies of multi-orbital ladders require expensive
computations. This is because the inter-site inter-orbital hoppings
behave effectively as long-distance hoppings in the equivalent
one-dimensional representation, leading to larger entanglement
for the ground state (see Supplementary Note 1 for details). The
calculation of dynamical quantities is certainly a challenge and
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even the static expectation values have to be carefully analyzed
with regards to the number of states kept (here M= 1000 states
are used). As a consequence, the results presented for the two-
orbital two-leg ladder below may not be as accurate as those for
the chains.

On a ladder, there are two separate contributions to the SSF
arising from the bonding (qy= 0) and antibonding (qy= π)
sectors. For the two-orbital two-leg ladder results, presented in
Fig. 7b, we find a qy= 0 dispersive mode at low-ω, with a
continuum of spin excitations similar to the acoustic mode of
the chain geometry. At ω ≃ 0.075 eV, we find an energy narrow
qy= π mode. According to our analysis of the 1D system, a
similar spectrum can be found in the J1–J2 model on the ladder
with FM rung coupling J⊥= J1 (Fig. 7c, d). Both the J1–J2 spin
model and multi-orbital model on the ladder studied here
exhibit the 2 × 2 block state, i.e., AFM-coupled blocks of four
FM aligned spins on two neighboring rungs (see Fig. 7a). Such a
state has a peak in the static SSF at qx= π/2 in the bonding
contribution (qy= 0), see Fig. 7c. Note that the maximum of the
acoustic mode appear at ω ≠ 0, which suggests a non-zero spin
gap, common in ladders. Finally, at higher frequencies (ω ≃
0.13 eV) in the qy= 0 sector we find a flat mode of excitations,
similar to the optical mode present in the chain analysis. It is
again evident that the latter is not captured by the J1–J2 model.

Discussion
Let us compare the INS data for BaFe2Se3 reported in ref.25

against our results. Note that this compound is insulating22, while
our system Eqs. (1) and (2) for the parameters considered in this
work, U/W= 0.8 and JH/U= 1/4, is a (bad) metal in the block-
OSMP phase, becoming insulator only for U/W≳ 1.5 in the
ferromagnetic-OSMP phase51. Our Hamiltonian reproduces the
OSMP state and the magnetic block phase of BaFe2Se3, and
although the charge dynamics of our model does not capture the
experimentally observed insulating nature of the real material, it
is still appealing to study the spin physics. The lack of other
multi-orbital models that can reproduce both the spin and charge
sector of low-dimensional iron selenides makes it appealing to

carry out detailed theoretical calculations of the spin dynamics
within this model and compare with the experiments.

Within the spin-wave theory the low-ω portion of the INS
spectra was interpreted25 as a dispersive mode which reflects the
frustrated nature of the π/2-order. In addition, the high-energy
optical modes were interpreted as local excitation of spins within
the 2 × 2 plaquette. A similar rationale was used to explain the INS
result of the doped compound Rb0.89Fe1.58Se235. The spin-wave
theory of BaFe2Se3 reproduces25 all of the modes and also properly
captures the frequency bandwidth of the spin excitations. How-
ever, only ~2/3 of the total spectral weight expected for localized
3d electrons is obtained. Also note that within the considered spin
models of refs.25,35 unphysically large dimerization spin-exchange
couplings are required52,53 to stabilize the π/2 spin pattern.

From the perspective of our results, the interpretation of the INS
spin spectra of low-dimensional ladder iron chalcogenides is dif-
ferent from spin-wave theory. The latter assumes that all excitations
occur between localized spins, while in our system we have a
mixture of localized and itinerant electrons. Moreover, as shown
above, the SSF of multi-orbital systems not only contains dispersive
acoustic modes but also local excitations controlled by the Hund
exchange, at least within the block-OSMP. The inter-orbital nature
of such modes cannot be properly captured by localized Heisenberg
models. Our results, on both chain and ladder geometries, indicate
that spin models can only properly capture dispersive modes
resulting from the peculiar spin order of a given phase as in the π/
2 state of BaFe2Se3. However, we argue that only one of the low
lying optical modes of this compound arises from a weakly dis-
persive (probably beyond experimental resolution of powder sam-
ple) qy= π excitation. Within our interpretation of the SSF spectra,
the second optical mode is of a different nature, involving inter-
orbital spin fluctuations on each site. Such a picture is consistent
with our multi-orbital ladder results.

Concerning the spectral weight, for the chosen parameters U/
W= 0.8 and JH/U= 1/4 in Eqs.(1) and (2), we observe the
magnetic moment S2h i ~ 2 (maximal possible for �n ¼ 4=3). This
is consistent with previous Hartree–Fock calculations39 of the
block-OSMP phase within a five-orbital ladder system, which
reported S2h i ~ 6 for �n ¼ 6=5 (again the maximal value). As a
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consequence, our results do not reproduce the missing spectral
weight observed in experiments25. However, the magnetic
moments evolve within the block-OSMP23 (see also Supple-
mentary Note 2 for additional results) and only saturate to its
maximal value at U/W ≳ 0.6, namely in the middle of the block-
phase. Since the exact value of U and JH are not know for
BaFe2Se3, it is possible in theoretical investigations to stabilize
the block-OSMP phase with a reduced S2h i < 2 (Fig. 6b).
Moreover, note that recently it was argued54 that insufficient
energy (time) resolution in INS experiments produces moments
that can be smaller than the actual instantaneous moments. In
this context, faster X-ray-based techniques such as photoemis-
sion spectroscopy (PES), X-ray absorption spectroscopy (XAS),
and X-ray emission spectroscopy (XES) are needed to resolve
this issue.

In conclusion, we have investigated the dynamical spin
structure factor of a one-dimensional three-orbital Hubbard
model in the block orbital-selective Mott phase, as well as a
ladder two-orbital Hubbard model also in a similar block state.
This has been a computationally demanding effort even with the
powerful DMRG, and to our knowledge this is the first time that
results of this quality are produced. We have shown that our
Hamiltonian captures nontrivial features of a broad family of
low-dimensional iron chalcogenides, in particular for the ladder
BaFe2Se3 compound for which π/2-block order was reported.
We have found two different types of modes in the spin spectra:
(i) low-frequency dispersive (acoustic) spin excitations and (ii)
optical dispersionless excitations at higher energy. The acoustic
band reflects the nature of magnetic order of the system, namely
for the block-OSMP the frustrated π/2-ordering can be captured
by the quantum J1–J2 frustrated Heisenberg model, as also
shown here. The optical band arises from on-site inter-orbital
spin fluctuations controlled by the Hund exchange coupling.
Finally, our 1D dynamical SSF is in qualitative agreement with
the powder INS spectrum of BaFe2Se3 (see Supplementary
Note 3). Although the latter has only a quasi-1D geometry, with
small but non-zero couplings perpendicular to the ladder, the ω-
dependent spectra should be dominated by the predominantly
1D nature of the system. As a consequence, the location in
momentum and energy space is properly resolved by our model
Hamiltonian Eqs. (1) and (2) for both of the modes.

Our results are general and should apply to a variety of block
states in multi-orbital quasi-1D systems. They should all contain
an acoustic band (with pitch wavevector compatible with the
size of the magnetic block), a strong asymmetry in the dis-
tribution of weight of this acoustic band in different portions of
the Brillouin zone, and optical modes with at least one of
them related to atomic transitions regulated by the Hund
coupling.

Methods
DMRG method. The Hamiltonians discussed here were studied using primarily
the density-matrix renormalization-group (DMRG) method55,56 within the
single-center site approach57, where the dynamical correlation functions are
evaluated via the dynamical DMRG58–60, i.e., calculating spectral functions
directly in frequency space with the correction-vector method61 with Krylov
decomposition60. The computer package DMRG++ developed at ORNL was
used. For a chain geometry, in both stages of the DMRG algorithm, we keep up to
M= 800 states. This allow us to simulate accurately system sizes up to L=
24 sites for dynamical quantities (truncation <10−8 for all frequencies ω) and L=
32 for static quantities (truncation <10−10 for the GS). For the ladder geometry
results, we use a standard two-site central block approach with M= 1000 states
(truncation <10−3, showing that the two-leg ladder two-orbital results are qua-
litatively correct, because of its close resemble to the rest, but their quantitative
accuracy can be further improved in future efforts). In the Supplementary Note 1,
we present the scaling of our results with system size L, number of states kept M,
and broadening η of Eq. (5).

Dynamical SSF. The zero temperature, T= 0, total spin structure factor (SSF) S(q,
ω) is defined as:

Sðq;ωÞ ¼ 1
π

ffiffiffiffiffiffi
2

Lþ1

q PL
‘¼1

sinðq‘ÞsinðqL=2Þ

´ Im GSh j~S‘ 1
ω�� H�ϵGSð Þ~SL=2 GSj i

; ð5Þ

with ω−= ω− iη, and GSj i is the ground state with energy ϵGS. In the above
equation, ~S‘ ¼

P
γ S‘;γ is the total spin on-site ‘ for the total SSF S(q, ω), or

~S‘ ¼ S‘;γ for the orbital-resolved SSF Sγγ′ðq;ωÞ.
Furthermore, in the above equation, we adopted the wavevector definition

appropriate for open boundary conditions (OBC), i.e., q= kπ/(L+ 1) with k= 1,
…, L. As a consequence, in this work we used approximate (exact in the
thermodynamic limit L →∞) values of the wave-vectors, e.g., q= π ≡ πL/(L+ 1).

Localized basis representation. The eigenstates ϕj i of the three-orbital system
can be written as

ϕj i ¼ P64L
n¼1

cn nj i

¼ P4L
n0¼1

P4L
n1¼1

P4L
n2¼1

c n0; n1; n2ð Þ n0j i � n1j i � n2j i;
ð6Þ

where nj i represents the orthonormal basis (particle configuration) of all orbitals

and nγ

��� E
(with γ= 0, 1, 2) represents the particle configuration on given orbital γ.

Note that
P

n c
2
n =

P
n1 ;n2 ;n3

c2 n1; n2; n3ð Þ= 1 and nγjn′γ′
D E

¼ δnn′δγγ′ . One can

rewrite the above equation as

ϕj i ¼
X4L
j¼1

~cj

��� E
� jj iγ¼2; ð7Þ

where j≡ n2 represents—within OSMP—the localized orbital and

~cj

��� E
¼

X4L
n0¼1

X4L
n1¼1

c n0; n1; n2ð Þ n0j i � n1j i ð8Þ

are vectors. The set of ~cj

��� En o
vectors represent an orthogonal vector-space withP

j ~cjj~cj
D E

¼ 1. Finally, the weight of the jj iγ¼2 configuration in the ϕj i eigenstate
is given by the norm of the ~cj

��� E
vector, i.e., ~cjj~cj

D E
¼ ~cj

��� ��� � ~c2j .

Energy contribution. In Table 1, we present the expectation values of the several
terms present in the Hamiltonian Eqs. (1) and (2) for the ground state and also
states which contribute to the acoustic and optical modes.

Two-orbital two-leg ladder Hamiltonian. The symmetric hoppings for the two-
orbital two-leg ladder system are defined39 in orbital space as follows (see sketch in
Fig. 7a):

tx ¼
0:14769 0

0 0:27328

	 

;

ty ¼
0:28805 0:01152

0:01152 0:00581

	 

;

tx ± y ¼
�0:21166 �0:08430

�0:08430 �0:18230

	 

;

all expressed in units of eV. The interaction portion of the Hamiltonian is the same
as in the 1D system Eq. (2).

Table 1 Energy contributions

ϵk ϵU ϵU′ ϵH ϵP Total ωα

GSj i −0.027 8.006 15.280 −1.055 −0.010 22.194
Aj i 0.007 7.993 15.280 −1.065 −0.009 22.206 0.012
Oj i −0.031 8.081 15.262 −0.946 −0.016 22.350 0.156

Kinetic, intra- and inter-orbital interaction, Hund, and pair-hopping energy contributions to the
energy of given eigenstates. The last column shows the difference between GSj i and states
within the acoustic (red color) and optical (green color) modes. Results are obtained for L= 4
and U/W= 0.8, using the Lanczos method. All numbers in units of eV
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