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Abstract

A key parameter in epidemiological modeling which characterizes the spread of an infec-

tious disease is the generation time, or more generally the distribution of infectiousness as a

function of time since infection. There is increasing evidence supporting a prolonged viral

shedding window for COVID-19, but the transmissibility in this phase is unclear. Based on

this, we develop a generalized Susceptible-Exposed-Infected-Resistant (SEIR) model

including an additional compartment of chronically infected individuals who can stay infec-

tious for a longer duration than the reported generation time, but with infectivity reduced to

varying degrees. Using the incidence and fatality data from different countries, we first show

that such an assumption also yields a plausible model in explaining the data observed prior

to the easing of the lockdown measures (relaxation). We then test the predictive power of

this model for different durations and levels of prolonged infectiousness using the incidence

data after the introduction of relaxation in Switzerland, and compare it with a model without

the chronically infected population to represent the models conventionally used. We show

that in case of a gradual easing on the lockdown measures, the predictions of the model

including the chronically infected population vary considerably from those obtained under a

model in which prolonged infectiousness is not taken into account. Although the existence

of a chronically infected population still remains largely hypothetical, we believe that our

results provide tentative evidence to consider a chronically infected population as an alter-

native modeling approach to better interpret the transmission dynamics of COVID-19.

Author summary

A key epidemiological variable characterizing the spread of an infectious disease is the

generation time, defining the time between successive cases in a chain of transmission.
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Although there is increasing evidence supporting a prolonged viral shedding window for

COVID-19, it is currently unclear to what extent prolonged transmission also occurs.

Here we investigate the plausibility of a population of chronically infected individuals

who can stay infectious for a longer duration than the reported generation time, but with

infectivity reduced to varying degrees. By using the daily case and fatality data from vari-

ous countries, we show that the existence of a chronically infected population is not a pos-

sibility that can be easily rejected from an epidemiological perspective. Moreover, in case

of a gradual easing on the lockdown measures, the predictions of the model including the

chronically infected population vary considerably from the predictions of the conven-

tional epidemiological models. Although it is not possible to either prove or disprove the

existence of a hypothetical population purely by modeling, our results provide tentative

evidence to consider a chronically infected population as an alternative modeling

approach in assessing the transmission dynamics of COVID-19.

Introduction

Mathematical models have been extensively used to understand the epidemic characteristics of

oubreaks, in predicting future outcomes, and in shaping the national responses regarding con-

trol measures [1, 2]. Despite the time pressure, a considerable amount of work has been dedi-

cated to modeling the pandemic of novel coronavirus (SARS-CoV-2) infections that began in

China in late 2019 [3–6]. Although most of these studies are based on existing epidemic mod-

els such as SIR and SEIR-models, several features of the COVID-19 pandemic have been inde-

pendently explored, leading to different generalizations of similar dynamical models. On one

hand, having a variety of models is central to get a notion of the model sensitivity, on the

other, it shows that different assumptions are equally favorable to explain the observed data

given the right set of parameter choices, whereas they might lead to different projections on

how the epidemic would follow in the future [7, 8]. This variability in future projections

becomes especially important when a perturbation, such as the imposition or release of the

control measures, is introduced to the dynamical system.

A key epidemiologic variable that characterizes the spread of an infectious disease is the

generation time [9], i.e., the time between successive cases in a chain of transmission. Li et al.
[10] estimated the generation time distribution to have a mean of 7.5 (95%CI 5.5–19) days

based on 6 observations, whereas Ganyani et al. estimated the generation time distribution to

have a mean of 5.20 (95%CI 3.78–6.78) days for Singapore and 3.95 (95%CI 3.01–4.91) days

for Tianjin [11], Bi et al. estimated the generation time distribution to have a mean of 6.3 (95%

CI 5.2–7.6) days [12], He et al. estimated the generation time distribution to have a mean of

5.8 (95%CI 4.8–6.8) days [13], and Hiroshi et al. estimated the generation time distribution to

have a mean of 4.7 (95%CI 3.70–6.00) days. Considering all these studies, infectiousness is esti-

mated to decline quickly within 4 to 8 days on average.

Additionally, certain cases of transmission arouse concern about prolonged shedding of

SARS-CoV-2 after recovery [14]. Moreover, several studies show proof of active virus replica-

tion in upper respiratory tract tissues and prolonged viral shedding even after seroconversion

for COVID-19, implying that the contagious period of COVID-19 might last more than one

week after clinical recovery in a fraction of patients [15, 16]. De Chang et al. reported patients

to be virus positive even after the resolution of symptoms up to 8 days [17]. Similarly, Young

et al. reported a median duration of 12 days for viral shedding [18], and Zhou et al. observed a

median duration of 20 days [19]. Tan et al. reported a special case where the duration of viral
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shedding persisted for 49 days from illness onset [20]. Such examples indicate an uncertainty

regarding the skewness of the generation time distribution. In additon to this uncertainty, sev-

eral studies estimating the generation time suffer from short follow-up times, selection bias,

and recall bias, which might miss the individual cases with prolonged shedding durations.

Considering that the duration of infectiousness is a critical parameter in dynamical models

used for predictive purposes, it is important to consider the epidemiological plausibility of a a

more heavy tailed generation time distribution than the reported distributions in the literature

and investigate its impact on model outcomes.

To do so, we first develop a generalized SEIR model by segregating the infectious compart-

ment into two as “primarily infected” and “chronically infected” population. We assume that

primarily infected individuals have a higher infectiousnesss within the time window conven-

tially considered as the generation time, during when they have the potential to develop symp-

toms and therefore be hospitalized. Afterwards, we assume that the non-hospitalized infecteds

transition to the chronically infected phase before recovery and become less infectious, but

may stay infectious for a longer duration. By doing so, we include the possibility of a prolonged

viral shedding window in our model. Individuals in the chronically infected phase are relevant

both for diagnosis (a positive test result) and disease transmission, and we will explore the role

of both aspects in explaining the observed data.

Using the incidence and fatality data from different regions of Italy and different states of

the U.S., we first show that our model is also a plausible candidate for explaining the data

observed prior to the easing of the lockdown measures (relaxation) for a variety of combina-

tions of prolonged duration and level of infectiousness assumed for the chronically infected

population. Based on this conclusion, we test the predictive power of different models using

the daily confirmed cases data after the introduction of relaxation in Switzerland, including a

model without the chronically infected population to represent the models conventionally

used. Only Swiss data is used to test the predictive power of different models due to the public

avaliability of different data types (estimates on the effective reproductive number, the number

of daily confirmed cases, daily deaths, hospitalized and ICU patients) in high temporal resolu-

tion. Our results show that, in case of a gradual easing on the lockdown measures, the predic-

tions of the model including the chronically infected population vary considerably from those

obtained under a model in which prolonged infectiousness is not taken into account. This var-

iability is especially important when national policies on control measures are being formed,

and also for the healthcare systems if projections such as the occupancy of the hospital ward or

the ICU are calculated using similar dynamical models.

Materials and methods

Mathematical model

To describe the dynamics of the COVID-19 pandemic, we generalize the susceptible-exposed-

infected-removed (SEIR) compartmental model by including eight different states denoted by

S(t), E(t), Ip(t), Ic(t),H(t), ICU(t), R(t), and X(t), representing the number of susceptible indi-

viduals, exposed (infected but not yet infectious) individuals, primarily infected individuals,

chronically infected individuals, hospitalized patients, patients in ICUs, recovered (immune)

individuals, and deceased individuals at time t, respectively. To model the prolonged viral

shedding in case of COVID-19, we segregate the infectious compartment into two by intro-

ducing two different compartments, namely the primarily infected (Ip) and the chronically

infected (Ic) individuals. After the incubation period is complete, exposed individuals become

primarily infected where they stay infectious within the reported duration of the infectious

period of COVID-19. Conventionally, these individuals are assumed to stop being infectious
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and therefore stop contributing to the disease spread when the generation time is complete.

Our purpose by including another step before recovery, i.e., the chronically infected compart-

ment, is to model a scenario such that the primarily infected individuals transition to a state

where they are less infectious but they may stay infectious and be diagnosed for a longer dura-

tion than the generation time, i.e. continue spreading the infection with reduced

transmissibility.

Transitions between different compartments are illustrated in Fig 1, which can be translated

into a system of ordinary differential equations, where each arrow, i.e., each process, is associ-

ated with a rate. This system is given by the Eq set 1, including the rates of processes as model

parameters, and describes the rate of change of compartments over time. Model parameters

are given in Table 1 with their corresponding descriptions and prior distributions. An addi-

tional compartment C(t) is included in the Eq set 1 to calculate the cumulative number of the

positively diagnosed cases in the community, and does not play any role in the disease dynam-

ics.

dSðtÞ
dt
¼ �

S
N

bpIp þ bcIc
� �

;

dEðtÞ
dt
¼ þ

S
N

bpIp þ bcIc
� �

� tE;

dIpðtÞ
dt
¼ þtE � gpIp;

dIcðtÞ
dt
¼ þð1 � �HÞgpIp � gcIc;

dHðtÞ
dt
¼ þ�HgpIp � gHH;

dICUðtÞ
dt

¼ þgH�H2IH � gICUICU;

dRðtÞ
dt
¼ þgHð1 � �H2IÞH þ gICUð1 � �xÞICU þ gcIc;

dXðtÞ
dt
¼ þgICU�xICU;

dCðtÞ
dt
¼ þrpdgpIp þ

1 � rpd
1 � �H

� �

rcdgcIc:

ð1Þ

Time-dependent decrease in the transmission of SARS-CoV-2 due to lockdown measures

is modeled by a sigmoid function [21], and denoted by rlock(t), such that

rlockðtÞ ¼ rL þ ð1 � rLÞ=
h
1þ exp ðmL � ðt � tL � sLÞÞ

i
; ð2Þ

where rL, tL,mL, and sL denote the final effect of the lockdown, start date of the lockdown,

slope of the decrease in transmissibility, and the time delay between implementation and effect

of the lockdown, respectively. rlock(t) is used as a multiplicative factor in modeling the trans-

mission rate in a time-dependent manner.

The reduced transmissibility of Ic is modeled via including a reduction coefficient rc as a

multiplicative factor to its transmission rate, representing the reduction in the infectiousness
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level of the primarily infected population when they move to the chronically infected phase.

Introduction of rc results in two different transmission rates βp and βc for Ip and Ic compart-

ments, such that,

bp ¼ rlockðtÞ � R
p
0 � gp; ð3Þ

Table 1. Model parameters given with their descriptions, constrained ranges, and prior distributions.

Notation Description Constained range or definition Prior distribution ‡

Rp0 Basic reproduction number of the primarily infected population 0 −1 Rp0 � N ð2:5; 0:5Þ

rc Reduction in infectiousness due to being chronic 0%–100% Fixed to a different value for each simulation.

Rc
0

Basic reproduction number of the chronically infected population Rc
0
¼ Rp0ð1 � rcÞ Conditioned on Rp0 and rc.

rL Effect of lockdown in reducing infectiousness 0%–100% rL � β(1, 1)

mL Slope of reduction in infectiousness due to lockdown 0.5–1.5 mL � 0.5 + β(1, 1)

sL Time lag of reduction in infectiousness due to lockdown 0 −1 sL � exp(1/5)

rlock(t) Time dependent effect of the lockdown on the transmission rate Given by Eq 2 Conditioned on rL, rc,mL, and sL.
1/τ Duration of the latent period 0 −1 τ � exp(1/2.5)

1/γp Duration of infection of Ip 0 −1 γp� exp(1/2.5)

1/γc Duration of infection of Ic 0.01-20 days Fixed to a different value for each simulation.

βp Transmission rate of Ip Given by Eq 3 Conditioned on rlock(t), R0, and γp.

βc Transmission rate of Ic Given by Eq 4 Conditioned on rlock(t), R0, γc, and rc.
1/γH Duration of hospital ward stay 0 −1 γH� exp(1/12)

1/γICU Duration of ICU stay 0 −1 γICU� exp(1/12)

�H Rate of direct H admission 0 −1 �H � N ð0:08; 0:02Þ

�H2I Transfer rate from H to ICU 0 −1 �H2I � N ð0:4; 0:08Þ

�x Death rate from ICU 0 −1 �x � N ð0:4; 0:08Þ

rpd Diagnosis rate of Ip 0 −1 rpd � N ð0:2; 0:03Þ

rcd Diagnosis rate of Ic 0 −1 rcd � N ð0:075; 0:015Þ

R0 Total basic reproduction number R0 ¼ R
p
0 þ ð1 � �HÞRc0 Conditioned on Rp0, Rc

0
and �H.

E(0) Initial frequency of the exposed compartment 0%–100% rcd � bð1; 103Þ

S(0) Initial frequency of the susceptible compartment 1 − E(0)� Conditioned on E(0)

N Population size − Fixed specific to the country used for fitting.

� All other compartments (Ip, Ic, H, ICU, R, and X) are assumed to be zero at t = 0, and the first case is assumed to be observed at t = 1.
‡ N , β, exp denotes the Normal, Beta, and Exponential distributions respectively.

https://doi.org/10.1371/journal.pcbi.1008609.t001

Fig 1. Illustration of the generalized SEIR model. a) Notation of the compartments and their corresponding descriptions. b) Schematic of the

dynamical model given by Eq set 1.

https://doi.org/10.1371/journal.pcbi.1008609.g001
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bc ¼ rlockðtÞ � Rc0 � gc; ð4Þ

¼ rlockðtÞ � R
p
0ð1 � rcÞ � gc; ð5Þ

where Rp0, Rc
0
, 1/γp, and 1/γc denotes the basic reproduction number of the primarily infected

population, the basic reproduction number of the chronically infected population, duration of

primarily infected phase, and the duration of chronically infected phase, respectively. We

assume that individuals who develop symptoms do so only during the primarily infected

phase, and therefore hospitalization is only possible before they transition to the chronically

infected phase. We do not assume any a priori information regarding the testing policy, there-

fore a positive diagnosis is possible for both primarily and chronically infected individuals,

and they contribute to the cumulative number of the positively diagnosed cases with the rates

rpd and rcd, respectively.

Model fitting and parameter estimation

Model selection via goodness of fit until relaxation. We implemented two stages of

model fitting. The first stage aims to compare the goodness of fits of three different classes of

models, which are,

1. The model without prolonged viral shedding (model without the chronically infected (Ic)
compartment),

2. The model with prolonged viral shedding without prolonged infectiousness, where individ-

uals in the Ic compartment are not infectious (model given by Eq set 1 for rc = 100%, where

rc denotes the level of reduced infectiousness.),

3. The model with prolonged viral shedding and prolonged infectiousness, where individuals

in the Ic compartment are infectious with different levels of infectiousness (given by Eq set

1 for 0%� rc< 100%).

The second model with rc = 100% represents the scenario where the primarily infected indi-

viduals do not have prolonged infectiousness, but they still can be diagnosed during the

chronic phase, meaning that their test results can still be positive although they are not infec-

tious. Note that all models with prolonged viral shedding at different levels of infectiousness

(0%� rc� 100%) including the model without prolonged infectiousness at all (rc = 100%)

assume that the infected individuals are tested and positively diagnosed with a certain rate dur-

ing this prolonged viral shedding window. This is not a common assumption in other model-

ing studies regarding COVID-19. Therefore, the first model without the chronically infected

population is included in the comparison to represent the models which are conventionally

used.

We then fit each class of model simultaneously to the data on the number of daily con-

firmed cases and the number of daily deaths. Due to the high spatial variation in transmission

dynamics in countries such as Italy and the U.S., we used regional data within these two coun-

tries which have consistent spreading patterns. These regions include Lombardy, Piedmont,

and Emilia-Romagna for Italy (data reported by the Civil Protection Department of the Minis-

try of Italy [22]), and the State of New York, the State of New Jersey, and the State of Louisiana

for the U.S (data reported by the COVID Tracking Project [23]). Model fitting is done in a

Bayesian framework using Stan [24]. The deviations between the model output and the data

are assumed to follow a Negative Binomial distribution. Dispersion parameters of the Negative
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Binomial distributions are estimated separately for both the number of daily confirmed cases

and the number of daily deaths during model fitting.

When fitting the models with prolonged viral shedding, we fixed the reduction in infec-

tiousness parameter rc to different values varying between 0% to 100%. Duration of infectious-

ness of the Ic compartment (1/γc) is also fixed to different values varying from 0.01 to 20 days

for all simulations. Other parameters are allowed to vary within their respective ranges, given

in Table 1.

During model fitting, we use all the data points until the introduction of the easing on the

lockdown measures (relaxation). We then calculate the Root Mean Squared Error (RMSE)

between the median of the model estimates and the data points that are used for fitting to eval-

uate the goodness of the fit for the daily confirmed cases and the daily deaths for each class of

model, where lower values of RMSE indicate a better fit.

RMSE values provide a good measure of fit by quantifying how much the median of the

model estimate deviates from the data, and are useful to compare the goodness of fit of two

different models. On the other hand, they do not incorporate the variance on the model esti-

mates emerging from the probabilistic nature of the fitting procedure. To investigate how
often one model performs better than another, we bootstrap estimates from both models

within their 95% confidence intervals, and calculate the probability of one model having

a greater error value than another model. Bootstrapping is performed via randomly

subsampling simulated time series outputs with replacement for a given model. For

each sample of a given model, we first normalize the RMSE values for the number of

daily confirmed cases and the number of daily deaths via dividing them by the difference

between the maximum and the minimum value of their respective data points. We then

sum these normalized values up to calculate a combined measure of the goodness of fit,

which we refer as the combined RMSE (CRMSE) value. We calculate the probability of one

model having a greater CRMSE value than another model by comparing the CRMSE values

of each bootstrapped sample for a given pair of models. This analysis is used to address two

different questions. First, we investigate whether there is any advantage in including the

chronically infected population in the model structure to achieve a better fit by calculating

the probability of the model without the Ic compartment (model w/o Ic) having a greater

CRMSE value than the model with the Ic compartment for all levels of reduced infectious-

ness (0% � rc� 100%), denoted by PðCRMSEw=o Ic > CRMSErc�100%Þ. Second, we investigate

whether there is a substantial difference between having prolonged infectiousness (rc<
100%) versus being diagnosed without being infectious (rc = 100%) during the prolonged

viral shedding phase by calculating the probability of the model with rc = 100% having a

greater CRMSE value than the models with 0% � rc< 100%, denoted by P(CRMSErc = 100%

> CRMSErc< 100%). Both quantities are calculated for each duration of infectiousness

(1/γc value) separately.

Due to the uncertainty of the quantitative effects of the easing on the lockdown measures

(relaxation), data points after the relaxation are excluded from the goodness of fit calculations.

Model selection via predictive power after relaxation. The second stage of the model fit-

ting aims to compare the predictive power of different models by incorporating the data after

the introduction of relaxation. First, we use the data until relaxation provided by [25] for Swit-

zerland, and fit the model simultaneously to four datasets: the number of daily confirmed

cases, the number of daily deaths, the number of patients at the hospital ward at a given day,

and the number of patients at the ICU at a given day. Using the parameters we obtained via fit-

ting, we predict the number of daily confirmed cases in case of a gradual relaxation scenario

for all models, using a range of rc and γc values.
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Relaxation is modeled as an increase in transmissibility, and characterized as a sigmoid

function. It is similar to the time-dependent effect of the lockdown (rlock(t)) given by Eq 2,

such that

rrelaxðtÞ ¼ rL þ 1=
h
1=ðrend � rLÞ þ exp ð� mR � ðt � tR � sRÞÞ

i
; ð6Þ

where tR,mR, sR, and rend denote the start date of the relaxation (18th of March for Switzerland,

middle time point between the start of the first phase of relaxation on 27th of April, and the

start of the third—and the final—phase of relaxation on 8th of June), slope of increase in trans-

missibility, the time delay until the effect of the relaxation takes place, and the final effect of the

control measures still in place (wearing masks in public transit, practicing hand hygene, etc.),

respectively. rrelax(t) is used as a multiplicative factor in a similar fashion to rlock(t).
Since we aim to compare the predictive power of different models using the data after relax-

ation, parametrization of rrelax(t) had to represent the quantitative impact of relaxation in Swit-

zerland accurately, but also had to be independent of our model fitting procedure. Therefore,

we parameterize rrelax(t) using the effective reproductive number (Re(t)) estimates provided by

the Swiss National COVID-19 Science Task Force [26], assuming that the normalized values

of the effective reproductive number over time (Re(t)/Re(0)) provide a quantitative proxy for

the change in behavior after the introduction of relaxation. We parameterize rrelax(t) such that

the numerical values formR, sR, and rend minimize the RMSE between rrelax(t) and Re(t)/Re(0)

for the time points (t values) after the introduction of relaxation. This parametrization is done

separately for each model with different rc and γc values, since their estimates for rL will be dif-

ferent which is included in rrelax(t) (Eq 6).

We quantify the predictive power of each model by calculating the RMSE values between

the median of the model predictions and the daily confirmed cases data only for the time

points after the introduction of relaxation. Similar to the first stage of model fitting, we calcu-

late PðRMSEw=o Ic > RMSErc�100%Þ and PðRMSErc¼100% > RMSErc<100%Þ values using the normal-

ized RMSE results, but for the number of daily confirmed cases only. Because the uncertainty

on the parameter estimates will propagate to the future predictions, prediction results will

have wider confidence intervals than the fitting results. Therefore when calculating

PðRMSEw=o Ic > RMSErc�100%Þ and PðRMSErc¼100% > RMSErc<100%Þ, we bootstrap prediction

estimates within their 50% confidence intervals instead of 95% to identify the differences in

model predictions in a more informative way (results with estimates bootstrapped within 95%

confidence intervals are also provided in the Supporting Information). Model predictions for

the other three data types (the number of daily deaths, the number of patients at the hospital

ward at a given day, and the number of patients at the ICU at a given day) are excluded from

the predictive power calculations, since the impact of relaxation manifests itself most directly

in the number of daily confirmed cases data, whereas the other datasets are influenced by

many other factors such as treatment success, demography of the patients, hospital capacity,

etc. Such factors are likely to change over time and a re-fitting is required using the data

points subsequent to the introduction of relaxation to estimate the related model parameters

properly.

Only Swiss data is used to test the predictive power of different models because it is the only

country to our knowledge where both the estimates on the effective reproductive number and

the data on the hospitalized and the ICU patients are publicly available in high temporal reso-

lution in addition to the number of daily confirmed cases and the number of daily deaths.

We implemented both stages of model fitting in a Bayesian framework using Stan [24].

Prior distributions of the parameters used during fitting are given in Table 1.
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Results

Possibility of a chronically infected population

We find that the model that describes the data the best is dependent on the combination of the

level and duration of the prolonged infectiousness, and the optimal choice of the {γc, rc} combi-

nation varies among different regions and different countries. For Lombardy, as the duration

of infectiousness becomes longer, models including the chronically infected population out-

perform the model without the Ic compartment (model w/o Ic) more often (Fig 2e), whereas

the models with prolonged infectiousness (rc< 100%) perform similarly to the model where

the individuals can be diagnosed during the prolonged viral shedding window without being

infectious (rc = 100%) (Fig 2f). The absolute difference in RMSE values of the median of the

model estimates differ by 30.7 daily confirmed cases (3.1% of the mean number of daily con-

firmed cases, S1 Table), and 6.17 daily deaths (3.4% of the mean number of daily deaths, S1

Table) the most when all rc and γc values are considered (Fig 2c and 2d). The region of Emilia-

Romagna presents a very similar behaviour to Lombardy (S1 Fig). In case of Piedmont and the

state of New York, models with prolonged viral shedding (0%� rc� 100%) outperform the

model without the Ic compartment (model w/o Ic) more often, and models with lower levels of

infectiousness (higher rc values) clearly provide a better fit than the models with higher level of

infectiousness (S2 and S5 Figs). For the state of Louisiana, all models perform similarly (S3

Fig). For the state of New Jersey, RMSE values for the number of daily confirmed cases are sen-

sitive to the particular combinations of γc and rc values (S4 Fig). Model without the Ic compart-

ment (model w/o Ic) provides a better fit for very short and very long durations of prolonged

infectiousness, and similar fits to the model with rc = 100% for medium durations of prolonged

infectiousness (S4 Fig). Maximum difference in the median RMSE values for the number of

daily confirmed cases and the number of daily deaths for all combinations of rc and γc values

are provided in S1 Table, both in absolute values and relative to the mean of their correspond-

ing data type. Parameter estimates with their corresponding means, standart deviations, and

confidence intervals for all combinations of rc and γc values are provided in the S2 Table.

Impact of relaxation

Data for Switzerland after the introduction of relaxation is used to test the predictive power of

different models. As a demonstrative example, effect of the lockdown and the relaxation on

infectiousness (rlock(t) and rrelax(t)) are provided in Fig 3c and 3d for 1/γc = 14 days.

We observe that all models provide almost identical fits for the data prior to the introduc-

tion of relaxation (S6 Fig), but they substantially differ in their predictions regarding after

relaxation even for small differences in the infectiousness levels (rc values) for the chronically

infected population (Fig 3a and 3b, demonstrative example for 1/γc = 14 days). As the pre-

dicted point moves further in time, the quantitative difference between the predictions of

different models deviate from each other even more. For 60 days after the last data point

observed, the model with the best predictive power (model with rc = 95%) predicts a median

of 1439 daily confirmed cases, whereas model with rc = 100% predicts a median of 126, and

model without the Ic compartment (model w/o Ic) predicts a median of 190 daily confirmed

cases (Fig 3b, T = 60), indicating a discrepancy by one order of magnitude. Similar to the

results provided for the first stage of fitting, we find that it is more advantageous to use a

model including the chronically infected population with low levels of infectiousness (Fig 3f

and 3g for estimates bootstrapped within 50%, and S7 Fig for estimates bootstrapped within

95% confidence intervals). The model providing the lowest RMSE value between the predic-

tions and the data is always a model with prolonged infectiousness for a wide range of γc values
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Fig 2. Fitting and Root Mean Squared Error (RMSE) results for Lombardy. Fitting and RMSE results for Lombardy, calculated using different levels

and durations of infectiousness for the chronically infected population. Model outcomes (presented for 1/γc = 14 days) for the number of a) daily

confimed cases and b) daily deaths using the data until the introduction of relaxation for model fitting, respectively. Darker shades of blue represent the

fitting results with increased infectiousness of the chronically infected population, i.e., lower rc values within the range 0� rc< 100%. Fitting results for

rc = 100% are drawn in red, and the fitting results for the model without the Ic compartment (model w/o Ic) are drawn in pink. Data points that are used

for fitting are drawn in black. Gray areas around the model outcomes represent the union of the 95% confidence intervals calculated for all models.

RMSE values c) for the number of daily confirmed cases and d) the number of daily deaths for a given rc and γc value used for fitting, where model w/o

Ic represents the results for the model without the Ic compartment. e) Probability of the model without the Ic compartment (model w/o Ic) having a

greater combined RMSE (CRMSE) value than the model with the Ic compartment for all levels of reduced infectiousness (rc� 100%) for different rc and

γc values. f) Probability of the model where individuals are being diagnosed without being infectious (rc = 100%) having a greater combined RMSE

(CRMSE) value than the model with individuals with a a prolonged infectiousness (rc< 100%) for different rc and γc values. Points in the gray areas

represent the models that are providing a better fit more frequently than e) the model without the Ic compartment (model w/o Ic) and f) the model with

rc = 100%.

https://doi.org/10.1371/journal.pcbi.1008609.g002
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Fig 3. Fitting and prediction results for Switzerland. a) Fitting results and relaxation predictions for Switzerland for the number of daily confirmed

cases, calculated using different levels of infectiousness for the chronically infected population, assuming a duration of prolonged infectiousness of 1/γc
= 14 days. Time dependent effects of the lockdown (rlock(t)) and the relaxation (rrelax(t)) are illustrated in c) and d), respectively. Predictions drawn in

darker shades of blue represent the fitting results with increased infectiousness of the chronically infected population, i.e., lower rc values within the

range 90� rc< 100%. Fitting results for rc = 100% are drawn in red, and the fitting results for the model without the Ic compartment (model w/o Ic) are

drawn in pink. Data points that are used for fitting are drawn in black, and the data points used for comparing the predictive power of different models

are drawn in green. e) RMSE values calculated using the prediction results for the number of daily confirmed cases for a given rc and γc value, where

model w/o Ic represents the results for the model without the Ic compartment. Models with the best predictive power (smallest RMSE value) are

indicated by the bold black boxes. f) Probability of the model without the Ic compartment (model w/o Ic) having a greater RMSE value than the model

with the Ic compartment for different levels of reduced infectiousness (90%� rc� 100%) and γc values, calculated over the predicted data points. g)

Probability of the model where individuals are being diagnosed without being infectious (rc = 100%) having a greater RMSE value than the model with

individuals with a a prolonged infectiousness (rc< 100%) for different rc and γc values, calculated over the predicted data points. Points in the gray areas

represent the models that are providing a better fit more frequently than f) the model without the Ic compartment (model w/o Ic) and g) the model with

rc = 100%. b) Prediction results of the first 5 models (rc = {93%, 94%, 95%, 96%, 97%}) with the lowest RMSE value (best predictive power), model with
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(Fig 3e). However, note that these results are valid under our particular choice of parametriza-

tion of the relaxation dynamics, and the resulting relative change in the transmissibility during

the relaxation period.

The fact that observed data can be explained equally well by various combinations of rc and

γc values is partially due to the flexibility of the fitting procedure, which allows other parame-

ters to be adjusted for a given {rc, γc} pair. Most parameters are free to vary, but their prior dis-

tributions are informed such that the hyperparameters (parameters of the prior distributions)

align with the reported values in the literature (Table 1). As an example, both the incubation

period (1/τ) and the duration of infectiousness of the primarily infected population (1/γp) have

the mean of 2.5 days, resulting in a generation time distribution with a mean of 5 days, in

agreement with the reported values in the literature for COVID-19 (see Introduction). Simi-

larly, the basic reproduction number of the primarily infected population Rp0 is normally

distributed with a mean of 2.5, which is the average value reported for basic reproduction

number of COVID-19 in many countries [10, 27]. Mean values of the prior distributions of the

parameters related to hospitalization (γH, γICU, �H, �H2I, and �x) are adopted from Ferguson

et al. [28] and Verity et al. [29], and given a variance such that they can be adjusted specifically

for each country during the fitting procedure.

The median of the posterior distributions for Rp0, R0, and rL provide a good example to dem-

onstrate the flexibility of the fitting procedure (Fig 4). As expected, the basic reproduction

number of the primarily infected population (Rp0) (Fig 4a), the total basic reproduction number

(R0 ¼ R
p
0 þ ð1 � �HÞRc0) (Fig 4b), and the final reduction in infectiousness due to lockdown (1

− rL) (Fig 4c) are estimated to be lower for a given duration of infectiousness (1/γc) as the infec-

tiousness of the chronically infected population decreases (as rc increases) to explain the

observed data.

Parameter estimates for the Swiss data with their corresponding means, standart deviations,

and confidence intervals for all combinations of rc and γc values are provided in the S2 Table.

Discussion

The model presented in this work explores the plausibility of an epidemiological model with a

prolonged viral shedding window for the COVID-19 pandemic, and investigates both its

rc = 100%, and model without the Ic compartment (model w/o Ic) for + T days into the future from the last data point observed, where 1/γc = 14 days.

Predictions for the model with the best predictive power (rc = 95%), for the model with rc = 100%, and the model without the Ic compartment (model w/

o Ic) are highlighted in blue, red, and pink, respectively.

https://doi.org/10.1371/journal.pcbi.1008609.g003

Fig 4. Median of the posterior distributions of parameters. Median values of the posterior distributions of the a) basic reproduction number of the

primarily infected population (Rp0), b) total basic reproduction number (R0 ¼ R
p
0 þ ð1 � �HÞRc0), and c) the final reduction in infectiousness due to

lockdown (1 − rL), for a given {rc, γc} pair.

https://doi.org/10.1371/journal.pcbi.1008609.g004
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impact and predictive capabilities on the outcomes of a gradual easing on the lockdown mea-

sures (relaxation) given different assumptions on the infectiousness level and duration of a

chronically infected population.

Our results show that including a chronically infected population, i.e., individuals that are

less infectious but infectious for a longer duration, is not a possibility that can be easily rejected

from an epidemiological perspective. This conclusion is based on two main results. First, nei-

ther the presence nor the absence of chronic transmission is identifiable from population-level

data. The data that has been observed until relaxation can be explained equally well by the

model with prolonged viral shedding for a variety of different levels and durations of pro-

longed infectiousness as by the model without prolonged viral shedding. Although this is par-

tially due to the flexibility of the fitting procedure, the choice of hyperparameters (parameters

of the prior distributions) indicates that all fits for a given infectiousness value are possible for

a set of reasonable model parameters, and therefore as favorable as the conventional models

from a modeling perspective.

Second, even if the presence of a chronically infected population cannot be proven, its

introduction to the model structure has a considerable impact on the relaxation outcomes.

In case of a gradual easing on the lockdown measures, the predictions of the model including

the chronically infected population vary considerably from those obtained under a model in

which prolonged infectiousness is not taken into account. Although the level of infectious-

ness might be low, its impact during the prolonged viral shedding window is significant in

terms of predicting the outcomes of a gradual relaxation, indicating that even small differ-

ences in prolonged infectiousness levels might change the course of an epidemic when they

are present for a certain duration. This is especially important for the healthcare systems if

projections such as the occupancy of the hospital ward or the ICU are calculated using simi-

lar dynamical models.

The fact that observed data can also be explained with a model including prolonged viral

shedding raises certain questions about the interpretation of the epidemic curve, acquired

immunity, and the current testing policies. Assuming a relatively short generation time for a

model that does not consider a prolonged viral shedding window results in more optimistic

projections about epidemic control, as clearly demonstrated in Fig 3. Based on this, countries

that were very successful in their initial control measures and therefore experienced a very

steep decline in the number of daily confirmed cases might choose to ease the control mea-

sures too soon. We still lack a full understanding of the viral shedding window of COVID-19,

and therefore might have a biased opinion on the number of infectious individuals in the com-

munity. This once again emphasizes the infectiousness of COVID-19 and the significance of

frequent testing although the number of cases are in decline.

Using simplified compartmental models such as the one in this study has certain limita-

tions. First, it does not consider the stochastic effects that the system is subject to, which

become more important as the number of infecteds decrease in the community. Second, it

assumes a well-mixed population, and does not consider the contact structure and the demo-

graphic information which are both relevant to the disease spread. Nevertheless, we believe

that these two drawbacks of our modeling approach influence all models with and without the

prolonged viral shedding to a similar degree, if not penalizing the models with prolonged viral

shedding for producing more pessimistic projections since the number of infecteds will be

higher in frequency relative to the model without the chronically infected compartment. Addi-

tionally, the standard SEIR model assumes constant rates of transition between the exposed,

infectious, and recovered classes, leading to waiting times that individuals spend in these states

being exponentially distributed [30], resulting in an exponential distribution on the generation

time as well. Although mathematically convenient, this assumption is shown to be
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epidemiologically unrealistic, and less dispersed distributions such as gamma distribution

should be used instead [31, 32].

Compartmental model structures are based on the underlying epidemiological and demo-

graphic interactions of a particular disease. Given that there are many choices for these interac-

tions, the number of possible combinations are enormous [33, 34]. Our choice of including a

chronically infected comparment in the model structure was inspired by the evidence indicat-

ing an uncertainity regarding the generation time distributions, but this approach is only one

way to extend the basic SEIR model for the COVID-19 pandemic. There are still several open

questions regarding the transmission dynamics of COVID-19, meaning that there are many

other alternatives of modification a modeler could consider depending on the research ques-

tion in hand. These alternatives are also potential candidates which would describe the data

equally well, and offer reasonable predictions.

One methodological limitation of pure model fitting is the parameter identification problem,

especially in the early stages of an epidemic [35]. As clearly demonstrated in Fig 4, models with

different assumptions on the duration and the level of prolonged infectiousness lead to equally

good descriptions of the observed data by adjusting the parameter values accordingly. Therefore,

even if a prolonged viral shedding window exists for COVID-19, it would not be possible to quan-

tify the precise level or the duration of prolonged infectiousness by using model fitting purely.

Ultimately, these quantities should be measured or estimated from the relevant type of data.

Another potential limitation is the dependency of the goodness of fit of a given model on

the quantification of the impact of relaxation, which inevitably affects the model selection pro-

cedure. Although we do not perform any fitting on the data belonging to the relaxation phase,

we indirectly inform our predictions by shaping the change in transmissibility (β) via using the

normalized values of the Re estimates provided by the Swiss National COVID-19 Science Task

Force, which in turn are calculated using the data on the number of daily cases. Different

assumptions on the change of transmissibility during relaxation might alter the infectiousness

level that is optimal in predicting the relaxation outcomes. With that being said, our results

suggest that the model without the chronically infected compartment heavily underpredicts

the case numbers, as clearly seen in Fig 3. Although it is still debated whether the patients who

recover from COVID-19 and test positive for the virus after their recovery are still infectious

or not, it is clear that these positive test results contribute to the data on the number of daily

confirmed cases. However, current modeling studies regarding COVID-19 neglect this fact

and assume that the probability of detecting an infection decreases strongly after the mean

generation time. Our results show that this assumption might lead to an underestimation of

both the reproduction number and the effect of the lockdown (Fig 4), leading to a potential

underprediction for the relaxation outcomes.

In conclusion, it is not possible to either prove or disprove the existence of a compartment

of chronically infected individuals purely by modeling based on epidemiological data. Our

results only provide tentative evidence to consider a chronically infected population as an

alternative modeling approach in addressing the knowledge gap on the transmission dynamics

of COVID-19. Such an hypothesis must be tested by incorporating data regarding the timing

of transmission events, contact histories, and corresponding test results. Furthermore, more

clinical and virological diagnostic studies are necessary to establish the biological links between

viral load, active viral replication at different sites of the body, severity of symptoms, and a pos-

itive test result to infer the infectiousness of an individual over time. Including a chronically

infected population in our model was motivated by the evidence reported for prolonged viral

shedding in the literature [14–20], and attempted to test whether this is also a plausible

descriptive and predictive modeling approach. Given that different assumptions on the infec-

tiousness duration and level during a prolonged viral shedding window can result in similar
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descriptions of the observed data prior to the introduction of relaxation, and large differences

of epidemic projections after relaxation, it is important to consider a chronically infected pop-

ulation from a modeling perspective when national policies are being imposed.

Supporting information

S1 Fig. Fitting and Root Mean Squared Error (RMSE) results for Emilia-Romagna. Fitting

and RMSE results for Emilia-Romagna, calculated using different levels and durations of infec-

tiousness for the chronically infected population. Model outcomes (presented only for 1/γc =

14 days) for the number of a) daily confimed cases and b) daily deaths using the data until the

introduction of relaxation for model fitting, respectively. Darker shades of blue represent the

fitting results with increased infectiousness of the chronically infected population, i.e., lower rc
values within the range 0� rc< 100%. Fitting results for rc = 100% are drawn in red, and the

fitting results for the model without the Ic compartment (model w/o Ic) are drawn in pink.

Data points that are used for fitting are drawn in black. Gray areas around the model outcomes

represent the union of the 95% confidence intervals calculated for all models. RMSE values c)

for the number of daily confirmed cases and d) the number of daily deaths for a given rc and γc
value used for fitting, where model w/o Ic represents the results for the model without the Ic
compartment. e) Probability of the model without the Ic compartment (model w/o Ic) having a

greater combined RMSE (CRMSE) value than the model with the Ic compartment for all levels

of reduced infectiousness (rc� 100%) for different rc and γc values. f) Probability of the model

where individuals are being diagnosed without being infectious (rc = 100%) having a greater

combined RMSE (CRMSE) value than the model with individuals with a a prolonged infec-

tiousness (rc< 100%) for different rc and γc values. Points in the gray areas represent the

models that are providing a better fit more frequently than e) the model without the Ic com-

partment (model w/o Ic) and f) the model with rc = 100%.

(TIFF)

S2 Fig. Fitting and Root Mean Squared Error (RMSE) results for Piedmont. Fitting and

RMSE results for Piedmont, calculated using different levels and durations of infectiousness

for the chronically infected population. Model outcomes (presented only for 1/γc = 14 days)

for the number of a) daily confimed cases and b) daily deaths using the data until the introduc-

tion of relaxation for model fitting, respectively. Darker shades of blue represent the fitting

results with increased infectiousness of the chronically infected population, i.e., lower rc values

within the range 0� rc< 100%. Fitting results for rc = 100% are drawn in red, and the fitting

results for the model without the Ic compartment (model w/o Ic) are drawn in pink. Data

points that are used for fitting are drawn in black. Gray areas around the model outcomes rep-

resent the union of the 95% confidence intervals calculated for all models. RMSE values c) for

the number of daily confirmed cases and d) the number of daily deaths for a given rc and γc
value used for fitting, where model w/o Ic represents the results for the model without the Ic
compartment. e) Probability of the model without the Ic compartment (model w/o Ic) having a

greater combined RMSE (CRMSE) value than the model with the Ic compartment for all levels

of reduced infectiousness (rc� 100%) for different rc and γc values. f) Probability of the model

where individuals are being diagnosed without being infectious (rc = 100%) having a greater

combined RMSE (CRMSE) value than the model with individuals with a a prolonged infec-

tiousness (rc< 100%) for different rc and γc values. Points in the gray areas represent the

models that are providing a better fit more frequently than e) the model without the Ic com-

partment (model w/o Ic) and f) the model with rc = 100%.

(TIFF)
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S3 Fig. Fitting and Root Mean Squared Error (RMSE) results for the State of Louisiana. Fit-

ting and RMSE results for the State of Louisiana, calculated using different levels and durations

of infectiousness for the chronically infected population. Model outcomes (presented only for

1/γc = 14 days) for the number of a) daily confimed cases and b) daily deaths using the data

until the introduction of relaxation for model fitting, respectively. Darker shades of blue repre-

sent the fitting results with increased infectiousness of the chronically infected population, i.e.,

lower rc values within the range 0� rc< 100%. Fitting results for rc = 100% are drawn in red,

and the fitting results for the model without the Ic compartment (model w/o Ic) are drawn in

pink. Data points that are used for fitting are drawn in black. Gray areas around the model out-

comes represent the union of the 95% confidence intervals calculated for all models. RMSE

values c) for the number of daily confirmed cases and d) the number of daily deaths for a

given rc and γc value used for fitting, where model w/o Ic represents the results for the model

without the Ic compartment. e) Probability of the model without the Ic compartment (model

w/o Ic) having a greater combined RMSE (CRMSE) value than the model with the Ic compart-

ment for all levels of reduced infectiousness (rc� 100%) for different rc and γc values. f) Proba-

bility of the model where individuals are being diagnosed without being infectious (rc = 100%)

having a greater combined RMSE (CRMSE) value than the model with individuals with a a

prolonged infectiousness (rc< 100%) for different rc and γc values. Points in the gray areas rep-

resent the models that are providing a better fit more frequently than e) the model without the

Ic compartment (model w/o Ic) and f) the model with rc = 100%.

(TIFF)

S4 Fig. Fitting and Root Mean Squared Error (RMSE) results for the State of New Jersey.

Fitting and RMSE results for the State of New Jersey, calculated using different levels and dura-

tions of infectiousness for the chronically infected population. Model outcomes (presented

only for 1/γc = 14 days) for the number of a) daily confimed cases and b) daily deaths using the

data until the introduction of relaxation for model fitting, respectively. Darker shades of blue

represent the fitting results with increased infectiousness of the chronically infected popula-

tion, i.e., lower rc values within the range 0� rc< 100%. Fitting results for rc = 100% are

drawn in red, and the fitting results for the model without the Ic compartment (model w/o Ic)
are drawn in pink. Data points that are used for fitting are drawn in black. Gray areas around

the model outcomes represent the union of the 95% confidence intervals calculated for all

models. RMSE values c) for the number of daily confirmed cases and d) the number of daily

deaths for a given rc and γc value used for fitting, where model w/o Ic represents the results for

the model without the Ic compartment. e) Probability of the model without the Ic compartment

(model w/o Ic) having a greater combined RMSE (CRMSE) value than the model with the Ic
compartment for all levels of reduced infectiousness (rc� 100%) for different rc and γc values.

f) Probability of the model where individuals are being diagnosed without being infectious

(rc = 100%) having a greater combined RMSE (CRMSE) value than the model with individuals

with a a prolonged infectiousness (rc< 100%) for different rc and γc values. Points in the gray

areas represent the models that are providing a better fit more frequently than e) the model

without the Ic compartment (model w/o Ic) and f) the model with rc = 100%.

(TIFF)

S5 Fig. Fitting and Root Mean Squared Error (RMSE) results for the State of New York.

Fitting and RMSE results for the State of New York, calculated using different levels and dura-

tions of infectiousness for the chronically infected population. Model outcomes (presented

only for 1/γc = 14 days) for the number of a) daily confimed cases and b) daily deaths using

the data until the introduction of relaxation for model fitting, respectively. Darker shades

of blue represent the fitting results with increased infectiousness of the chronically infected
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population, i.e., lower rc values within the range 0� rc< 100%. Fitting results for rc = 100%

are drawn in red, and the fitting results for the model without the Ic compartment (model w/o

Ic) are drawn in pink. Data points that are used for fitting are drawn in black. Gray areas

around the model outcomes represent the union of the 95% confidence intervals calculated for

all models. RMSE values c) for the number of daily confirmed cases and d) the number of

daily deaths for a given rc and γc value used for fitting, where model w/o Ic represents the

results for the model without the Ic compartment. e) Probability of the model without the Ic
compartment (model w/o Ic) having a greater combined RMSE (CRMSE) value than the

model with the Ic compartment for all levels of reduced infectiousness (rc� 100%) for different

rc and γc values. f) Probability of the model where individuals are being diagnosed without

being infectious (rc = 100%) having a greater combined RMSE (CRMSE) value than the model

with individuals with a a prolonged infectiousness (rc< 100%) for different rc and γc values.

Points in the gray areas represent the models that are providing a better fit more frequently

than e) the model without the Ic compartment (model w/o Ic) and f) the model with rc = 100%.

(TIFF)

S6 Fig. Root Mean Squared Error (RMSE) results of model fitting prior to the introduction

of relaxation for Switzerland. RMSE results of model fitting prior to the introduction of

relaxation for Switzerland, calculated using different levels and durations of infectiousness for

the chronically infected population.

(TIFF)

S7 Fig. Comparison of RMSE values for Switzerland for 95% confidence interval Boot-

strapping. a) Probability of the model without the Ic compartment (model w/o Ic) having a

greater RMSE value than the model with the Ic compartment for different levels of reduced

infectiousness (90%�rc� 100%) and γc values, calculated over the predicted data points. b)

Probability of the model where individuals are being diagnosed without being infectious (rc =

100%) having a greater RMSE value than the model with individuals with a a prolonged infec-

tiousness (rc< 100%) for different rc and γc values, calculated over the predicted data points.

Points in the gray areas represent the models that are providing a better fit more frequently

than a) the model without the Ic compartment (model w/o Ic) and b) the model with rc =

100%.

(TIFF)

S1 Table. Maximum differences in the median RMSE values. Maximum difference in the

median RMSE values for the number of daily confirmed cases and the number of daily deaths

for all combinations of rc and γc values for Lombardy, Emilia-Romagna, Piedmont, State of

Louisiana, State of New Jersey, and the State of New York. RMSE values are provided in both

in absolute values and relative to the mean of their corresponding data type.

(XLSX)

S2 Table. Parameter estimates with their corresponding means, standart deviations, and

confidence intervals. Parameter estimates with their corresponding means, standart devia-

tions, and confidence intervals for all combinations of rc and γc values for Lombardy, Emilia-

Romagna, Piedmont, State of Louisiana, State of New Jersey, the State of New York, and Swit-

zerland.

(XLSX)
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