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Context

Importance of residuum health

The use of a prosthesis is essential to maintain function and wellbeing of individuals

suffering from limb absence (1, 2). Consequently, providers of prosthetic care

recommend bespoke interventions to sustain lenient interactions between individuals’

residual limb and their prosthesis (3–7). The clinical management of this interface is

critical because it greatly affects the residuum health (8).

Residuum health is influenced by intrinsic determinants inherent to personal

demographics (e.g., gender, age, weight, and height) and surgical amputation (e.g.,

length of bone, muscle reassignments, muscle strength, and adipose tissue

distribution) and extrinsic determinant-associated attachment (e.g., socket design and

direct skeletal attachment) and prosthetic components (e.g., choice and alignment of

components, control of the prosthetic joint movements, use of walking aids, and level

of activity) (8). In all cases, interactions between intrinsic and extrinsic determinants

are critical as residual tissues have limited physiological capacity to withstand direct

loading applied by typical socket-suspended prostheses during daily activities (e.g.,

chafing and rubbing) (5, 9–12). In addition to general neurological residuum and

phantom pain, individuals can experience a range of incapacitating

neuromusculoskeletal dysfunctions compromising residuum health, such as acute and

chronic skin issues, edema, neuroma, tendinitis, muscle contractures, stress fractures,

osteopenia, and heterotopic bone growth, which altogether increases the risks of

sound lower joints osteoarthrosis, and hyperlordosis (6, 13, 14).

Consequently, satisfactory residuum–prosthesis interface is difficult to achieve and

sustain (15). Individuals with compromised residuum health are more at risk to

experience unsuccessful prosthetic fitting arrangements (4, 16). Those with healthy

residuum are more likely to maximize comfort, stability, and mobility when using a
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suitable prosthesis. Individuals tend to go up and down between

low (e.g., bedridden, use of wheelchair, and two crutches

without prosthesis), unsatisfactory (e.g., two crutches with

prosthesis, one stick, and independent ambulation with pain),

and satisfactory (independent ambulation without pain and

participation in recreational and professional activities) levels

of activity depending on their satisfaction with prosthetic

fitting, functional abilities, and need for aids (17–20).

Individuals are often trapped going back and forth between

unsatisfactory and satisfactory health states depending on pain

level with the prosthesis (19, 21). Pain leads to frequent, and

too often permanent, prosthesis abandonment (22–24).

Altogether, repeated episodes of care addressing prosthetic

fitting generate great personal distress and heavy

socioeconomic burdens (e.g., healthcare expenses and work

absenteeism) (25–30).
Emergence of new bionic solutions

In the last few decades, we have witnessed promising

developments in the production of bionic limb solutions that

could possibly alleviate, separately or altogether, some of the

residuum health and fitting issues (31–34). Some innovations

provide better prosthetic attachment through osseointegrated

implants that could either extend the residuum limb and

facilitate socket fit (e.g., endoskeletal implant) or protrude the

skin to allow the fitting of bone-anchored prostheses (e.g.,

endoskeletal-exoskeletal implant) (19, 35, 36). Other

innovations aim predominantly to reduce pain and improve

control of the prosthetic limbs, including regenerative

peripheral nerve interfaces, targeted muscle reinnervation

(TMR), agonist–antagonist myoneural interface, and sensory

feedback (31, 37–40).

Altogether, these emerging bionic bone-anchored prostheses

could dramatically alleviate socket-related issues and improve

intuitive usage of artificial limbs (33, 41–43). Early evidence of

the clinical outcomes of these new interventions has indicated

that they have, altogether, the potential to engender life-

changing benefits (e.g., body image, sitting comfort,

osseoperception, pain reduction, prosthetic control, walking

ability, and health-related quality of life) (44–47).
Need for more information about
rehabilitation and prosthetic care bionic
solutions

Reports of scientific advances of a particular solution tend

to focus primarily on the design of interface between the body

and the hardware (e.g., osseointegrated implants and

electrodes), screening process (e.g., eligibility criteria), surgical

techniques (e.g., number of stages and reinnervation
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matrices), fitting and design of prosthetic components (e.g.,

microprocessor-controlled joints and control algorithms) as

well as short- to long-term outcomes (e.g., physical tasks and

health-related quality of life) (48–52).

Although critical to successful clinical outcomes,

rehabilitation procedures (e.g., training exercises) and

prosthetic fitting recommendations (e.g., setting of

components) for new solutions are often areas of continuous

development and, therefore, are under-reported (53–59). The

level of understanding and acceptance of pre- and

postoperative clinical care may vary between interventions for

lower or upper bionic limbs.

More information is needed to elucidate the relationships

between surgical procedure, clinical care, prosthetic fitting,

and outcomes of current and emerging interventions (e.g.,

efficacy and safety) that are critical for establishing an

evidence-based reasonable, and eventually best, standard of

care for current and future bionic solutions.
Contribution

Scope of the research topic

Initially, we identified a need for more information about:

• Preoperative interventions that could possibly maximize

surgical and medical outcomes of bionic limb solutions

(e.g., screening process, strength, and reconditioning,

stretching program).

• Postoperative intervention following surgical insertion of

osseointegrated implants (e.g., rehabilitation programs,

prescription of loading progression, monitoring of loading

exercises, design of static and dynamics load-bearing

exercises, strength, and conditioning).

• Postoperative intervention after targeted muscle

reinnervation (e.g., extraction of physiological signal,

development of classifiers, design of fine and/or gross

motor control training exercises, training for intuitive

control).

• Fitting of bionic and/or bone-anchored prostheses (e.g.,

choice and alignment of prosthetic components, training

with microprocessor-controlled joint units, fall prevention

program).

• Short- and long-term outcome measures of efficacy and

safety of bionic and/or bone-anchored prostheses extracted

from standardized and non-standardized instruments (e.g.,

physical tasks and self-reported surveys).

• Quantitative evaluation of functional recovery with

techniques based on kinematics and dynamics and on the

processing of myoelectric signal of the non-amputee limb

to study adaptation and recovery strategies also aimed at

the optimal choice of prosthesis.
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It will be unrealistic to expect that this Research Topic alone

will outline the current “state-of-the-art” on these topics.

Therefore, we decided to gather a series of highly focused

articles presenting forthcoming ideas and concepts as well as

preliminary data about current and emerging bionic solutions.
Outline of key contributions

This Research Topic features a total of 10 articles written by

54 authors (39% females and 61% males) from 23 institutions

across 7 countries. It presents one Perspective, Review, Case

Report, Brief Research Report, and six Original Research

articles.

As detailed in Table 1, six manuscripts involved individuals

with transtibial, transfemoral, hip disarticulation, and

transhumeral amputations. Two other basic studies used

cadavers and animal specimens. Six manuscripts focused on

socket interface and three locked at the design of a

percutaneous part, the osseointegration process, and the

surgical procedure for direct skeletal attachment specific to

bone-anchored prostheses. Four studies sought to improve

safety of prosthetic care, more particularly reduction of fall,

improvement of osseointegration, and reduction in the

infection of future osseointegrated implants. Eight studies

aimed at improving efficacy, particularly mobility and

function, reduction of phantom and residuum pain, and

control of prosthesis.
Overview of new bionic solutions

Raschke (2022) wrote an introductory review that provided

critical insights into the historical developments of the

prosthetic technology and practices within the greater context

of successive industrial revolutions (Industry 1.0 to Industry 4.

0). Raschke shared her astute perspective on the expected

benefits of the current industry revolution. The unfolding

Industry 4.0 is characterized by the convergence of physical,

digital, and biological systems that support the creation of

smart technology and cyber-physical systems enabling

innovative bionic bone-anchored prostheses (e.g., advanced

manufacturing, additive manufacturing, data analytics,

augmented reality, simulation, horizontal/vertical integration,

cybersecurity, cloud computing, and the industrial internet).

Raschke also highlighted the importance of health economic

assessments to determine the balance between the costs and

the benefits of these innovations (25).

Taylor et al. (2022) used cadaveric mechanical testing,

medical imaging, and finite-element analyses of humeri and

tibia to improve the design of the percutaneous

osseointegration docking system for direct skeletal prosthetic

limb attachment. The translation of the exact system from the
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humerus to the tibia may not be suitable because of

differences in impaction force and stress distribution. Each

type of implant must be designed following a specific shape

and mechanical constraints.

Bohart et al. (2022) used a porcine model to develop an

infection-free integration between the skin and a percutaneous

part of skin and bone integrated pylon for direct skeletal

attachment of lower limb prostheses. Injections of botulinum

toxin into the four thigh muscles of the distal thigh of the left

hind leg were sufficient to provide noticeable immobilization

the skin’s movement around the implant by the fourth week

after the procedure. Injections of botulinum toxin might limit

skin movements around a percutaneous part of an implant,

thereby possibly reducing postoperative risks of infection.

Borkowska et al. (2022) performed a randomized cross-over

study within able-bodied participants to assess the capacity of a

new haptic sleeve to improve mechanotactile feedback. This

study locked at changes in weak, normal, and strong grasp

using visual, haptic, or combined feedback. The

mechanotactile feedback provided by the haptic sleeve

effectively improve grasping tasks and reduced energy

expenditure.

Bresslerf et al. (2022) asked clinicians and end users to

complete a System Usability Scale survey and semistructured

interview to validate a new computer-assisted limb assessment

(CALA) tool that can standardize documentation and

visualization of phantom limb sensations and pain and

quantify the patient’s body image. CALA allowed for an

accurate description and quantitative documentation of

phantom limb pain. This capacity to analyze, monitor, and

report sensation and pain information can help to close the

gap between the therapist’s conception and the patient’s

perception of phantom limb sensation and pain.

Kannenberg et al. (2022) analyzed the outcomes of an

online survey completed by 46 individuals with transtibial

amputation to determine whether anecdotal reports on

reduced musculoskeletal pain and improved patient-reported

mobility were isolated occurrences or reflect a common

experience in powered prosthetic ankle–foot users. Users

reported improvements in mobility and reduction of sound

knee and amputated side knee pain when using powered

prosthetic ankle–foot compared with passive feet. However, a

substantial proportion of powered prosthetic ankle–foot users

also reverted to passive feet.

De Marchis et al. (2022) performed a multimodal prosthetic

gait assessment using a series of kinematic, kinetic, and

electrophysiological datasets collected on individuals with

different types of amputations and prosthetic components for

a project funded by the Italian Worker’s Compensation

Authority. This study showed the importance of analyzing

movement neural control and mechanical actuation of

prosthetic limb as a whole rather than through segregated

analyses focusing specific aspects. Multimodal prosthetic gait
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assessment can facilitate a more effective design of prostheses

and therapies for patients fitted with conventional and new

bionic limbs.

Finucane et al. (2022) asked individuals with a unilateral

transfemoral or knee disarticulation amputation to follow new

training (i.e., verbal, visual, tactile cueing, and patient

education) to improve functional mobility (i.e., level-ground

walking, stair climbing, incline walking, and sit-to-stand

transitions) with a powered knee and ankle prostheses. This

study provided new training techniques that can help

individuals fitted with lower limb prostheses to take advantage

of these powered devices and achieve their desired clinical

outcomes.

Bachini et al. (2022) asked an individual with transfemoral

amputation to wear four prosthetic interfaces stimulating

specific areas of the residual limb (e.g., rigid and a semirigid

socket with and without a focal pressure) to investigate if

socket design can influence phantom sensations. Phantom

sensations were different during distinct phases of the walking

gait cycle depending on the four interfaces and led to changes

in some gait spatiotemporal parameters. Phantom sensations

were modulated by the prosthetic interface and could provide

natural somatosensory information dynamically varying with

gait phases.

Boesendorfer et al. (2022) reported the experience and

outcomes of an individual who opted for an elective arm

amputation to solve the lack of function due to obstetric

brachial plexus injury. The participant showed a distinct

improvement of function and high wearing times of the

prosthesis at follow-up assessment. Selected patients who

experience severe neurological deficit of biologic hand

function might benefit from the elective amputation and

subsequent restoration with the bionic hand.
Next steps

Sparking discussions

As highlighted by Raschke (2022), the successful

development of bionic solutions integrating physical, digital,

and biological systems will occur through a multitude of small

increments. This Research Topic contributes to this global

effort as it identifies knowledge gaps while, hopefully,

sparking discussions about these new concepts capable of

advancing clinical and prosthetic care of bionic limb prostheses.
From concept to standard of care

These articles should motivate more teams to engage in

formalized research and publications further advancing these

innovations. Accumulation of evidence through registered
Frontiers in Rehabilitation Sciences 05
clinical trials will be required to facilitate clinical adoption

and subsequent acceptance as standard of prosthetic care.

Robust evidence will be required to overcome what Harris

(2016) described as the “decline effect” (e.g., Initial strong

results of new treatments tend to fade overtime with

subsequent independent and stronger studies) (60). This will

be critical to convince public and private healthcare funding

bodies to support a particular innovation, particularly with

the emergence of the fee-for-device business model (e.g.,

hospital, work cover, and insurance) (25–30).
Toward a global ecosystem

These clinical and prosthetic care innovations will

contribute to the formation of a global ecosystem where a set

of organizations and services will integrate the value chain of

these bionic solutions through various commercial models.

This emerging ecosystem will include providers of prosthetic

solutions and administrators of healthcare organizations.

More importantly, consumers will be at the heart of the

ecosystem through involvement in the co-design of

innovations and influence of consumers’ advocates. Involving

all stakeholders will critical to warrant that these bionic

innovations, indeed, improve safely the life of growing

population of individuals suffering from limb loss worldwide.
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