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Abstract: Flowering time is a critical stage for crop development as it regulates the ability of plants
to adapt to an environment. To understand the genetic control of flowering time, a genome-wide
association study (GWAS) was conducted to identify the genomic regions associated with the control
of this trait in durum wheat (Triticum durum Desf.). A total of 96 landraces and 288 modern lines were
evaluated for days to heading, growing degree days, and accumulated day length at flowering across
13 environments spread across Morocco, Lebanon, Mauritania, and Senegal. These environments were
grouped into four pheno-environments based on temperature, day length, and other climatic variables.
Genotyping with a 35K Axiom array generated 7652 polymorphic single nucleotide polymorphisms
(SNPs) in addition to 3 KASP markers associated with known flowering genes. In total, 32 significant
QTLs were identified in both landraces and modern lines. Some QTLs had a strong association with
already known regulatory photoperiod genes, Ppd-A and Ppd-B, and vernalization genes Vrn-A1 and
VrnA7. However, these loci explained only 5% to 20% of variance for days to heading. Seven QTLs
overlapped between the two germplasm groups in which Q.ICD.Eps-03 and Q.ICD.Vrn-15 consistently
affected flowering time in all the pheno-environments, while Q.ICD.Eps-09 and Q.ICD.Ppd-10 were
significant only in two pheno-environments and the combined analysis across all environments.
These results help clarify the genetic mechanism controlling flowering time in durum wheat and
show some clear distinctions to what is known for common wheat (Triticum aestivum L.).

Keywords: durum wheat; flowering time; pheno-environments; GWAS; QTL

1. Introduction

Durum wheat (Triticum durum Desf.) is an allotetraploid with A and B genomes. Its major
production base is the European Union, with 9 million tonnes harvested in 2018, followed by Canada,
Turkey, the United States, Algeria, Mexico, Kazakhstan, Syria, and India [1]. Flowering induction
plays a pivotal role in the plant life cycle, affecting reproductive success and yield depending on
the prevailing climatic conditions of the target environment. In durum wheat, the heading and
flowering times are critical stages in crop development as they play an important role in adaptation,
yield potential, and grain quality [2]. In addition, climatic stress during anthesis negatively affects
pollen fertility [3,4]. Therefore, plant breeders need effective tools to predict flowering time in order to
identify promising genotypes adapted to different environmental conditions.

Flowering time in wheat is controlled mainly by three groups of loci, two of which interact
with environmental factors—namely, photoperiod sensitivity genes (Ppd) and vernalization genes

Plants 2020, 9, 1628; doi:10.3390/plants9121628 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-4891-2223
https://orcid.org/0000-0002-0778-4712
https://orcid.org/0000-0002-9257-4583
https://orcid.org/0000-0001-9143-9569
https://orcid.org/0000-0002-1164-5598
http://www.mdpi.com/2223-7747/9/12/1628?type=check_update&version=1
http://dx.doi.org/10.3390/plants9121628
http://www.mdpi.com/journal/plants


Plants 2020, 9, 1628 2 of 18

(Vrn) [5]—while the third group of loci is defined as “narrow-sense earliness” or “earliness per se”
(Eps), because these act independently of vernalization and photoperiod [6]. However, it is not certain
whether Eps genes act independently of all environmental cues [7,8], since for instance Appendino
and Slafer [9] showed that Eps genes could respond to temperature changes. Allelic variation in Ppd
genes divides the temperate cereals into photoperiod-sensitive and photoperiod-insensitive classes,
whereas differences in the Vrn alleles divide them into winter and spring classes.

Vernalization is the acquisition or acceleration of a plant’s ability to flower after exposure to a
certain degree of cold temperature, and it is a strategic adaptation mechanism to postpone heading
after the frost-prone winter months [10]. The natural variation in vernalization requirement is mainly
associated in common wheat with allelic differences in the Vrn1, Vrn2, and Vrn3 genes on A, B, and D
chromosomes. The Vrn genes regulate the transition from vegetative to reproductive phase in response
to temperature [5] and thus determine the spring and winter growth habit. Different alleles respond
differently to temperatures, but in general prolonged exposures to temperatures at least below 16 ◦C are
necessary to achieve the vernalization needs, and colder temperatures tend to accelerate this process,
reducing the total number of days needed for flowering. This is one of the main adaptation systems that
allows winter wheat to survive at lower temperatures than spring wheat [11]. Winter wheat possesses
recessive alleles at the Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-D5 loci [12,13], while spring wheat has dominant
alleles at one or more of them [14]. The dominant allele of Vrn-A1 confers complete insensitivity
to vernalization in spring growth habit and is epistatic to the dominant alleles of Vrn-B1, Vrn-D1,
and Vrn-D5, which confer low sensitivity to vernalization in a facultative winter growth habit [12,15–17].
Durum wheat also harbors Vrn-A1 and Vrn-B1, located on the long arms of chromosomes 5A and
5B [18,19]. Recent advances in wheat genomics have allowed for the cloning of the Vrn-A1, Vrn-B1,
and Vrn-D1 genes [20] and the development of functional SNP markers for their characterization.

Photoperiod response is another important factor influencing the initiation and length of the
flowering period. The natural variation in response to photoperiod is mainly determined by allelic
differences in the Ppd1 gene, a member of the pseudo-response regulator (PRR) gene family [21].
Similarly to vernalization, this a major adaptation mechanism to delay flowering until after the
short days of winter have passed to avoid the risk of frost damage to the reproductive organs.
Photoperiod-sensitive wheat plants initiate flowering only after long days with more than 13 h
of sunlight are perceived, while photoperiod-insensitive types can induce heading irrespective of
daylength. Mutation at the Ppd-1 locus enables wheat to become photoperiod insensitive and flower
irrespective of day length. These mutations have been put under strong selection pressure in the past to
enhance yield under certain climatic conditions via the promotion of early flowering to avoid terminal
climatic stresses late in the season. Particularly famous is the case of Norman Borlaug, who was able to
impose a very stringent selection of photoperiod-insensitive types via the use of shuttle breeding (two
breeding cycles per year). This process resulted in widely adapted wheat cultivars that prompted the
Green Revolution [22,23].

In durum wheat, photoperiod sensitivity is determined by the Ppd-A1 and Ppd-B1 loci, located on
chromosomes 2AS and 2BS, respectively [24], while photoperiod insensitivity results from mutations in
any of the two Ppd-1 genes. By convention, alleles conferring photoperiod insensitivity are assigned an
“a” suffix (e.g., Ppd-A1a) [25]. In durum wheat, two large deletions within the Ppd-A1 gene designated
as alleles “GS-100” and “GS-105” were reported to accelerate flowering, which led Wilhelm et al. [26] to
conclude that these deletions are the likely causal basis of photoperiod insensitivity in tetraploid wheat.

While the knowledge of gene action to control flowering time in hexaploid wheat is quite accurate
and routinely exploited in marker-assisted breeding [27], its application in durum wheat has not yet
been fully tested, and several discrepancies such as the actual effect of Vrn and Ppd alleles have been
found when deploying them in breeding [28]. For that reason, genome-wide association study (GWAS)
has been adopted to confirm the loci associated with flowering time in durum wheat. A QTL associated
with Ppd-A1a was shown to significantly reduce heading time in a recombinant inbred lines (RIL)
population derived from the cross “Kofa” (“GS-100” allele) × “Svevo” (“GS-105” allele), suggesting that
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these two alleles have different effects on photoperiod sensitivity in durum [2]. A genome-wide
association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico resulted
in the identification of 50 chromosomal regions [29], of which only Ppd-A1 and Ppd-B1 had been
previously described.

To better understand the effect of different flowering genes in durum wheat, a GWAS study was
conducted using both modern germplasm and landraces and exposing these to very different climatic
conditions, with the aim of triggering the expression of different loci and capturing their genetic effects.
The use of a selected set of contrasting environments was deemed novel to better qualify and define
the effect of different loci.

2. Results

2.1. Determination of Phenological Environments (PhEnv)

The plotting of climatic data (Figure 1) showed sizable variation among the 13 environments for
average temperatures and day lengths, with Lebanon off-season planting in summer having a clear
distinction in daylength and temperatures. Similarly, the experimental sites along the Senegal River
(Fanaye and Kaedi) had a shorter daylength and higher temperatures. Terbol and Kfardan in Lebanon
were the only sites where below-zero temperatures were recorded. A clustering analysis of climatic
data based on PCA (Figure S1) revealed four main phenological environments (PhEnv) explaining
95% of the total climate variation and divided as follows: PhEnv1 included five environments in
Morocco (TES16, MKZ15, MKZ16, MCH15, and MCH16), PhEnv2 represented three environments in
Lebanon (TER15, TER16, and KFD16), PhEnv3 included two environments in both Senegal (FAN15
and FAN16) and Mauritania (KED15 and KED16), and PhEnv4 included only Terbol off-season in
Lebanon (Figure 2).Plants 2020, 9, x FOR PEER REVIEW 4 of 18 

 

 
Figure 1. Distribution of (a) day length and (b) average temperature during the crop season at 13 
environments including eight locations. The environments included are Kaedi (KED) 2015 and 2016 
in Mauritania; Fanaye (FAN) 2015 and 2016 in Senegal; Marchouche (MCH) 2015 and 2016, Melk Zhar 
(MKZ) 2015 and 2016, and Tessaout (TES) 2016 in Morocco; Terbol (TER) 2015 and 2016, Kfardan 
(KFD) 2016, and Terbol off (TerOff) season 2016 in Lebanon. This last environment was plotted in the 
right axis to simplify visualization. 
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Figure 1. Distribution of (a) day length and (b) average temperature during the crop season at 13
environments including eight locations. The environments included are Kaedi (KED) 2015 and 2016 in
Mauritania; Fanaye (FAN) 2015 and 2016 in Senegal; Marchouche (MCH) 2015 and 2016, Melk Zhar
(MKZ) 2015 and 2016, and Tessaout (TES) 2016 in Morocco; Terbol (TER) 2015 and 2016, Kfardan (KFD)
2016, and Terbol off (TerOff) season 2016 in Lebanon. This last environment was plotted in the right
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Figure 2. Meteorological parameters and phenological recordings for 13 environments including four 
countries—Morocco (Marchouche, Melk Zhar, and Tassaout), Lebanon (Terbol, Terbol off-season, 
and Kfardan), Senegal (Fanaye), and Mauritania (Kaedi)—used for the phenotyping of 384 durum 
wheat entries. The cladogram shows the relatedness of the environments based on PCA analysis of 
climatic data. Max temp: maximum temperature; Avr max temp: average maximum temperature; 
Min temp: minimum temperature; Avr Min Temp: average minimum temperature; CGDD: average 
cumulative growing degree days for flowering; CDL sowing: cumulative day length at the time of 
sowing; flwr: to flowering; DTH: average days to heading. 
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Analysis of variance (Table S1) showed significant (p < 0.01) differences for environment, PhEnv, 
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GxPhEnv explained 68.7%, 80.7%, and 66.6% of the GxE for days to heading (DTH), cumulative 
growing degree days (CGDD), and cumulative day length (CDL), respectively. The DTH ranged from 
71 to 107 days, with an average of 87 days across environments (Figure S2). The variation for CGDD 
and CDL ranged from 1049 to 2019 °C and 43,871 to 91,760 min, respectively (Figure S2). There was 
significant genotypic variation among accessions for DTH (Figure 3), with most of the modern lines 
flowering between 80 and 90 days, while landraces reached flowering only after 95–115 days. The 
high temperature and short photoperiod of PhEnv3 and PhEnv4 resulted in the shortest DTH (65 to 
73 days), with the average min temperatures ranging between 14.4 and 21.6 °C and the average max 
temperatures from 31.0 to 35.5 °C. On the other hand, the short photoperiod and high temperatures 
of PhEnv3 prevented 3% of the landraces from ever reaching flowering, while PhEnv4 affected the 
possibility of flowering in 6% of the landraces and 2% of the modern lines. 

Figure 2. Meteorological parameters and phenological recordings for 13 environments including
four countries—Morocco (Marchouche, Melk Zhar, and Tassaout), Lebanon (Terbol, Terbol off-season,
and Kfardan), Senegal (Fanaye), and Mauritania (Kaedi)—used for the phenotyping of 384 durum
wheat entries. The cladogram shows the relatedness of the environments based on PCA analysis of
climatic data. Max temp: maximum temperature; Avr max temp: average maximum temperature;
Min temp: minimum temperature; Avr Min Temp: average minimum temperature; CGDD: average
cumulative growing degree days for flowering; CDL sowing: cumulative day length at the time of
sowing; flwr: to flowering; DTH: average days to heading.
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2.2. Analysis of Variance for G, G x E, and G x PhEnv

Analysis of variance (Table S1) showed significant (p < 0.01) differences for environment, PhEnv,
genotype, genotype x environment, and genotype x PhEnv effects for all three tested traits. The GxPhEnv
explained 68.7%, 80.7%, and 66.6% of the GxE for days to heading (DTH), cumulative growing degree
days (CGDD), and cumulative day length (CDL), respectively. The DTH ranged from 71 to 107 days,
with an average of 87 days across environments (Figure S2). The variation for CGDD and CDL ranged
from 1049 to 2019 ◦C and 43,871 to 91,760 min, respectively (Figure S2). There was significant genotypic
variation among accessions for DTH (Figure 3), with most of the modern lines flowering between
80 and 90 days, while landraces reached flowering only after 95–115 days. The high temperature
and short photoperiod of PhEnv3 and PhEnv4 resulted in the shortest DTH (65 to 73 days), with the
average min temperatures ranging between 14.4 and 21.6 ◦C and the average max temperatures from
31.0 to 35.5 ◦C. On the other hand, the short photoperiod and high temperatures of PhEnv3 prevented
3% of the landraces from ever reaching flowering, while PhEnv4 affected the possibility of flowering in
6% of the landraces and 2% of the modern lines.Plants 2020, 9, x FOR PEER REVIEW 6 of 18 
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Figure 3. Distribution of 384 durum lines for days to heading in each pheno-environment (PhEnv)
expressed as bars, combined across environments expressed as a red line, and divided for landraces
and modern germplasm. The color-coded arrows indicate germplasm that did not flower in PhEnv3 or
PhEnv4, to which was assigned the maximum value to be used for association studies.
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To better define the effect of Vrn and Ppd genes at different PhEnv, Table 1 was developed to
indicate how these loci will be differently expressed in different PhEnv and between them. PhEnv1
in Morocco experiences only mild cold temperatures, so would satisfy only weak Vrn requirements,
but daylength increases in the transition to spring so that full Ppd requirements can be met. PhEnv2 in
Lebanon has the same Ppd conditions as PhEnv1, but the colder winter temperatures favor flowering
also in genotypes with stronger vernalization requirements. PhEnv3 along the Senegal River does
not experience any cold temperatures, and its vicinity to the equator prevents significant changes in
daylength during the season. Similarly, PhEnv4 does not experience cold days, and the photoperiod
shortens between early summer planting and early fall harvest.

Table 1. Matching of climatic requirements for flowering based on photoperiodism (Ppd) growing during
the season to over 12 h of daylight, vernalization (Vrn) with extended periods of cold temperatures
across four phenological environments (PhEnv), and pairing contrasts for their discrimination ability
between genotypes.

PhEnv. Location Loci Expected
Effect

Differential Effects at Main Flowering Loci between Phenv

1 2 3

1 Morocco
Ppd Yes
Vrn Weak

2 Lebanon
Ppd Yes Vrn: weak vs. strong
Vrn Yes

3 Senegal and
Mauritania

Ppd 12h Ppd: 12 h vs. normal
Vrn: no vs. weak

Ppd: 12 h vs. normal
Vrn: no vs. strongVrn No

4 Lebanon
summer

Ppd Shortening Ppd: short vs. normal
Vrn: no vs. weak

Ppd: short vs. normal
Vrn: no vs. strong

Ppd: 12 h vs.
shorteningVrn No

Here abbreviations Ppd, Vrn, and Eps used for photoperiod, vernalization, and earliness per se not for genes.

2.3. Marker-Trait Associations

Association analysis identified 41 and 68 markers associated with DTH, 34 and 63 markers for
CGDD, and 27 and 66 markers for CDL for landraces and modern lines, respectively (Figure S3).
Regression analysis confirmed 32 significant QTLs, 7 of which were in common between modern lines
and landraces, 10 unique to landraces, and 13 unique to modern lines (Tables S2 and S3). Of these
QTLs, six were significant for all the three traits, whereas four were unique for DTH and CDL and nine
for both DTH and CGDD as well as for DTH alone in modern lines. For the landraces, eight QTLs
were common among all traits, whereas five were unique for DTH and CDL, four for DTH and CGDD,
and two for DTH. Based on these combinations, QTLs associated with DTH and CDL were defined as
ppd, with DTH and CGDD as vrn, and with DTH alone and QTLs that overlap assigned as eps.

2.4. Flowering Loci Identified among Landraces

Among landraces, one QTL was identified only in PhEnv1 conditions, eight QTLs in PhEnv2
and PhEn4 conditions, and two QTLs by PheEnv3, while six QTLs showed significant effects across
environments (Table S2). Among the significant loci was also identified the marker tagging Ppd-B1
(Q.ICD.Ppd-05) with a high LOD (4.6) r2 equal to 8.2% in PhEnv4 (Lebanon off season) and PhEnv2
(Lebanon main seasons). Moreover, Q.ICD.Vrn-11 includes the marker tagging Vrn-A1, with a significant
effect in PhEnv4 (Lebanon off season) explaining 12% of the variance. Similarly, three additional QTLs,
Q.ICD.Eps-01 on Chr1A, Q.ICD.Ppd-10 on Chr4B, and Q.ICD.Eps-14 on Chr6A, were significant in
PhEnv4 and accounted for 12% to 30% of the total variance. Q.ICD.Eps-03 and Q.ICD.Ppd-04 on Chr2A
and Q.ICD.Ppd-05 on Chr2B showed significant effects across environments, explaining from 2.6% to 8%
of the variance. Among them, Q.ICD.Eps-03 was significant in the warm conditions in PhEnv4 (Lebanon
off-season), explaining 12.8% of the total variance, whereas Q.ICD.Ppd-04 was significant in PhEnv2
(Lebanon main season), where it accounted for 11.8% of the total variance. Q.ICD.Ppd-02 (Chr1B) and
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Q.ICD.Eps-07 (Chr3B) were significant in the warmest locations in PhEnv3 and PhEnv4, accounting for
7% to 15.5% of the variance. Q.ICD.Eps-06 on Chr3A was significant in PhEnv1 (Moroccan stations) and
PhEnv2 (Lebanon stations). In addition, Q.ICD.Eps-08 and Q.ICD.Eps-09(Chr4A) and Q.ICD.Vrn-12
(Chr5B), along with Q.ICD.Vrn-16 and Q.ICD.Eps-17 (Chr7A), showed significant effects in PhEnv2
(Lebanon), while Q.ICD.Eps-13 (Chr6A) and Q.ICD.Vrn-15 (Chr6B) were significant across environments
and accounted for 4% to 14% of the variance for DTH.

2.5. Flowering Loci Identified among Modern Lines

Among modern lines, five QTLs influenced flowering in PhEnv1, 15 in PhEnv2, 12 in PheEnv3,
and 10 in PhEn4, while 11 QTL in Across Env were significant (Table S3). In particular, Ppd-A1
(Q.ICD.Ppd-19) was consistently significant in all PhEnv. Ppd-A1 showed the highest LOD (from
3.6 to 8.5), 0.17 r2, and explained 1.2% to 12.6% of the variation, while Ppd-B (Q.ICD.Ppd-05) was
significant for PhEnv2 and across environments, accounting for 2.0% to 7.6% of the variance and 0.2 r2.
Two vernalization-specific markers, Vrn-A5 (Q.ICD.Vrn-11) and Vrn-A7 (Q.ICD.Vrn-16), were significant
for PhEnv3 (Senegal and Mauritania) and PhEnv4 (Lebanon off-season) only, and explained 0.03 r2

and 5.2% and 20% of the total variance, respectively. Q.ICD.Ppd-19 was located in close proximity to
Ppd-A with a high LOD (7.5), 0.13 r2, and significant variance (from 2.6% to 13.0%) in PhEnv3, PhEnv4,
and across environments. Similarly, marker-AX-94956877 on Chr2B located adjacent to Ppd-B (thus,
assigned common identifier Q.ICD.Ppd-05) explained 0.08 r2 and from 2.0% to 3.7% of the variance in
PhEnv2 and across environments. Q.ICD.Eps-20 included three different markers on Chr3A and was
consistently significant in all PhEnv except PhEnv4, but explained 0.06 r2 and only 1.3% to 2.0% of
the total variance. Q.ICD.Eps-18 (Chr1B), 0.17 r2, and Q.ICD.Eps-23 (Chr4B), 0.06 r2, were consistently
significant in all pheno-environments except PhEnv1 and accounted for 2.5% to 24.0% of the variance.
Additionally, Q.ICD.Vrn-24 and Q.ICD.Vrn-25 (located on Chr5A) and Q.ICD.Vrn-26 on Chr5B were
significant in PhEnv3 and accounted for up to 4% of the total variation. Q.ICD.Eps-28 and Q.ICD.Eps-29
on Chr6B, Q.ICD.Eps-30 on Chr7A, and Q.ICD.Eps-31-32 on Chr7B were significant in PhEnv2 and
showed 2% to 7% of significant variation and 0.03 to 0.05 r2.

2.6. Common Loci between Landraces and Modern Lines

In addition to photoperiod- (Ppd-B1) and vernalization- (Vrn-A5, VrnA7) specific markers,
landraces and modern germplasm shared four common loci for the control of flowering: Q.ICD.Eps-03,
Q.ICD.Eps-09, Q.ICD.Ppd-10, and Q.ICD.Vrn-15, located on 2A, 4A, 4B, and 6B chromosomes,
respectively (Table 2). However, these loci were seldom identified within the same PhEnv, and hence
might have different allelic compositions between the two germplasm types. The results showed that
Ppd-B1 and Q.ICD.Eps-09 were common to both groups of germplasm in PhEnv2, Vrn-A1 in PhEnv3,
Q.ICD.Ppd-10 in PhEnv 4, and Q.ICD.Vrn-15 across environments.

Several QTLs were dispersed among PhEnv and across environments. For instance, Q.ICD.Eps-03
(Chr2A) was significant in PhEnv2 and PhEnv3 in modern lines, while in landraces it was significant
in PhEnv4 and across environments. Similarly, Q.ICD.Vrn-16 was significant in PhEnv2 in landraces,
while in modern lines it was prominent in PhEnv3 and PhEnv4. In contrast, Q.ICD.Eps-09, Q.ICD.Ppd-10,
and Q.ICD.Vrn-11 were identified in the same PhEnv in both landraces and modern lines, with varying
LOD (3.0 to 3.9), r2 (0.04 to 0.23) and variance (2.0% to 30.3%). Among these, Q.ICD.Eps-09 was
significant in PhEnv2 and Q.ICD.Ppd-10 and Q.ICD.Vrn-11 in PhEnv4. However, modern lines also
showed significance in PhEnv3 for Q.ICD.Vrn-11. Q.ICD.Vrn-15 was consistently significant across all
locations and explained up to 0.04 r2 and 5.1% to 22% of the total variance in modern lines, while in
landraces it was significant only in the combined analysis across environments and accounted for 0.18
r2 and 3.9% of the phenotypic variation.
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Table 2. Significant QTLs and known flowering genes for landraces and modern lines across
phenological environment (PhEnv). The numbers of circles explain the total percent of variance
for days to heading explained by each QTL (• < 5%, •• < 10%, ••• < 20%, •••• > 20%).

QTL Marker Chr. Germplasm PhEnv 1 PhEnv 2 PhEnv 3 PhEnv 4 Across
PhEnv

Q.ICD.Ppd-05 Ppd-B1 2B
Modern • •

Landrace • •

Q.ICD.Vrn-11 Vrn-A1 5A
Modern ••• •• •

Landrace ••

Q.ICD.Vrn-16 Vrn-A3 7A
Modern •

Landrace •

Q.ICD.Eps-03 AX-94460586 2A
Modern • •

Landrace •• •

Q.ICD.Eps-09 AX-95630216 4A
Modern •

Landrace ••

Q.ICD.Ppd-10 AX-94554200 4B
Modern •• •

Landrace ••••

Q.ICD.Vrn-15 AX-94711490 6B
Modern • • • ••

Landrace •

2.7. Effect of Allelic Combinations

Four major QTLs (Q.ICD.Eps-03, Q.ICD.Eps-09, Q.ICD.Ppd-10, and Q.ICD.Vrn-15), two linked
Eps, and one each from Ppd and Vrn were selected based on common position among germplasm,
which reflected the maximum percent of variance and was used to define their additive effect in modern
lines (Figure 4). The flowering effect of different allelic combinations at these loci was hence tested at
the four PhEnv using the SNP call of the marker with the highest LOD underlying each QTL (Figure 4).
ANOVA was performed to test these haplotype classes and the resulting LSD was used as a criterion to
detect significant effect on the trait. Seven haplotypes were identified in the germplasm based on the
four main markers tagging the QTLs. The germplasm harboring favorable alleles at Q.ICD.Ppd-10 and
Q.ICD.Vrn-15 resulted in early flowering in all the PhEnv, irrespective of the allele at the other two
Eps loci. However, the effects of Q.ICD.Eps-03, Q.ICD.Eps-09 became prominent in PhEnv3 (Senegal
and Mauritania) and PhEnv4 (Lebanon-off season), with genotypes revealing the earliest flowering.
The haplotype class with the Eps gene revealed the minimum average flowering time of 48 and 52 days
in Lebanon-off season and Senegal-Mauritania, respectively, whereas the maximum average flowering
time was 129 days in Lebanon, followed by 110 days in Moroccan locations with the individual and
combined effects of the Ppd and Vrn loci.

Apart from the common loci between the landraces and modern lines, few loci correspond to
a specific flowering effect and indicated strong and weak effect for photoperiod and vernalization
based on PhEnv. For example, Q.ICD.Vrn-15 and Q.ICD.Vrn-26 expressed in PhEnv1 belong to
Morocco, where they showed a weak vernalization effect as they experienced a mild cold temperature,
however Q.ICD.Eps-06 in landraces and Q.ICD.Eps-20 in modern lines on chr. 3A significantly affected
the heading time in Moroccan stations (PhEnv1) and were neither involved in vernalization nor in
photoperiod sensitivity, promoting their role as earliness per se (Eps). Q.ICD.Vrn-12 on chr. 5B in
landraces and Q.ICD.Vrn-16 on chr. 7A in both germplasms showed a strong vernalization effect in
Lebanon (PhEnv2), and Q.ICD.Ppd-04 on chr. 2A had a strong photoperiod effect in PhEnv2. In modern
lines, Q.ICD.Vrn-24, and Q.ICD.Vrn-25 on chr. 5A indicated a very weak effect in Senegal and Mauritania
as well as in Lebanon off-season due to the warm temperature. Similarly, these environments exhibited
12 h of continuous light, and lack of vernalization triggered the strong effect of earliness per se. Thus,
Q.ICD.Eps-07 on chr.3B in landraces and Q.ICD.Eps-18 on chr. 1B in modern lines showed strong Eps
effects. However, Q.ICD.Ppd-02 on chr. 1B had a weak photoperiod response.
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Figure 4. Boxplots showing days to heading (DTH) for four pheno-environments of durum core
collection, grouped based on the haplotype score of four major QTLs found to be associated with the
trait. The horizontal lines represent the average of each class, the box edges the 2nd and 3rd quartile,
the whiskers the 1st and 4th quartiles, and the circles outliers. LSD classes are reported in the figure
expressed as letters (a, b, c, d) to show significant variation between the haplotypes.

3. Discussion

3.1. Climatic Effect on the Control of Flowering Time

From an agricultural perspective, plants are considered better adapted to a specific region when
they flower at the appropriate time [30]. The flowering time in durum wheat seems to involve more
loci compared to bread wheat, with smaller effects, resulting in a higher diversity in flowering time,
a driving force for adaptation to the diverse environments of the Mediterranean region [31]. A total of
384 durum entries assessed for flowering time across 13 environments located at different latitudes and
temperature regimes (Figures 2 and 3) confirmed a significant effect of all sources of variations for the
three flowering traits considered: DTH, CGDD, and CDL. The accessions showed remarkable variation
for these traits, with two main subgroups corresponding to landraces and modern lines. These results
confirmed that temperature and photoperiod had a significant effect in determining the flowering
initiation in addition to a number of genes promoting earliness per se (Eps genes). Four diverse
pheno-environments (PhEnv) were determined based on the PCA of climatic conditions at the 13
environments. The four PhEnv had contrasting climatic conditions, and their pairwise comparison
allowed us to distinguish the effects of Ppd and Vrn from those of the Eps loci (Table 1). Interestingly,
the germplasm tested in PhEnv4 (warm summer of Lebanon) resulted in the shortest average DTH at 62
days, since only germplasm without the Ppd and Vrn requirement could flower. Similarly, PhEnv3 along
the Senegal River also promoted early flowering time at 65–73 days, preventing germplasm with Ppd
and Vrn requirements to flower. PhEnv1 of Morocco allowed for Ppd requirements to be met and mild
Vrn, resulting in DTH ranging between 98 and 116 days. PhEnv2 represents Lebanese sites with long
cold winter season, which highlighted the role of both Ppd and Vrn requirements, resulting in the
longest DTH time from 122 to 137 days. Interestingly, CGDD also varied widely among PhEnv, with the
longest season in number of days in Lebanon resulting in the lowest cumulative values (10,490–11,650),
while the other PhEnv overlapped. CDL at flowering increased 5000–10,000 min from PhEnv3 to
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PhEnv4, while it was similar in PhEnv1 and PhEnv4. These results suggest that the main climatic
effects have a strong role in determining the time to flowering. Past studies have shown that latitude
integrates a number of variables affecting wheat development, among which the most important are
photoperiod [32], temperature [33], and their interaction [34]. Similar studies in durum wheat [23]
suggested photoperiod and temperature associated with different locations were the most important
variables in explaining phenological differences. Another research in spring durum wheat indicated
that photoperiod and temperature together explained 77% of the environmental variation between
locations [35]. Our results provide only partial support to these findings, indicating that only up to
39% of phenotypic variation for flowering could be captured by PhEnv determined on the basis of
climatic variables.

3.2. Known Loci Involved in the Control of Flowering Time in Durum Wheat

The present research confirmed a role for four well-established loci in controlling flowering time
in durum wheat across the four PhEnv. Among them, three loci, Ppd-B1, Vrn1, and Vrn3 on Chr. 5A
and Chr. 7A showed significant effects in landraces as well as in modern germplasm, while Ppd-A1
had a strong effect only in modern lines.

Q.ICD.Vrn-11 included the Vrn-A1 locus. It showed a high LOD value and accounted for significant
variability (from 10% to 20%) in flowering time in modern lines and landraces in PhEnv3 (Senegal and
Mauritania), and only in modern in PhEnv4 (Lebanon off-season), where no vernalization requirements
can be met. This is in line with what can be expected, since accessions carrying the recessive Vrn allele
would not be able to flower under those conditions. Previous studies suggested Vrn-1 to be essential
in the control of winter flowering types of common wheat [36–38], and durum wheat [23,28,39–43].
However, the results of the present research show only partial agreement with the literature, with a
clear role of Vrn1 confirmed only when no cold temperatures occur (see PhEnv3 and 4 in Table 1),
but substantially no effect in PhEnv where weak or strong vernalization requirements can be met (see
PhEnv1 and 2 in Table 1). Since PhEnv1 and 2 represent true Mediterranean environments where
spring durum wheat is primarily cultivated, our results suggest the limited importance of Vrn-A1 in
determining the adaptation of durum wheat in its main area of production.

Earlier studies reported a significant role of Vrn3 [5,44,45], suggesting its role in upregulating
Vrn-1 above the threshold levels required for flower initiation. Q.ICD.Vrn-16 on chr. 7A herein reported
likely corresponds to Vrn3. This QTL had a weak effect in modern germplasm in PhEnv3 and in
landraces in PhEnv2. These results suggest a weak role for this locus in the control of flowering time in
durum wheat, with no effect in environments where cold temperatures did not occur throughout the
season (i.e., PhEnv4), probably due to the masking effect of Vrn1.

Locus Q.ICD.Ppd-05 overlapped with Ppd-B1 and showed a significant effect only in PhEnv2
(Lebanon), where full photoperiod requirements are presumably met for both modern lines and
landraces. Past studies reported the importance of Ppd-B1 in bread and durum wheat [23,29,31,46–48].
Royo et al. [23] reported the strong effect Ppd-B1 in 35 spring durum wheat lines and an interaction
between Ppd-B1 and Ppd-A1. Recently, Würschum et al. [31] evaluated European durum genotypes
for heading time in five environments and identified Ppd-B1 as the major determinant of heading
time in durum wheat, accounting for up to 26.2% of the variance. Our study observed confirmed an
effect of Ppd-B1, but it accounted only for 5% of phenotypic variance in landraces as well as modern
lines. This difference might be due to the wider genetic diversity assessed in our study as compared to
research carried out previously.

Another major flowering gene reported by many researchers in durum and bread wheat is Ppd-A1.
In the present study, Q.ICD.Ppd-19 on chr. 2A spans the Ppd-A1 locus. This was the most significant and
stable QTL in our study, with effect in all PhEnv in modern germplasm, while it was monomorphic in
landraces (no genetic variation available) as it can be expected. Earlier studies in durum wheat [49] also
found a strong effect of Ppd-A1 distributed in modern durum wheat lines, suggesting its exploitation
started after the green revolution and was then further selected to increase adaptation. Wang et al. [50],
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Maccaferri et al. [51], and Royo et al. [23,28] also suggested a major role of Ppd-A1 over Ppd-B1 in
durum wheat.

3.3. Identification of Novel Loci Involved in the Control of Flowering Time in Durum Wheat

The major loci known to be involved in the control of flowering time explained only partially
the remarkable variation observed within the tested panel. Therefore, the association between the
phenotypic and genotypic effects was investigated to identify a total of 28 loci not overlapping with
known major flowering genes across the four PhEnv, including four loci in common between landraces
and modern lines.

Q.ICD.Eps-03 on chr. 2A was identified in PhEnv2 and PhEnv3 in modern germplasm for DTH
and in PhEnv4 across environments in landraces for all the traits (DTH, CGDD, and CDL). Because its
role was significant across contrasting environments, it is likely that its impact on flowering time
is independent from climatic conditions (Eps), explaining up to 10% of the phenotypic variation.
Giunta et al. [52] also reported a QTL on chr. 2A in durum wheat, explaining 16.9% of the phenotypic
variation under long day, which falls within our QTL confidence interval (CI) when aligned to the
Svevo genome [53].

Q.ICD.Eps-09 was identified on chr. 4A and accounted for 2% to 18 % of the phenotypic variation
in PhEnv2 (Lebanon) in both germplasm types. This PhEnv differs from all others because both the
Vrn and Ppd requirements were presumably met. It is therefore likely that this locus is also acting as
an earliness per se (Eps), with an effect visible only when the Vrn and Ppd requirements are fulfilled.
Kamran et al. [54] also detected an overlapping QTL (QFlt.dms-4A1), which induced early flowering in
spring wheat population.

Q.ICD.Ppd-10 on chr. 4B controlled significant variation (3% to 30%) for both germplasm groups
only in PhEnv4 (Lebanon off-season), and for modern lines only in the combined analysis across
environments. PhEnv3 has similar climatic conditions to PhEnv4 (no vrn and no ppd requirements),
but in PhEnv3 the photoperiod is decreasing rather than remaining constant throughout the season.
Hence, this unique locus might be specifically linked to the promotion of earliness in durum
germplasm cultivated at high latitudes during the summer cycle. Giunta et al. [52], Sanna et
al. [55], and Milner et al. [56] reported QTLs linked to flowering time that overlap with Q.ICD.Ppd-10
at 26.9 Mbp of chr. 4B and suggested it might correspond to the effect of the Rht-B1 gene.

Q.ICD.Vrn-15 chr. 6B was effective in modern germplasm in all environments except Lebanon
(PhEnv2), while for landraces it was identified only in the combined analysis. PhEnv2 is the only
environment for which complete vernalization requirements can be met. As such, this locus is likely
involved in controlling vernalization requirements in durum wheat with a more refined mode of action
compared to Vrn1. Giunta et al. [52] and Würschum et al. [31] also identified QTLs on chr. 6B at
590.8 Mbp with a significant effect on the determination of heading time. Hence, given its stronger
sensitivity to temperature changes, it might be of value to consider this locus in addition to Vrn1 to
breed for earliness.

3.4. Define Usable Alleles for Earliness via Haplotype Analysis of Multiple QTLs

Four major QTLs (Q.ICD.Eps-03, Q.ICD.Eps-09, Q.ICD.Ppd-10, and Q.ICD.Vrn-15) were selected
because they were identified in both germplasm types with some consistency across PhEnv.
Haplotype analysis was conducted for these QTLs to define their additive nature across climatic
conditions (Figure 4). In PhEnv1, the haplotype TATC resulted in significantly earlier modern lines
than all other haplotypes, except CATC that matched. Comparison with the other haplotypes suggests
a major role for the A allele of Q.ICD.Eps-09 to promote earliness. In PhEnv2 again, TATC resulted
in the earliest flowering haplotype, matching also CATC and CCTC and this time promoting the
role of the TC combination for Q.ICD.Ppd-10 and Q.ICD.Vrn-15. In PhEnv3, TATC was the earliest
flowering type, matching four other haplotypes. Only the nucleotide T in Q.ICD.Ppd-10 appears
to be shared among all haplotypes, hence playing a pivotal role. Finally, in PhEnv4 the haplotype
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TATC resulted in significantly earlier flowering genotypes than all the other haplotypes, except for
CATC. Comparison with the other haplotypes suggests a major role for the A allele of Q.ICD.Eps-09 in
promoting earliness. Considering these results together, the TATC haplotype appears to be the best
combination to promote earliness across at all the tested conditions, and a good additive effect could be
confirmed for at least three of the main QTLs (Q.ICD.Eps-09, Q.ICD.Ppd-10, and Q.ICD.Vrn-15), while it
was not possible to discern the contribution of Q.ICD.Eps-03.

Across environments, two ICARDA’s elites, “Icavicre” and “Ouassara”, having the TATC
haplotype, were the earliest flowering overall. In addition to the TATC haplotype, early flowering
genotypes at individual PhEnv could be identified with different haplotypes, probably due to the
additional effect of other loci. For instance, “CaMdoH25” and “Icambel” in PhEnv1 with the
CCTC haplotype, “Bradano” and “Massara1” in PhEnv2 with CCTT and CATC, “IDON37-039” and
“Moulsabil2” in PhEnv3 with CATC and CCTC, and “IDON37-053” and “Waha” in PhEnv4 with CCTC
were the earliest flowering entries at individual sites.

4. Conclusions

The present study took advantage of contrasting climatic conditions to assess the effect of different
loci on the control of flowering time. The testing of known major flowering loci explained only partially
the large variation observed. The use of GWAS allowed us to define additional loci involved in the
control of flowering for durum wheat, and the literature showed that other groups also identified
the same. Hence, it appears that, for durum wheat, the flowering transition is controlled by only
some of the loci known in common wheat, and that durum wheat breeders will have to rely also on
the additional loci presented here to promote earliness. In particular, haplotype analysis revealed
an important additive role for three of the identified QTLs, with a significant effect in controlling
flowering time, besides the known major loci. The conversion of the markers underlying these loci in
ready-to-use assays will promote their deployment by durum wheat breeders.

5. Materials and Methods

5.1. Plant Material

A durum wheat core collection comprised 96 landraces from 24 countries and 288 cultivars and
elite breeding lines from eight countries. International Center for Agricultural Research in the Dry
Areas (ICARDA) and International Maize and Wheat Improvement Center (CIMMYT) were used for
this study. Detailed information regarding plant material is described in an earlier publication [57].

5.2. Phenotyping

A total of 13 field experiments were carried out in 2014–15 and 2015–16 in Morocco (Marchouche,
Melk Zhar and Tassaout), Lebanon (Terbol in both main and off season and Kfardan), Senegal (Fanaye),
and Mauritania (Kaedi). Out of 13 environments, two were rainfed and the remaining were irrigated.
Full details of the environments are provided in Figure 2. The experiments were conducted according
to an augmented design with 19 blocks and four repeated checks. Days to heading (DTH) was recorded
as the number of days elapsed from the date of sowing to the onset of flowering determined at 50% of
the plot with the tip of the spike emerging from the flag leaf (Zadoks scale stage 51). Daily records at
each environment were minimum and maximum temperatures and the length of daylight in minutes.
To estimate the cumulative growing degree days (CGDD) needed for flowering, the average daily
temperature from planting to flowering were summed for each site following procedures described by
Klepper et al. [58]. In case of wheat, a range of 0 to 32 ◦C temperature is considered optimal for growth;
therefore, those values below and above these temperatures were converted to 0 and 32 ◦C, respectively.
Cumulative day length (CDL) was instead measured as the total sum of minutes of sunlight needed
from planting to heading at each environment. In the cases of Terbol off-season and four environments
along the Senegal River, the high temperatures and short photoperiod prevented few modern lines
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and several landraces from flowering before harvest time. Nevertheless, these results were deemed of
great interest for the analysis and so were converted to the maximum value for DTH, CDL, and CGDD
recorded at each environment and used to run marker-trait association studies.

5.3. Genotyping

All the accessions were profiled by the 35K Affymetrix Axiom wheat breeders’ array (www.
affymetrix.com) at Trait Genetics (Gatersleben, Germany) following the manufacturer’s instructions.
In addition, three KASP assays were also run to characterize the variation for Ppd-A1, Ppd-B1,
and Vrn-A1 at LGC Genomic. Primer sequences and protocols for the KASP markers are available
upon request to LGC clients. A total of 10 sub-populations were identified based on genetic diversity,
as explained by Kabbaj et al. [57] and Sall et al. [59]. As described in an earlier publication [4,60],
7652 high-fidelity polymorphic single nucleotide polymorphism (SNPs) were obtained, showing less
than 1% missing data, a minor allele frequency (MAF) higher than 5%, and a heterozygosity less than
5%. The sequences of these markers were aligned with a cutoff of 98% identity to the durum wheat
reference genome [53] (available at: http://www.interomics.eu/durum-wheat-genome) to reveal their
physical position. A sub-set of 500 highly polymorphic SNPs was selected on the basis of even spread
along the genome and used to assess the population sub-structure, which revealed the existence of
10 main sub-groups [57]. To avoid discovery bias, these 500 markers were then removed from all
downstream analyses. Linkage disequilibrium was calculated as squared allele frequency correlations
(r2) in the TASSEL V 5.0 software [61] using the Mbp position of the markers along the bread wheat
reference genome and plotted using the “Neanderthal” method. The linkage disequilibrium decay
was measured at 51.3 Mb, as reported in Bassi et al. [60].

5.4. Statistical Analysis

The grouping of environments was conducted on the statistical software RX 64 (3.3.3) through stats
package [62] via hierarchical clustering based on Euclidean distance calculated by principal component
analysis (PCA), using as input the climatic variables measured in each environment: maximum
temperature, average maximum temperature, minimum temperature, average minimum temperature,
average cumulative growing degree days (CGDD), average days to heading (DTH), and average
cumulative day length (CDL). The resulting clusters were defined as phenological environments
(PhEnv). Combined analyses of variance were conducted across environments and PhEnv for DTH,
CGDD, and CDL, assuming environment, PhEnv, and genotypes as fixed effects. Each year × location
combination was considered as one environment. The best linear unbiased estimates (BLUEs) were
derived for the individual environment, PhEnv, and across environments based on a linear mixed
model. All the analyses were carried out with GENSTAT (version 2010) and the free statistical package
RX64 version 3.3.3.

The broad-sense heritability was estimated as indicated by Falconer et al. [63]:

H2 = [σg
2/σg

2] × 100, (1)

where σg2 is the genotypic variance and σp2 is the phenotypic variance. The genotypic and phenotypic
variance components were estimated based on the method suggested by Burton and Devane [64]:

σp
2 = σg

2 + σe
2+ σge

2, (2)

σg
2 = [MSg −MSe]/r, (3)

σge
2 = [MSge −MSe]/r, (4)

where MSg and MSge are the mean square due to genotype and GxE interaction, MSe is the error mean
square, and r is the number of replicates.

www.affymetrix.com
www.affymetrix.com
http://www.interomics.eu/durum-wheat-genome
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The association analysis was performed with TASSEL version 5.2.38. The marker-trait association
test was carried out using mixed linear model (MLM) based on the kinship matrix estimated by
Kabbaj et al. [57]. The analysis was performed using BLUE across environments and for each of the
four PhEnv. In each case, the landraces and modern lines were analyzed separately. The significance
of marker-trait association (MTA) was assessed by Boneforroni’s corrected equation. as suggested
by Duggal et al. [65], assuming 288 marker trait hypothesis (12,000 Mbp of durum genome divided
by LD decay of 51.3 Mb), which resulted in a LOD threshold of 3.0 and 3.4 for p < 0.05 and p < 0.01,
respectively. Significant MTAs located at less than twice the LD decay distance were merged into one
QTL. These QTLs were then further assessed by factorial regression to determine the true marker
effect for each of the four PhEnv. Pearson’s critical value [66] for correlation was squared to obtain a
critical r2 = 0.0225 for p < 0.05 and r2 = 0.0441 for p < 0.01, which were used as thresholds to determine
significant effect on phenotypic variation.

To identify the best allelic combinations in different PhEnv, the four most significant QTLs were
selected to define different haplotype classes of germplasm. These classes were then tested against the
BLUEs for DTH at each PhEnv for the individuals within each class. A boxplot graph was constructed
using the ggplot2 package [67] in RX64 version 3.3.3, and classes were tested for LSD differences
assuming classes as fixed and genotypes as random factors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/12/1628/s1,
Figure S1: PCA depicting the distribution of four pheno-environments based on climatic and phenotyping
data; Figure S2: Boxplots showing the distribution pattern of heading days (DTH), Cumulative growing degree
days (CGDD), and Cumulative day length (CDL) among 384 durum core collection of ICARDA evaluated at 13
environments; Figure S3: Manhattan plot for marker-trait association for heading days in four pheno-environments
and across environments (BLUEs) for (a) landraces and (b) modern lines of durum wheat. Only loci with
LOD superior to zero are presented. Table S1: Combined ANOVA (sum of squares) for days to heading,
cumulative growing degree days and cumulative day length involving 384 durum lines at 13 environments as
well as for four pheno-environments; Table S2: Significant QTLs (Bonferroni corrected LOD for p < 0.05 = 3.0,
p < 0.01 = 3.4) identified among landraces presented with its peak marker ID, chromosome (chr.), position,
LOD and ratio (%) of phenotypic variance explained; Table S3: Significant QTLs (Bonferroni corrected LOD for
p < 0.05 = 3.0, p < 0.01 = 3.4) identified among landraces presented with its peak marker ID, chr. position, LOD and
ratio (%) of phenotypic variance explained.
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