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This paper presents an automatic detection method for thin boundaries of silver-stained endothelial cells (ECs) imaged using light
microscopy of endothelium mono-layers from rabbit aortas. To achieve this, a segmentation technique was developed, which relies
on a rich feature space to describe the spatial neighbourhood of each pixel and employs a Support Vector Machine (SVM) as a
classifier. This segmentation approach is compared, using hand-labelled data, to a number of standard segmentation/thresholding
methods commonly applied in microscopy. The importance of different features is also assessed using the method of minimum
Redundancy, Maximum Relevance (mRMR), and the effect of different SVM kernels is also considered. The results show that
the approach suggested in this paper attains much greater accuracy than standard techniques; in our comparisons with manually
labelled data, our proposed technique is able to identify boundary pixels to an accuracy of 93%. More significantly, out of a set of
56 regions of image data, 43 regions were binarised to a useful level of accuracy. The results obtained from the image segmentation
technique developed here may be used for the study of shape and alignment of ECs, and hence patterns of blood flow, around

arterial branches.

1. Introduction

Atherosclerosis is the major cause of cardiovascular mor-
bidity and mortality, with underlying pathological processes
that may begin during childhood [1, 2]. Although the exact
causes of atherosclerosis are not clear, it is thought to involve
lipoprotein influx into the wall, across the endothelium, and
chronic inflammation. Over time, lipids accumulate in the
inner wall and plaques develop, resulting in reduction or
blockage of blood flow. Eventually, this condition can lead to
heart attacks and strokes [3, 4]. A striking feature of the dis-
ease is its nonuniform distribution within the arterial system.
This is most evident in regions of branching and curvature
and has therefore been attributed to spatial variation in
mechanical forces, particularly the haemodynamic wall shear
stress exerted on the endothelium by the flow of blood. Near-
wall blood velocity, on which shear stress depends, cannot
be accurately measured by direct techniques. However, ECs

form a monolayer between the blood and arterial wall [3]
that is regulated by haemodynamic forces through flow-
mediated signal transduction [3, 5]. Of relevance to the
present study, endothelial cells and their nuclei align with
the predominant flow direction and elongate in response
to increased shear. Therefore, ECs can be viewed as “flow
sensors,” and their shape has been used to assess patterns of
wall shear stress in previous studies, [6, 25], including our
studies aimed at understanding why the pattern of disease
around aortic branches changes with age [8, 9].

In the present study, we developed methods for auto-
mated analysis of ECs morphology [9]. The first step is to
detect the boundaries of the cells against the background of
stained images. This is difficult in cases where the noise level
is high and the image contrast is poor. This has motivated
us to use “Support Vector Machines” (SVMs) as a classifier
because recent work has shown this approach to outperform
many conventional classifiers [10]. In this paper, we describe
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(a) Original sample of ECs image
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(b) Manually traced sample image

Ficure 1: Original sample of ECs and corresponding manually traced image using the GNU Image Manipulation Program (GIMP)

http://www.gimp.org/.

the visual features and the subsequent application of the
SVM as a classifier to detect thin boundaries of endothelial
cells.

2. Data Acquisition

Endothelial monolayers were stripped from the descending
thoracic aortas of rabbits by a modification of the Hiutchen
procedure of Bond et al. [9] and Hirsch et al.[11]. This
involves pressing the endothelial surface of the opened
aorta against double-sided adhesive tape adhered to the
surface of a microscope slide. The aorta is then pulled
away, leaving the endothelium attached to the slide. Aortas
were obtained from three male New Zealand White rabbits
(Harlan Interfauna strain), one mature and two immature,
that had been perfused in situ with 10% neutral buffered
formalin at physiological pressure for 90 s followed by 20 mL
of silver nitrate solution (2.5 mg/mL, Sigma), followed by
further formalin fixation for 30 mins. All animal procedures
complied with the Animals (Scientific Procedures, UK) Act
1986. The silver nitrate was used to stain the boundaries
between neighbouring cells. Cell boundaries were examined
around the origins of seven intercostal arteries from the
descending thoracic aortas of the three rabbits. A montage of
images of the area around each branch mouth was obtained
using a Zeiss Axioplan microscope [9]. The spatially varying
sensitivity of the microscope and camera system resulted in
shading of the individual images; in Section 3, we describe
the correction of these distortions, though correction is
not needed in our final system. Each montage was then
divided into subregions; the subregions each corresponded
to an arterial area of approximately 660 X 1100 pixels, and
they were located in a 3 X 3 grid centred on the branch
mouth. The central element of the 9-element grid was not
used, since it was largely occupied by the branch mouth,
giving eight regions at each of the seven branches, and

hence 56 regions in total. The images corresponding to these
56 regions comprised the data set to which the current
analysis was applied. One of the sample images (with a size
of 660 x 1100 pixels) taken from one of the montages is
shown in Figure 1(a) and its manually traced counterpart in
Figure 1(b).

3. Segmentation of Endothelial Cell Boundaries

The cell boundary labelling or segmentation of ECs can be
described as a binary classification problem in the sense
that cell boundary pixels should be labelled as object or
foreground and non-boundary pixels should be labelled as
background [13]. Each of the 56 datasets contained more
than 500 cells, giving >25,000 cells requiring analysis. It is
extremely tedious to trace the boundaries manually for tens
of thousands of cells, and so a number of different methods
was applied to attempt the segmentation of boundary pixels
automatically.

In order to assess the applicability of intensity thresh-
olding to the task, we analysed the intensity distributions
of image data after applying intensity correction based on
background subtraction using a least-squares polynomial fit
to a second-order spatial illumination model. For images that
fell across boundaries of a montage, we also used the average
values of intensity on either side of the boundary to perform
additive compensation of intensity differences in different
acquisitions. Then, by using hand labelling of image and
background data, we estimated the parameters of a standard
mixture model:

P(i) =PoP(i| O)+PyP (i | b), (D

where Py and P, are the prior probabilities of the pixels
and P(i | O) and P(i | b) are conditional probabilities of
boundary and background, respectively. P(i) is the weighted
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Figure 2: Estimated probability density functions of intensities
of cell boundary pixels (solid line) and those that lie off the
cell boundaries (background, asterisks), using manually labelled,
intensity corrected data. The graph illustrates that the pixel inten-
sity distributions of boundary and non-boundary pixels overlap
strongly, even over small spatial scales. Adapted from [12].

sum of P(i | O) and P(i | b) [12] and “explains” the
histograms of all pixel intensities pooled together.

As shown in Figure 2, the conditional probability density
functions of background and cell boundary pixels overlap
with each other strongly. It is thus hard to set a global
threshold which distinguishes between background and
boundary pixels; we have previously described results of our
initial work on the same data using adaptive thresholding
following quadratic-based trend removal, a type of adaptive
high-pass filtering [12].

We therefore developed a technique with the help of
a class of machine learning algorithms known as Support
Vector Machines (SVMs) to computationally detect the
boundaries of the images. The method is attractive in that it
is able to handle the weak boundary signals in our data, and
does not require explicit edge-linking or explicit illumination
correction—these latter two modules of classical segmenta-
tion are implicit properties in the choice of features. Once
such labellings are obtained, it is fairly straightforward to
apply a variety of shape analysis techniques on the boundary
representations to study the morphology of cells under the
effects of biological flow [9]. The rest of the paper describes
the method we have developed for automatically detecting
the cell boundaries using SVMs and some evaluations of its
performance.

Boundary image

Training features
Feature extraction |with labelled data
(training and
testing data)

SVM training
(model generation)

SVM testing
Testing features (classification)
without labelled data
Decision

(boundary point/
non-boundary point)

F1Gure 3: Flow chart of segmentation algorithm based on SVM for
endothelial cell images.

4. A Segmentation Algorithm for
Cell Boundaries

The flow chart of our algorithm is given in Figure 3. Features
are extracted from the cell boundary image and mapped into
feature space. To train the classifier, features are extracted
from a training image for which there exists manually
labelled data. Then, using the input feature space generated
from the training image and an SVM kernel, a decision
model is generated; this model is then applied to segment
other boundary images. The SVM classifies image pixels into
two different classes: boundary and non-boundary. It is use-
ful to consider the complexity of this problem, and why the
selection of patch-based features, though increasing feature
space dimensions, helps solve the segmentation problem.
Figure 4 illustrates the complexity of learning to detect
boundary pixels. Since we cannot rely purely on the image
intensity of a single pixel in order to classify it—the basis of
thresholding approaches—the decision-making process on
the correct classification for each pixel needs to consider
the intensity of its neighbours as well. Figure 4 shows four
different configurations of pixels, similar to the “cliques” of
Markov-Random Fields (MRFs), and considers a subspace of
the full 9-dimensional space of the 3 x 3 patch represented by
the intensities along a horizontal line of three pixels centred
on the pixel to be classified. Three of these pixels are valid
boundary points, and the fourth (B) is an isolated pixel that
has a boundary-like intensity, but contains no neighbouring
pixels to “support” it. The consideration of three pixels is not
enough to allow a correct decision to be made concerning
pixel A (boundary) and pixel B (non-boundary), as they lie
in the same place in 3-dimensional feature space. Including
all the eight nearest neighbours of a pixel to be classified
provides a partial solution, but the separation of classes in a
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FIGURE 4: Mapping of neighbourhoods of points into the components of a 9-element feature vector, [ fi, f5,..., fo]. Four candidate points

are considered, three corresponding to true boundary points, and one corresponding to an isolated noise pixel (B) that has an intensity
similar to those of the boundary points. Note that if we plot where the points in a three-dimensional subspace of 9-dimensional space lie
(red triangles), we find that pixels A and B fall in the same place in the three dimensional subspace formed by components fi, fs, and fq;
this means that this subspace cannot be sufficient to classify pixels correctly. Creating a feature vector containing all 8 neighbouring pixels’
intensities, and that of the candidate pixel, provides a much better chance of successfully teaching an SVM to recognise boundary pixels from
non-boundary pixels, but even this is not sufficient for low signal-to-noise conditions (see text for details).

9-dimensional space is more difficult, and almost impossible
using a linear classifier such as a Fisher criterion [14]. This is
the motivation for using SVMs. Through the use of kernels
that generate nonlinear combinations of variables, SVMs are
able to find decision boundaries for the classes that are not
easily separable in the original space.

Other approaches to this problem might include algo-
rithms to perform boundary linking, based on directions
of gradients. Such approaches might work for images in
which the object boundaries correspond to edges of regions
which contain different average pixel intensities on either
side of the boundary; for the case of thin structures, second-
order directional derivatives or phase-invariant measures of
orientation are more appropriate for estimating structure
direction to perform edge linking. Even so, creating an
edge-linking algorithm to correctly handle the very complex
spatial patterns formed by junctions between cells is no
trivial task, and it is better to pursue a training approach
which can learn how to appropriately classify pixels based on
spatial configurations of neighbours.

However, given the nature of the poor signal-to-noise
levels in the images, even a 3 X 3 neighbourhood of pixel
values is not sufficient as a feature vector; and whilst a 5 X 5
neighbourhood might provide more information that would
allow, say, pixels lying on gaps in boundaries to be correctly
classified, it would require an increase in the dimensions of
the feature vector, more training and testing data, and also

would incur higher computational cost in training and clas-
sification. Instead, we resort to generating features that group
information from a wider area, for example, through spatial
filtering, to compactly capture information over a larger
neighbourhood which explicitly describes local orientations.
We have taken an intuitive approach to selecting features, but
have validated it using a feature selection approach.

4.1. Selection of Visual Features for the SVM. We have
explored a rich set of possible feature vector combinations,
using up to 75 components in the feature vector, but do
not reproduce them all here. Rather, we take the strongest
feature vector components to illustrate the process of feature
selection using the principle of minimum Redundancy,
Maximum Relevance (mRMR) [15]. This is illustrative, as it
shows that some features are much more informative than
others. Although we have used feature selection to assess
some possible features, one has to be careful in assessing
features individually. As illustrated by Figure 4, some features
provide strong discriminating power only when included as
a collection over space—a patch-based approach, whereby
some components of the feature vector are taken from
a property that is estimated at different locations over
neighbourhood space. This is the case for the patch-based
information such as the intensity and orientation dominance
field. Whilst linear classifiers cannot learn the tortuous
decision boundaries suggested by the training data in, say,
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FIGURE 5: A sample of a 3 X 3 neighbourhood of pixels with the
orientation field of candidate pixels overlaid with black lines.

9-dimensional space that are required to satisfy orientation
invariance, the SVM is able to find separating hyperplanes
which generalise well [16] from relatively few examples.

4.2. Feature Generation. Each pixel in the image is mapped
to a 33-dimensional feature vector by extracting information
from a 3 x 3 neighborhood of the central pixel:

(i) nine intensity elements extracted from 3 X 3 nearest
neighbors;

(ii) eighteen features extracted from 3 X 3 nearest neigh-
bors of an orientation dominance field [17]; the
magnitude of the vectors in this field ranges from 0
to 1. The magnitude of the values can be used as an
indication of anisotropy, in which strongly isotropic
neighbors will produce values near to 0 and strongly
anisotropic neighbors will produce values near to 1;
an example of this field over a 3 x 3 patch is shown
in Figure 5. These features are quasi-invariant to slow
background illumination changes because they are
generated from band pass filters;

(iii) six statistical features generated from the 3 X 3
intensity neighborhood of a candidate pixel, given in
Table 1.

The 33-dimensional feature vector given in (2) is then
described for each pixel in the image in both the training and
testing phases of the SVM

FV, = [I(3><3)) O (3x3), Med, Range, E, M2,3,4]- (2)

The feature vector components are normalised by remov-
ing the mean of each feature and dividing the result by the
standard deviation of each feature. No length normalisation
is performed outside of the SVM.

4.3. Feature Relevance. We used the minimum Redundancy,
Maximum Relevance (mRMR) measure to evaluate the
importance of, and thereby select, the components of the

TABLE 1: Six statistical features generated from the 3 x 3 intensity
neighborhood of a candidate pixel.

Feature Formula

Median Med(x, y) = med(I;) mx (%, ¥))
Range(x, y) = (Max(x, y) — Min(x, y))

Range where Max(x, y) = max(Ij; mx m(x, ¥))
Min(x, y) = min(I; mxm(X, ¥))

Energy E(x,y) = S By e s 7)

Second, third M, =1/nX" (TIoyxya(x y) — plx p)"

and fourth

plx,y) = 1n X Lo yaxya(%, ),

I(x, y) is the image, r = 2,3,4: second, third
and fourth order moments, 7 is the number of
nearest neighbors (in our case this is 9), and i is
the candidate pixel

order moments

TaBLE 2: Comparison of minimum redundancy and maximum
relevance in the feature vectors between different training data sets
is given in Figure 6. We used four different SVM kernels, but the
relative relevance attributed to different features is comparable with
all kernels.

Minimum redundancy, maximum relevance
feature order in feature vector from highest to
lowest

[27333161932293121251231718261020
1302492217116231521384145 28]

Training dataset

feature vector input to the SVM. As implied by Figure 4,
some features should not be separated or assessed on
their own. The result of mRMR is not repeated here,
because it is performed against a very large number of
neighbourhood features, including edge filters, statistical
moments of intensities, and order-statistic neighbourhood
measures. As a general rule, we found that orientation
dominance, pixel intensities, and statistical moments were
the most discriminating, (Table 2), and so we included these
in the feature vector we have used for segmentation.

A certain degree of caution is required in interpreting
mRMR results: individual neighbourhood pixels may be split
apart in ranking of mRMR methods. Thus, for example, if
pixels from an 3 X 3 patch are all included in the mRMR,
they may be separated in the ranked list of relevance obtained
from the standard mRMR algorithm. When such features,
obtained from different pixel locations in a feature space
image around the candidate pixel, are included in an mRMR
analysis, one should note the frequency with which the
different locations of one property occur in, say, the top K
ranked relevance measures. If a large proportion of features
of one property occur close to the top of the list, then all
the neighbouring pixels over the 3 X 3 grid in that property
should be included in the vector.

4.4. Training of the SVM. This algorithm is trained with a
sample image of size 62 X 62 pixels taken from one of the
56 regions, as illustrated in Figure 6. The 33-dimensional
feature vectors generated over this region are used as an
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Ground truth

FIGURE 6: Original training image with its corresponding manually traced ground-truth image.

F1GURE 7: An example of a low contrast and blurred image on which
the SVM technique did not work well; note that cell boundaries are
not easily identifiable by eye.

input to the SVM that classifies image pixels into boundary
and non-boundary pixels. A binary image is generated
after classification with each black pixel corresponding to
a boundary and each white pixel corresponding to a non-
boundary pixel [13, 18].

For training, we used the RBF kernel [19, 20] with the
maximum cost function/parameter set at 1 and y = 0.14.
With these settings, 2144 support vectors are produced.
The feature extraction process for the training phase took
approximately 130 seconds. The algorithm was written with

the help of the LIBSVM package [20] in Matlab R2009b [21],
and it took 13.38 seconds on a desktop PC with Pentium(R)4
2.8 GHz processor running Windows. The time taken to
classify an image of size 512 x 512 is approximately 12—17
seconds, if the features have already been extracted.

5. Results

The algorithm provided usable boundary data in 43 out of
the 56 regions. In the remaining 13 regions, image data are
very noisy. One such image is shown in Figure 7, and it
may be noted that even discerning the boundaries by eye is
difficult; high-pass filtering such an image does not improve
matters. The binary images in Figures 8(b) and 8(d) show
classifications of pixels into boundaries and background by
the SVM algorithm.

5.1. Evaluation of the Segmentation Algorithm. The perfor-
mance of the SVM approach in segmenting cell boundaries
was evaluated on four images containing manually traced
boundaries; one of these images is shown in Figure 1(b).
The manually traced boundaries provide ground-truth data
that allows the accuracy of the segmentation to be evaluated
on a pixel-by-pixel basis. Four trained SVM kernels were
applied to each of these test images, and the results were used
to determine performance. In total, the performance of the
algorithm was assessed on 3.9 million pixels. The parameter,
y, was varied from 0.02 to 0.14 across all four SVM kernels in
step sizes of 0.01. The RBF kernel reached its best accuracy
of 93% at y = 0.14 and the worst result it achieved on
a single image was 80%. A comparison between different
kernels is given in Table 3. Accuracy of segmentation was
assessed by noting the number of correctly classified pixels
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FiGure 8: Original image and segmented result using RBF kernel. No other processing has been applied to the SVM output.

(either boundary or background) and is defined by

(TP + TN)
(TP + TN + FP + EN)’

where TP, FP, TN, and FN are true positive, false positive,
true negative, and false negative, respectively.

In another experiment, we compared “ground truth”, an
SVM with RBF kernel and two conventional segmentation
algorithms, Canny [22] and Kittler [7], in four image patches
of size 128 x 128 pixels. The Kittler method was ranked
as the best in a survey on thresholding techniques [23].
Different thresholds were set for the decision in order to
obtain a number of points along a Receiver Operating Char-
acteristics (ROC) curve, which describes the performance
of a classification method and feature space in addressing a
discrimination task as one alters the balance between type

(3)

Accuracy% =

I and type II errors. For the Canny and Kittler algorithms,
961 and 63 possible detection thresholds were applied to
each image, respectively. The SVM model accuracy is largely
based on the selection of the model parameters so, to find
points along a ROC, a search algorithm was used to attempt
training and classification as values of the most significant
parameters are altered across a wide range. For example, as
the RBF kernel depends on two main parameters (C and p),
a range of —4 to +4 with interval of 0.1 for C and from 0.1
to 2 with an interval of 0.001 for y was selected. However,
since each image to be assessed might have different statistical
characteristics, generating an ROC might require slightly
different parameter settings. For a given image, the model
was further evaluated with 5-fold cross-validation to find
the best possible combination of parameters. Table 4 and
Figure 9 present the classical segmentation technique results
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segmentation results. (d, e, f): Kittler method, Otsu method, and Canny edge detection results.

in comparison to the SVM with RBF kernel, and the
ROC plots are given in Figure 10. Table 4 also includes a
comparison with the Otsu method [24], which employs an
automatic thresholding and is therefore not easily amenable
to ROC analysis.

TasLE 3: Comparison between SVM kernels with varying y in steps
of 0.01 in each model. The table is obtained from four different
images representing a total of approximately 4 x 10° pixels and
four different SVM Kernels. The number of training data pixels was

3844.

Accuracy%
. . ’y

6. Discussion RBF Sigmoid Polynomial Linear
This paper presents a method for detecting EC boundaries 0.14 92.97 90.06 63.49 55.67
that reduces the need for human intervention. Previously, 0.13 92.52 88.26 64.53 55.67
cel} boundaries have be.en segmente.d manually [9, 25], since 012 92.82 85.46 65.92 55.67

noise and unclear or faint boundaries would have led to the
. . . . 0.11 92.92 82.55 67.68 55.67

failure of traditional automated segmentation techniques.
Manual analysis is time consuming, subjective, and unscal- ~ 0.10 92.96 79.34 69.63 55.67
able. Previous reports have described computational work on 0.09 88.95 76.47 71.63 55.67
cornegl endothelial cell bO}mdary detection [26—2?] , but the 0.08 91.00 74.19 73.85 55.67

detection of cell boundaries was not as challenging as the
. . . 0.07 90.49 71.64 76.43 55.67

EC boundaries in our images. In our previous work [12],
we suggested some approaches to automatic cell boundary ~ 0.06 88.14 63.77 7949 35.67
detection. To address issues of accurately finding edge 0.05 88.85 69.70 83.50 55.67
maps with this previous method, we developed the current 0.04 88.67 64.03 88.61 55.67
method, Whmh has S}lCCGSSf.tu worked on 1mage.data with 0.03 80,66 62.59 8335 55.67

a poor signal-to-noise ratio (SNR). Our algorithm uses
0.02 82.75 61.67 73.19 55.67

small neighbourhood patches in intensity, and orientation
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Figure 10: ROC plots for standard Canny and Kittler methods with the SVM (RBF kernel) on four sample images. The performance of the
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SVM is better, even when applied to the extremely difficult images of the bottom panels.

dominance patches of each candidate pixel in the image, and
successfully segmented 43 out of 56 available regions to an
acceptable level of accuracy. An adequate number of cells was
characterised for further automatic morphological analysis.

Our method has some limitations: it does not perform
well on image patches where the brightness variation is
very large or where cell boundaries are not visible by eye.
We have found that illumination correction, such as by
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TaBLE 4: Comparison between SVM and different conventional
methods. Here the number of training pixels was 3844 with 2
classes, and the number of test pixels was 16384.

Method Accuracy%
SVM with RBF kernel 94.09
Otsu [24] 82.22
Kittler [7] 82.21
Canny [22] 71.83

high-pass filtering, does not improve results and may even
worsen them slightly if pixel noise is amplified. The method
requires good manual labelling of one example as input in
the training process. This necessitates selecting a patch with
a representative variation in intensity to yield a satisfactory
generalised model. Another aspect of our algorithm which
could be improved is the selection of kernels. We have
only worked on kernels already available in LIBSVM, but
performance might be improved by developing a new kernel
for such data [30], which was beyond the scope this research.

Tests in other types of biomedical image data, such
as retinal images, have suggested that with a comparable
training process and comparable features, similar promising
segmentation results can be achieved with minimal effort.
Future work will seek to extend the segmentation method to
other biomedical image problems. The method we developed
will enable us to explore the relationships between blood
flow and cell behavior, between cell nuclear shape and cell
boundary shape, and between length : width ratio and cell
orientation in different regions around arterial branches, by
allowing large numbers of cells to be analysed.
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