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Pregnancy after renal transplantation is associated with an increased risk of
complications. While a delicately balanced uterine immune system is essential for a
successful pregnancy, little is known about the uterine immune environment of pregnant
kidney transplant recipients. Moreover, children born to kidney transplant recipients are
exposed in utero to immunosuppressive drugs, with possible consequences for neonatal
outcomes. Here, we defined the effects of kidney transplantation on the immune cell
composition during pregnancy with a cohort of kidney transplant recipients as well as
healthy controls with uncomplicated pregnancies. Maternal immune cells from peripheral
blood were collected during pregnancy as well as from decidua and cord blood obtained
after delivery. Multiparameter flow cytometry was used to identify and characterize
populations of cells. While systemic immune cell frequencies were altered in kidney
transplant patients, immune cell dynamics over the course of pregnancy were largely
similar to healthy women. In the decidua of women with a kidney transplant, we observed
a decreased frequency of HLA-DR+ Treg, particularly in those treated with tacrolimus
versus those that were treated with azathioprine next to tacrolimus, or with azathioprine
alone. In addition, both the innate and adaptive neonatal immune system of children born
to kidney transplant recipients was significantly altered compared to neonates born from
uncomplicated pregnancies. Overall, our findings indicate a significant and distinct impact
on the maternal systemic, uterine, and neonatal immune cell composition in pregnant
kidney transplant recipients, which could have important consequences for the incidence
of pregnancy complications, treatment decisions, and the offspring’s health.

Keywords: renal transplantation, neonatal immunity, decidua, uterine immunity, pregnancy, kidney transplantation
org October 2021 | Volume 12 | Article 7355641

https://www.frontiersin.org/articles/10.3389/fimmu.2021.735564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.735564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.735564/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.735564/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Renate.vanderMolen@radboudumc.nl
https://doi.org/10.3389/fimmu.2021.735564
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.735564
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.735564&domain=pdf&date_stamp=2021-10-28


Feyaerts et al. Pregnancy in Kidney Transplant Recipients
INTRODUCTION

Achieving successful pregnancy in women with advanced
chronic kidney disease or end-stage renal disease is clinically
challenging (1, 2). Renal transplantation is the treatment of
choice for most of these patients, especially in women of
childbearing age as renal transplantation greatly improves
fertility and the ability to conceive (3–5). As a consequence,
the number of pregnancies in patients with a kidney transplant is
rising (6). Unfortunately, kidney transplant recipients have a
higher risk of developing pregnancy complications (5). For
instance, preeclampsia occurs in about one-third (21-38%) of
the pregnant kidney transplant recipients, while the risk of
preeclampsia in the general population is only 3-5% (3, 5–7).
Low birth weight children (< 2500 g; 50%) and preterm delivery
(< 37 weeks of gestation; 50%) is also more common in kidney
transplant recipients compared to the general population (5, 6,
8). These adverse pregnancy outcomes may be a result of
impaired (pre-pregnancy) graft function, pre-pregnancy
hypertension, or the effect of immunosuppression (5, 9–11).
Conversely, delicately balanced immune dynamics, both in the
uterus and systemically, are essential for a pregnancy to be
successful (12–16). Immune perturbations associated with
pregnancy complications are well-documented and may offer
an explanation to the higher incidence of complications observed
in kidney transplant recipients (16–19).

In addition, the immunosuppressive drug tacrolimus
accumulates in the placenta of women with a kidney
transplant (20), while azathioprine, tacrolimus, and prednisone
are able to cross the placenta and enter the fetal circulation (8).
Although the use of kidney transplantation medication has not
been directly linked to increased incidence of major congenital
malformations (8, 21), limited evidence suggests that in utero
drug exposure impacts the development of the neonatal immune
system. For instance, infants born to kidney transplant recipients
had reduced B cell numbers at birth and transplantation itself
was associated with an increased risk for hospital admission in
the first months of life (22).

In order to investigate the local uterine immune system and
systemic immune signatures, we used multiparameter flow
cytometry to phenotypically characterize maternal immune
cells derived from the decidua after delivery as well as
peripheral blood immune cells collected over the course of
pregnancy from kidney transplant recipients and healthy
individuals with uncomplicated pregnancies. In parallel, we
analyzed immune cells in the cord blood of neonates in order
to assess the development of the neonatal immune system.

Systemic maternal immune dynamics in kidney transplant
recipients largely followed a similar dynamic profile over the
course of pregnancy compared to pregnancy in healthy
individuals. In addition, we show for the first time that the
uterine HLA-DR+ regulatory T cell frequencies are affected in
women with a kidney transplant, particularly in those treated
with tacrolimus. This may suggest that the choice of
immunosuppression could influence the risk for the
development of complications differently. Compared to healthy
controls, reduced regulatory T cell, B cell, NKT-like cell
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frequencies, and altered monocyte composition was observed
at birth in the offspring of kidney transplant recipients, which
could have consequences for the offspring’s health outcomes.
MATERIALS AND METHODS

Study Population
19 pregnant women having a healthy, uncomplicated pregnancy
(HC) were recruited at the Radboud university medical center, and
14 pregnant women with a kidney transplant (KT) were enrolled at
the Radboud university medical center and University Medical
Center Utrecht in the Netherlands. 5 KT recipients developed pre-
eclampsia during their pregnancy (Table 1). Pre-pregnancy kidney
function, reported as the average of last 4 measurements before
pregnancy, did not differ for those developing pre-eclampsia
(Table 1). Tacrolimus trough levels did not differ between those
receiving “Tacrolimus” or “Tacrolimus+Azathioprine” (data not
shown) We collected cord blood (venipuncture of umbilical vein;
EDTA tubes), maternal blood during pregnancy, and placentae
after delivery. All KT recipients were required to be >1 year post-
transplantation with stable graft function before pregnancy could
be pursued.

First trimester material – as used in in vitro cultures – was
obtained from discarded uterine tissue after elective pregnancy
termination, upon written consent. No further clinical
information was obtained from these donors.
TABLE 1 | Donor characteristics.

Kidney
transplant (N=14)

Control (N=19)

Maternal age (years) 30 (22-38) 31 (26-39)ˆ
Gestational age at delivery (weeks) 36 (26-38)‡ 39 (37-41)‡ ***
Birth weight (g) 2405 (520-3440)† 3460 (3150-4503)† ***
Pre-eclampsia 5/14 NA
Mode of delivery
C-section 6/14 13/19
Induced+vaginal 4/14 NA
Induced+C-section 2/14 NA
Not available 2/14 6/19

Pre-pregnancy kidney function
Creatinine (mmol/L) 109.5 (76-188)

yes PE 116 (95-188) ns
no PE 86 (76-157)

MDRD-GFR (ml/min/1.73m2) 54.5 (26-89)
yes PE 53 (26-69) ns
no PE 68 (36-89)

Immunosuppressive drugs
Azathioprine 7/14 NA
Tacrolimus 11/14 NA

Trough levels (ng/ml) 4.5 (4-6.6)
Prednisone 12/14 NA
October 2021 | Volu
me 12 | Article 7355
Median and range (min to max) are shown for age of mother, gestational age, birth weight,
creatinine, MDRD-GFR (glomerular filtration rate fromModification of Diet in Renal Disease
equation), and tacrolimus trough levels. Tacrolimus trough levels closest prior to delivery
are reported.
ˆInformation not available for 5 mothers. ‡Information not available for 1 and 4 pregnancies,
respectively. †Information not available for 1 out of 14 and 10 out of 19 deliveries,
respectively. ***p-value < 0.001, ns, not significant; Mann-Whitney test. PE, pre-
eclampsia; NA, not applicable.
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This study was approved by the local review board
(Commissie Mensgebonden onderzoek region Arnhem-
Nijmegen; CMO nr. 2014-232 and CMO nr. 2017-3253). In
accordance with the Dutch Medical Research Involving Human
Subject Act (WMO), all participants provided written informed
consent before material was donated and included in this study.

Isolation of Lymphocytes From Maternal
Blood and Cord Blood
One ml of blood was lysed with 25 ml lysis buffer (NH4CL +
KHCO3/Na4EDTA diluted in H2O) for 10 minutes and washed
3x times with PBS. Lysed blood samples were used when only
surface staining was performed. For intracellular staining
protocol, lymphocytes were isolated by density gradient
centrifugation (Lymphoprep, Axis-Shield PoC AS). After
centrifugation (801 x g, 15 minutes, no brake), the lymphocyte
layer was collected and isolated cells were washed twice with PBS
before further analysis.

Isolation of Uterine Lymphocytes
Decidua parietalis was collected from the obtained term
placentae as previously described (13). After removing the
amnion, the decidua parietalis (i.e. maternal layer of the
placental membranes surrounding the fetus) was carefully
scraped from the chorionic trophoblast layer. First trimester
decidual tissue was separated from villous tissue. The tissue was
washed thoroughly with PBS, minced with scissors and washed
again until the supernatant became clear. The tissue was
incubated with 0.2% collagenase (Gibco Life Technologies) and
0.04% DNAse (Roche Diagnostics) in a water bath at 37°C while
shaking. After 60 minutes, digested tissue was washed with
supplemented RPMI (RPMI 1640 medium supplemented with
1 mM pyruvate, 2 mM glutamax, 100 U/ml penicillin, and 100
mg/ml streptomycin; Thermo Fischer) and passed through a 100
µm, 70 µm, and 40 µm cell strainer (Greiner). Lymphocytes were
obtained after density gradient centrifugation (801 x g for 15
minutes, no brake) on a discontinuous Percoll gradient (1,050 g/
ml, 1,056 g/ml and 1,084 g/ml; GE Healthcare). Lymphocytes
were isolated from the 1,084-1,056 g/ml interface.

In Vitro Stimulation of First Trimester
Uterine Lymphocytes
100.000 freshly isolated uterine lymphocytes were cultured with
anti-CD3/CD28 microbead stimulation (1:2 bead-to-cell ratio) in
the absence or presence of azathioprine (6-mercaptopurine; active
metabolite of azathioprine) or tacrolimus (FK506), in 10% HPS
culture media (RPMI 1640 medium supplemented with 1 mM
pyruvate, 2 mM glutamax, 100 U/ml penicillin, 100 mg/ml
streptomycin, and 10% Human Pooled Serum) in a 96-well U-
bottom plate for 5 days at 37°C in a humidified 5% CO2 incubator.
Azathioprine and tacrolimus concentrations were chosen based on
in vivo serum levels. Serum levels for mercaptopurine (azathioprine)
range 235-500 pmol per 8x108 red blood cells (communication with
nephrologist) in adult renal transplant patients after oral
administration, with a maximum serum concentration of 50 ng/
ml after oral administration (23). Tacrolimus serum levels range 5-6
Frontiers in Immunology | www.frontiersin.org 3
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patients, with serum concentration of 5-15 ng/ml reported during
pregnancy (24). The influence of these immunosuppressive drugs
on cytokine expression and regulatory T cell frequency was assessed
by flow cytometry.

Flow Cytometric Analysis
Supplemental Table 1 lists the fluorochrome-conjugated
monoclonal antibodies that were used to phenotypically
characterize immune cells in cord blood, peripheral blood, uterine
samples, and in vitro assays. Samples were analyzed on a 10-color
Navios™ flow cytometer (480 nm argon blue laser, 405 nm solid
state violet laser, 636 nm solid state laser, Beckman Coulter). In
brief, cells were washed twice with PBS-0.2%BSA (bovine serum
albumin, Sigma-Aldrich) before staining with surface antibodies for
20 minutes at room temperature, protected from light. After
permeabilization and fixation, intracellular staining was
performed for 30 minutes at 4°C in the dark. For intracellular
cytokine expression, cells were first stimulated for 4 hours with
PMA (phorbol-12-myristate-13-acetate; 12.5 ng/ml), ionomycin
(500 ng/ml), and brefeldin A (5 mg/ml) at 37°C in a humidified
5% CO2 incubator. IFN-g and IL-17 were used as proxy cytokines
for pro-inflammatory Th1 and Th17 cell subsets respectively. 28
immune cell subpopulations (Figure S1) were identified in uterine,
peripheral blood, and cord blood samples by manual gating using
Kaluza software v2.1 (Beckman Coulter). The gating strategy is
illustrated in Figure S1.

Statistical Analysis
GraphPad Prism was used to perform statistical analysis. For
comparisons of 2 groups, non-parametric Mann-Whitney test
was used to compare immune cell subsets in maternal blood,
decidua, and blood of the control (HC) and transplanted group
(KT). For comparison of multiple groups, non-parametric
Kruskal-Wallis test was used, where p-values were calculated
against the HC group with a post-hoc Dunn test. A simple linear
regression was performed for data in Figures S3A, S8A to test
whether the slope of the regression lines is significantly different. P-
values < 0.05 are considered significant. Boxplots and percentages
in text are depicted as median with [interquartile range].
RESULTS

Decidual-Derived HLA-DR+

Regulatory T Cells Are Decreased in
Kidney Transplant Recipients
To investigate the local uterine immune environment in women
with a kidney transplant, we collected the decidua parietalis from
placentae (after delivery) of kidney transplant recipients and
healthy, uncomplicated pregnancies. The frequency of monocytes,
NK cells, B cells/subsets, T cells/subsets [regulatory T cells (Treg),
effector/memory T cells (CD45RA and CCR7 expression (13)], and
cytokine expressing T cells (IFN-g and IL-17) was examined by
multiparameter flow cytometry (Figure S1A: gating strategy and
assessed immune cell subpopulations).
October 2021 | Volume 12 | Article 735564
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We observed no difference in frequency for monocytes, NK
cells, T cell subsets, and B cell subsets in the decidua of kidney
transplant recipients compared to healthy individuals (Figure
S2). In addition, no difference in percentage IFN-g+ and IL-17+

CD4+ T cells in the decidua was observed, representing pro-
inflammatory Th1 and Th17 cells respectively (Figure 1A).
While we did not observe a difference in CD25+CD127low

FOXP3+ Treg frequency (Figure 1B), we did observe a
significant decrease in the percentage of HLA-DR+ Treg within
the total uterine Treg pool of kidney transplant recipients
compared to healthy individuals (Figure 1C). Importantly, to
exclude that this difference was due to a difference in gestational
age at delivery (Table 1), HLA-DR+ Treg frequency was plotted
against gestational age at delivery with a linear regression (Figure
S3A). This showed that no significant difference was observed for
the linear regression slopes, indicating that uterine HLA-DR+
Treg frequencies in kidney transplant recipients behave similarly
Frontiers in Immunology | www.frontiersin.org 4
over the course of pregnancy. This suggests that the decreased
frequency is inherent to the kidney transplant environment, and
likely not due to a difference in gestational age. Interestingly, the
greatest decrease in percentage HLA-DR+ Treg could be
observed for those kidney transplant recipients that used
tacrolimus (without azathioprine); 44.2 [21.4]% versus 74.8
[8.9]% in controls (Figure 1C). Interestingly, this decrease in
HLA-DR+ Treg was less when azathioprine was added to the
drug regimen (63.3 [30.2]%), or when tacrolimus was not used at
all (56.2 [34.8]%; azathioprine only). In addition, the bimodal
distribution observed for NK, T, and B cell frequencies in Figure
S2 is likely due to a difference in drug regimen as well (Figure
S3B). This shows that different immunosuppressive drugs could
have distinct effects on uterine immunity.

Pregnancy complications such as preeclampsia are considered
a consequence of defective placentation during the first weeks of
pregnancy (25). Due to ethical constraints, it is not feasible to
A

B C

FIGURE 1 | Frequency of HLA-DR+ regulatory T cells is affected in decidua of kidney transplant recipients (KT). (A) Percentage IFN-g+ and IL-17+ CD4+ T cells,
(B) percentage CD25+CD127lowFOXP3+ regulatory T cells (Treg) and (C) percentage HLA-DR+ Treg in decidua from KT and healthy individuals (HC) are shown.
Percentage HLA-DR+ Treg is separated based on which combination of tacrolimus (Tacro) and azathioprine (Aza) is used.
October 2021 | Volume 12 | Article 735564
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assess the in vivo effect of different immunosuppressive drugs on
the first trimester uterine immune environment. Moreover,
studies conducted with peripheral cells cannot be extrapolated
completely to the uterine environment due to the clear difference
in immune cell composition and function (13, 15). Therefore, we
cultured uterine immune cells isolated from first trimester
decidual tissue in the presence of tacrolimus or azathioprine, at
concentrations that resemble in vivo serum levels (see Methods).
While azathioprine did not influence T cell cytokine expression,
diminished cytokine expression could be observed in decidual T
cells cultured in the presence of tacrolimus (Figure S4A).
Frequency of FOXP3+CD127lowCD4+ Treg was diminished by
both azathioprine and tacrolimus after in vitro culture
(Figure S4B).

Overall, we showed that kidney transplant recipients have
lower frequencies of uterine HLA-DR+ Treg upon delivery,
predominantly when tacrolimus is used, and that in vitro
exposure of uterine immune cells to immunosuppressive drugs
affected Treg frequency and T cell cytokine expression.

Maternal Systemic Immunity in
Pregnant Kidney Transplant Recipients
Follow Similar Dynamic Profiles
Compared to Healthy Controls
Systemic immune signatures can be observed over the course of
pregnancy (12, 26) and changing signatures are associated with
pregnancy complications (27). In kidney transplant recipients, it
is unclear how systemic maternal immune dynamics change
during pregnancy. Immune cell frequencies were assessed by
multiparameter flow cytometry (Figure S1B: gating strategy and
assessed immune cell subpopulations) in peripheral blood
samples collected over the course of pregnancy. To assess
dynamic changes in systemic immunity over the course of
pregnancy, the relationship between cell frequency and
gestational age at time of sample collection was plotted with a
LOESS regression.

Monocytes, NK cells, several T cell subset frequencies, and
IFN-g+ and IL-17+ CD4+ T cells in peripheral blood of pregnant
women with a kidney transplant followed similar immune
dynamic changes over the course of pregnancy as compared to
healthy individuals (Figure S5), while slightly different maternal
immune dynamics could be observed for CD4 and CD8 (central
memory) T cells, and DC-like cells (Figure 2). In addition,
combining frequencies from all gestational ages into a discrete
variable showed that the overall frequency of CD25+CD127low

FOXP3+ Treg was consistently lower in kidney transplant
recipients compared to controls (Figure 2C), in accordance
with numerous observations in peripheral blood of kidney
transplant patients receiving immunosuppression, especially
when receiving calcineurin inhibitors (28–31). The decreased
frequency of HLA-DR+ Treg observed in decidua was not
reflected in the mother’s peripheral blood (Figure 2C). In
addition, the observation in the decidua that tacrolimus use
showed the greatest decrease in percentage HLA-DR+ Treg was
not reflected in maternal blood either (Figure S6). Tacrolimus
(without azathioprine) did however showed the greatest decrease
Frontiers in Immunology | www.frontiersin.org 5
in percentage of Treg (Figure S6). While B cell subset immune
dynamics did not differ significantly over the course of
pregnancy, a decreased percentage of naïve B cells and
increased percentage of plasmablast and switched memory B
cells could be observed overall in peripheral blood of pregnant
kidney transplant recipients compared to controls (Figure 3),
suggesting a switch in B cell phenotype from naïve to a more
memory phenotype in pregnant women with a kidney transplant.

Overall, results showed that while the systemic immune
system of pregnant kidney transplant recipients is different
compared to uncomplicated and healthy pregnancies, the
immune cell changes associated with pregnancy progression
largely followed the same dynamic profile.

Immunosuppressive Drug Use
During Pregnancy Affects the
Neonatal Immune System
In kidney transplant recipients, neonatal immune development
occurs under immunosuppressive drug exposure (8, 32–34). To
assess whether being born to a mother with a kidney transplant
influences the development of the neonatal immune system, we
collected cord blood (umbilical vein) of neonates born to kidney
transplant recipients and to healthy, uncomplicated pregnancies.
Similar to the maternal blood and decidual phenotyping, the
neonatal immune cell composition was characterized using
multiparameter flow cytometry (Figure S1C).

In comparison to newborns of mothers with a healthy and
uncomplicated pregnancy, cord blood of neonates born to kidney
transplant recipients showed decreased B cell, Treg, andHLA-DR+

Treg frequencies with no difference in percentage IFN-g+ and IL-
17+ CD4+ T cells (Figure 4 and Figure S7), complementing prior
reports (22, 35–39). This decreased percentage of Treg in the
neonates born to kidney transplant recipients – who are largely
born prematurely (Table 1) – is in contrast to literature where
neonates born earlier show increased Treg frequencies that
decrease with advancing gestational age (40, 41). When plotting
Treg frequencies according to gestational age, we indeed observed
decreasing Treg frequencies with advancing gestational age in both
group (Figure S8A). This suggests that the in utero environment
might have had an influence on the development of Treg. In
addition, similarly to our results in the decidua, the strongest
decrease in HLA-DR+ Treg percentages in cord blood was
observed when tacrolimus, with or without azathioprine, was
used during pregnancy (Figure S8B).

While B cell frequencies were decreased, in-depth B cell
phenotyping performed here showed that the composition of
the B cell population did not differ between our two groups of
infants; i.e. no difference in naive, non-switched, switched,
plasmablast, and CD24hiCD38hi B cell frequencies were
observed at birth (Figure 4A), suggesting there is an overall B
cell decrease rather than a decrease of a specific subset.

In addition, NKT-like cells and classical monocyte
(CD14++CD16-) percentages were significantly decreased and
non-classical monocytes (CD14+CD16+) and intermediate
monocytes (CD14++CD16+) monocytes increased in cord
blood of children born to kidney transplant recipients
October 2021 | Volume 12 | Article 735564
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compared to infants born to women with healthy and
uncomplicated pregnancies (Figure 4B). This shows that next
to the adaptive immune system, also the innate system is affected
at birth in neonates born to kidney transplant recipients.
DISCUSSION

Renal transplantation greatly restores fertility in women with
chronic kidney or end-stage renal disease (1–5). However, a
higher risk of pregnancy complications can be observed in
women with a kidney transplant (3, 5–8). Here, we provide an
overview of the immune cell characteristics of the maternal
systemic and uterine immune environment of women with a
Frontiers in Immunology | www.frontiersin.org 6
kidney transplant and healthy individuals with uncomplicated
pregnancies, and the neonatal immune system of their offspring.
We showed decreased frequencies of HLA-DR+ Treg in the
decidua of women with a kidney transplant, particularly in
those treated with tacrolimus. While systemic immune cell
frequencies were altered in kidney transplant patients, immune
cell dynamics over the course of pregnancy were largely similar
to healthy women. In addition, we report that the neonatal
immune system at birth is affected in the offspring of kidney
transplant recipients.

To mediate suppression against fetus-specific antigens, Treg
with a suppressive phenotype are enriched in the decidua during
healthy pregnancy (13, 42–46). HLA-DR+ Treg have been shown
to be highly suppressive (47, 48) and here, we found decreased
A

B

C

FIGURE 2 | Maternal systemic immunity is affected in pregnant kidney transplant recipients (KT). (A) Percentage DC-like cells (CD45+CD19-CD3-CD56- CD16-

CD14low HLA-DR+), (B) percentage CD4+ T cell, CD8+ T cell, and central memory (CM; CD45RA−CCR7+) CD4 and CD8 T cells, and (C) percentage regulatory
T cells and HLA-DR+ Treg in peripheral blood from KT and healthy individuals (HC) are shown. Frequencies of peripheral blood immune cells are depicted both in
boxplots (median + interquartile range) and as regression (LOESS) with gestational age (GA) at time of sample collection.
October 2021 | Volume 12 | Article 735564
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frequencies of HLA-DR+ Treg in decidual tissue after delivery of
women with a kidney transplant. This decreased frequency is
likely not due to a difference in gestational age at delivery.
Systemically, reduced Treg frequencies could also be observed
during pregnancy in kidney transplant recipients. Pregnancy
complications such as preterm labor, are associated with
altered Treg populations and disturbed Treg tolerance (46, 49,
50). This may suggest there is a loss of fetal tolerance at the
maternal-fetal interface in women with a kidney transplant,
which could explain the observed incidence of pregnancy
complications such as preterm birth in these patients (5, 6, 8).
Moreover, the strongest decrease in uterine HLA-DR+ Treg and
maternal blood Treg was observed in those women who were
prescribed tacrolimus, in comparison to those who used
azathioprine (only azathioprine or azathioprine in combination
with tacrolimus). This suggests that azathioprine may have a less
detrimental impact on the uterine and systemic immune system
than tacrolimus and perhaps could be more favorable to use
during pregnancy. A large retrospective study conducted in the
Netherlands indeed showed a trend towards lower birthweight (<
2500 grams) with a high rate of preterm delivery in pregnant
kidney transplant recipients with a calcineurin inhibitor-based
regimen (e.g. tacrolimus) (51) (unpublished manuscript). In our
in vitro culture of first trimester uterine lymphocytes, both drugs
reduced the frequency of Treg but only tacrolimus diminished
cytokine expression by T cells, again potentially suggesting that
azathioprine might have a less detrimental impact on the
uterine system.

Dynamic changes in immune signatures can be observed in
maternal peripheral blood over the course of pregnancy (12, 26).
Here, we observed that these dynamics largely progressed in the
Frontiers in Immunology | www.frontiersin.org 7
same manner for women with a kidney transplant compared to
controls. Only CD4+ and CD8+ (central memory) T cells, and
DC-like cells frequencies progressed differently. This suggests
that the majority of normal pregnancy associated frequency
changes are not affected in kidney transplant recipients.
However, it would be interesting to assess whether changes in
signaling and functional responses could be affected. In addition,
we did observe clear differences in the overall frequency of
peripheral immune cells such as a change in B cell phenotype
from naïve to a more memory phenotype (plasmablast and
switched memory B cell) in pregnant women with a kidney
transplant compared to women with uncomplicated pregnancies.
Although calcineurin inhibitors such as tacrolimus can inhibit B
cell differentiation in vitro (52), kidney transplant recipients with
a B cell phenotype enriched for plasmablasts have a better
transplant prognosis, i.e. better renal function and lower acute
rejection incidence (53). In contrast, increased frequencies of B
cells with a memory phenotype (CD27+CD38+/-) could be
observed in the circulation of preeclamptic women (54, 55),
suggesting that while the observed phenotypes could be
beneficial for transplant survival they could be associated with
the increased risk of complications in pregnant kidney
transplant recipients.

Immunosuppressive drugs are able to cross the placenta and
enter the fetal circulation (8, 32), thereby potentially influencing
fetal immune development during pregnancy (33, 34) and
influencing the offspring’s health in later life (56–58). We indeed
observed that the neonatal immune system is affected at birth in
offspring born to women with a kidney transplant. Paralleling our
uterine and maternal blood results, Treg frequencies are decreased
in cord blood of children born to kidney transplant recipients (22,
FIGURE 3 | Systemic B cell frequencies are affected in pregnant kidney transplant recipients (KT). Percentage B cells, naïve B cells (CD27-IgD+), switched memory
B cells (CD27+IgD-), and plasmablasts (CD24+IgD-CD38+) in peripheral blood from KT and healthy individuals (HC) are shown. Frequencies of peripheral blood
immune cells are depicted both in boxplots (median + interquartile range) and as regression (LOESS) with gestational age (GA) at time of sample collection.
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35–37, 39). Impaired Treg numbers and function at birth (cord
blood) have been associated with an increased risk to develop
sensitization to food allergens and atopic dermatitis in the first
year of life (59, 60). We also observed decreased B cell frequencies in
cord blood of neonates born to kidney transplant mothers,
corresponding with prior reports (22, 35–38). Reduced B cell
numbers at birth are associated with an increased hospitalization
risk in the first year of life for children born from kidney transplant
recipients (22, 61), and could potentially interfere with vaccination
responses (62, 63). Next to the adaptive immune system, also the
innate system is affected at birth in neonates born to kidney
transplant recipients. Significantly decreased NKT-like cell and
classical monocyte, and increased non-classical monocyte and
intermediate monocyte percentages were observed in cord blood
of infants born to kidney transplant recipients. A similar monocyte
composition and NKT cell decrease can be found in inflammatory
disorders such as systemic lupus erythematosus (SLE) and
rheumatoid arthritis (64–67). As such, this pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 8
monocyte state and altered NKT-like cell frequencies might
predispose children of women with a transplanted kidney to
develop inflammatory or autoimmune disorders. Indeed, SLE
development is more common in children born to kidney
transplant patients compared to controls (61). The longitudinal
assessment of neonatal immunity in children born from women
with a kidney transplant is an important consideration in order to
fully understand long term effects of in utero exposure.
Unfortunately, only few studies exist that indicate that immune
changes can persist up to 1 year after birth (22, 62, 63, 68). Overall,
the impaired neonatal innate and adaptive immune system at birth
observed here underscores that children born to kidney transplant
recipients could be at an increased risk for developing health
complications early and later in life.

This study has certain limitations. Adverse pregnancy outcomes
may be a result of several risk factors (5, 9–11, 16–19). Although the
incidence of pre-eclampsia amongst our kidney transplant
recipients was 35.7% (5 out of 14), corroborating reported
A B

C

FIGURE 4 | Innate immunity is affected in neonates born to pregnant kidney transplant recipients (KT). (A) Percentage of total B cells and B cell subsets. B cell
subsets: naïve (CD27-IgD+), plasmablast (CD24+IgD-CD38+), non-switched memory (CD27+IgD+, switched memory (CD27+IgD-), and CD24hiCD38hi in cord
blood of neonates born to KT and HC are shown as a percentage of B cells. (B) Percentage classical (CD14++CD16-), intermediate (CD14++CD16+), non-classical
(CD14+CD16+) monocytes, and NKT-like cells in cord blood of neonates born to KT and healthy individuals (HC) are shown. (C) Percentage of regulatory T cells
(Treg) and HLA-DR+ Treg in cord blood of neonates born to KT and HC are shown.
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incidence (3, 5–7), our sample size is unfortunately not sufficiently
powered to allow for extensive covariate analysis. Delineating the
effect of transplantation, immunosuppression, pre-pregnancy graft
function, and so on, on the pregnancy-specific and neonatal
immune system and correlating this with the development of
adverse pregnancy outcomes, would require a larger and more
diverse cohort. In addition, it would also be interesting to compare
the pregnancy-specific and neonatal immune changes after other
solid organ transplantations to find common or transplant-specific
risk factors. Secondly, only changes in immune cell frequencies were
reported here, as white blood cell counts were not available.
However, frequency changes in immune cell subsets is likely to
affect the immunological balance which in turn could affect
pregnancy outcome.

In conclusion, the maternal peripheral, uterine, and neonatal
immune system development is dysregulated in kidney transplant
recipients, with distinct effects of the immunosuppressive drug
regimen on frequency of HLA-DR+ Treg. This could have
important consequences for the risk of pregnancy complications
and health outcomes in the offspring. Moreover, it will be crucial to
carefully select any immune intervention during pregnancy for its
intended effect, placental accumulation, and possible side-effect on
the neonatal immune system. Placental explants (69), uterine
organoids (70, 71), and/or ex vivo placental perfusion experiments
(72) will be important models to use during this decision-making
process. Future studies that follow offspring’s health outcomes
longitudinally, including vaccination responses and immunological
evaluation at later time points, should be aimed at elucidating the
effect of different drug regimens and dosages on pregnancy
outcomes and the neonatal immune environment.
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