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Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where
they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures,
occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.

1. Introduction

Together with glycoproteins and glycosaminoglycans, gly-
cosphingolipids (GSLs) contribute to the glycocalyx that
covers eukaryotic cell surfaces. Gangliosides are sialic acid-
containing glycosphingolipids and provide a significant part
of cell surface glycans on neuronal cells. GSLs are lipids
that contain a sphingoid base and one or more sugar
residues [1]. Sialic acids (Figure 1) are nine-carbon sugars
biosynthetically formed from N-acetylmannosamine and
phosphoenolpyruvate [2, 3]. With a mean pKA value of
around 2.6, they are more acidic than the majority of
carboxylic acids and negatively charged at most physiological
pH values. The name “ganglioside” was coined by the
German biochemist Klenk (1896–1971) and assigned to a
group of acidic GSLs that he isolated from ganglion cells
[4, 5] and from the brains of patients who suffered from
the so-called amaurotic idiocy [6, 7]. Sialic acid was first
isolated from submaxillary mucin in 1936 [8]. Its structure
was elucidated in the nineteen fifties by different groups and
it was found to be identical to that of the N-acetylneuraminic
acid isolated by Klenk and Faillard. The first structure of a
ganglioside was elucidated in 1963 by Kuhn and Wiegandt
[9]. In 1962, Svennerholm suggested a nomenclature of brain
gangliosides [10, 11]. The biochemical defects underlying
the diseases formerly known as amaurotic idiocy, GM1-
gangliosidosis [12], Tay-Sachs- [13], and Sandhoff disease
[14] were identified by Sandhoff and others in the 1960s.

2. Structure and Nomenclature

In their structures, gangliosides combine a glycan and a lipid
portion and contribute to both, the cellular lipidome and
the glycome/sialome [15]. A great variety of carbohydrate
sequences are found within the GSLs [16], including the
gangliosides [17]. Although carbohydrate residues of dif-
ferent structure, linkage, and anomeric configuration occur
in GSLs, only a limited number of the so-called series
with characteristic carbohydrate sequences are found within
evolutionary related organisms (Table 1). Within the gan-
gliosides, sialic acids can be attached only to a few of the GSL
series, in adult mammals especially to the ganglio series.

Among the sialic acids, N-acetylneuraminic acid is the
most frequently found member in humans, but also N-
glycolylneuraminic acid is abundant in many other species
(Figure 1). A total of more than 50 different sialic acids
have been described [18, 19]. They can be O-acetylated
in positions 4, 7, or 9 [20], but also N-deacetylated, O-
methylated, sulfated, or modified by lactonization [21] (see
Figure 8).

The nomenclature of GSLs specifies the glycan part
of these lipids. Two ganglioside nomenclature systems are
currently in use to assign names to the corresponding struc-
tures. Most researches prefer the short-hand nomenclature
according to Svennerholm, which was initially based on
the migration order of ganglio-series gangliosides in chro-
matography [10]. Later on, it has been extended to other
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Figure 1: Sialic acids.

Table 1: GSL series.

Series Core structure

Arthro GlcNAcβ1,3Manβ1,4Glcβ1,1′Cer

Gala Galα1,4Galβ1,1′Cer

Neogala Galβ1,6Galβ1,6Galβ1,1′Cer

Ganglio Galβ1,3GalNAcβ1,4Galβ1,4Glcβ1,1′Cer

Globo GalNAcβ1,3Galα1,4Galβ1,4Glcβ1,1′Cer

Isoglobo GalNAcβ1,3Galα1,3Galβ1,4Glcβ1,1′Cer

Lacto Galβ1,3GlcNAcβ1,3Galβ1,4Glcβ1,1′Cer

Neolacto Galβ1,4GlcNAcβ1,3Galβ1,4Glcβ1,1′Cer

Muco Galβ1,3Galβ1,4Galβ1,4Glcβ1,1′Cer

Mollu Fucα1,4GlcNAcβ1,2Manα1,3Manβ1,4Glcβ1,1′Cer

Schisto GalNAcβ1,4Glcβ1,1′Cer

Spirometo Galβ1,4Glcβ1,3Galβ1,1′Cer

root structures. The more comprehensive IUPAC system
[22] is less frequently applied. According to Svennerholm,
a core structure of neutral sugars define the name of
a respective series, in which the pyranose forms of D-
galactose (Gal), D-N-Acetyl-glucosamine (GlcNAc), or D-
N-Acetylgalactosamine (GalNAc) are attached in defined
order and linkage to lactosylceramide (Galβ1,4Glcβ1Cer)
or β-galactosylceramide (Galβ1Cer). The names contain
information about the series (“G” = ganglio, “L” = lacto),
the number of sialic acids (“A” = 0, “M” =1, “D” = 2, “T” =
3, “Q” = 4, “P” = 5, “H” = 6, “S” = 7), and, indirectly,
on the number of uncharged carbohydrates: initially it has
been assumed that this number cannot exceed 5, so that
the name “ganglioside GM1” indicates that this ganglioside
contains (5 − “1” = 4) neutral sugars of the ganglio series.
This series is defined by the sequence Galβ1-3GalNAcβ1-
4Galβ1-4GlcCer. Sialic acids can be attached once, twice, or
severalfold to different positions within the core structures.
Most often, they are found in α2,3-linkage to the “inner”
or “outer” galactosyl residue, and in α2,8-linkage to other
sialic acids. Ganglioside GM1 bears one sialic acid moiety
connected to the 3-OH-group of the galactosyl residue in
position II of the gangliotetraose moiety (see also Figure 7).
The corresponding IUPAC-IUBMB short-hand name is
II3Neu5AcGg4Cer. Structures of ganglio-series gangliosides
can also be derived from the scheme of ganglioside biosyn-
thesis (see below; Figure 12). In general, ganglio-series GSLs
of the 0-series bear no sialic acids on the galactose in position
II, of the a-series bear one, of the b-series bear two, and of
the c-series bear three sialic acid residues. However, GM1b

and GD1c have a “b” and “c” in their names, although
both are 0-series gangliosides (see the scheme of ganglioside
biosynthesis, Figure 12). GM4 is a gala-series ganglioside,
although the “G” suggests ganglio series. Figure 2 shows the
structure of ganglioside GQ1b, one of the most abundant
gangliosides in adult human brain (G = ganglio series, Q = 4
sialic acids, 5 − 1 = 4 neutral carbohydrate residues, and b-
series = 2 sialic acids attached to the “inner” galactose).

Ganglioside core structures can be additionally modi-
fied; they can be elongated, such as in GD1aGalNAc [25]
(Figure 3). This ganglioside occurs, for example, on spinal
neurons [26, 27] and can give rise to autoantibodies as a
cause of variant forms of the Guillain-Barré syndrome [28,
29] and other neuropathies [30]. A modified GM2 derivative
that contains taurine in amide linkage to the sialic acid car-
boxyl group has been identified in the brain of patients with
Tay-Sachs disease [31]. Hybrid-type GSLs and gangliosides
with postglycosylation modifications add further complexity
to this substance class [32]. As an example, lacto-ganglio
hybrid-type gangliosides have been identified in bovine brain
[33].

Most gangliosides found in adult mammals belong to the
ganglio, gala, lacto, and neolacto series. Ganglioside GM4
(Figure 3), a member of the gala series, has the structure
NeuAcα2,3Galβ1Cer and is often found with an α-hydroxy-
fatty acid within the ceramide moiety. During development,
also gangliosides with other core structures are transiently
formed, such as the stage-specific embryonic antigen SSEA-
4, a ganglioside of the globo series [34] (Figure 4). In adults,
globo-series gangliosides occur on human erythrocytes [35],
in human kidney [36], and on various stem cells [37]. For
example, SSEA-4, but not SSEA-3 or Globo-H (Figure 4),
is expressed in cord blood-derived mesenchymal stem cells
[24].

With the exception of echinoderms (marine organisms
of typically pentaradial symmetry), gangliosides are usually
absent from invertebrates. Arthropods, for example, form
acidic GSLs with a Manβ1,4Glcβ1,1′Cer core, which contain
glucuronic acid instead of sialic acids. For gangliosides of
echinoderms [38–42], there is no systematic short-hand
nomenclature. They show structural features uncommon to
mammalian gangliosides, such as sialic acid residues within
the oligosaccharide moieties (e.g., LG-2, Figure 5), α2,11-
linked sialic acids (e.g., LLG-5, Figure 5), sialic acid methy-
lation or sulfation, or a glycosyl inositolphosphoceramide
core, for example, [43, 44]. In cultured neurons, echinoder-
mal gangliosides show neuritogenic and growth-inhibitory
activities. In this regard, they are more potent than other
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Figure 2: Structure of GQ1b, one of the most abundant gangliosides in adult human brain, which is involved in long term potentiation,
synaptic plasticity, and improvement of cognitive function [23].
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gangliosides [45, 46] and potentiate the neuritogenic effect
of nerve growth factor.

Heterogeneity is not only found within the glycan part,
but also within the ceramide moiety. This can consist of dif-
ferent sphingoid bases [51], sphinganine, sphingosine, and
phytosphingosine of different chain lengths (Figure 6), which
can be further modified by O-acetylation [52]. In higher
animals, C18- and C20-sphingosine are the most abundant
sphingoid bases of gangliosides.

The fatty acids found in the ceramide part of gangliosides
are mostly saturated. α-Hydroxylated fatty acids [53] are
not frequently found in brain gangliosides, but are, for
example, abundant in gangliosides from intestine, liver, or
kidney, and in GM4. To specify the lipoform of a ganglio-
side, designations such as (d18:1/18:0)GM3 are used for a
II3Neu5AcLacCer with a sphingosine (d = dihydroxy, 1 =
one double bond; see also Figure 6) of 18 carbons and a

stearoyl residue (18:0) within the ceramide portion. The
functional consequences of the heterogeneities in the lipid
component are largely unknown, but the lipid part can mask
the receptor function of ganglioside glycans via interaction
with membrane cholesterol [54, 55]. As another example,
the ceramide portion of GM1 dictates retrograde transport
of cholera toxin bound to GM1, and only GM1 with
unsaturated acyl chains is sorted from the plasma membrane
to the trans-Golgi network and the ER [56]. Ganglioside
profiling with respect to glycan and ceramide structures is
more and more in the focus of ganglioside analysis.

3. Occurrence

Gangliosides are especially abundant in the brain, where
their occurrence in the grey matter is about 5-fold higher
than in white matter. In adult human brain regions, the
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values range from 2 to 14 μg lipid-bound sialic acid/mg
protein [57]. In the brain, ganglioside expression correlates
with neurogenesis, synaptogenesis, synaptic transmission,
and cell proliferation [58, 59]. In cultured murine hip-
pocampal neurons, axonogenesis, but not dendritogenesis,
is accompanied by an increase in the formation of complex
gangliosides and by a shift from the a- to b-series [60]. In
extraneural tissues, the ganglioside content is one- to two-
orders of magnitude lower than in the brain; relatively
high concentrations of ganglio-series gangliosides are found
in bone marrow, erythrocytes, intestine, liver, spleen, and
testis, GM4 in kidney, and SSEA-4 in embryonic stem cells.
Cellular gangliosides form in part complex, cell-type- and
tissue-specific glycan patterns [61]. These are not stable with
time, but change with physiological and pathophysiological
processes such as cell growth, differentiation, viral transfor-
mation, ontogenesis, oncogenesis, embryogenesis [62, 63],
lactation, or tumor progression [64]. Gangliosides of the
ganglio-series are especially found in the nervous system,
where they contribute to 10–12% of the lipid content [65].
During brain development, the ganglioside pattern changes
from the prevalence of the simple gangliosides GM3 and
GD3 to more complex ones such as GD1a and GT1b [66] (for
structures, see Figures 7 and 11). Ganglioside content and
composition of the brain change also during aging: for exam-
ple, the amount of lipid-bound sialic acid decreased from
1070 μg/g wet weight in a 25-year-old healthy proband to
380 μg/g wet weight in a 85-year-old individual. Despite this,
the concentrations of GQ1b, GT1b, and GD1b increase with
age at the expense of GM1 and GD1a [67] (for structures, see
Figures 2 and 7). Changes in ganglioside composition with
age also occur in liver [68]. There are only indications on the
functional consequences of such changes [23].

Gangliosides are also found in serum. There, especially
GM3, GD3, GD1a, GM2, GT1b, sialylneolactotetraosylce-
ramide (Figure 10), GD1b, and GQ1b are present, where
about 98% of them are transported by serum lipoproteins,
predominantly by LDL (66%), followed by HDL (25%)
and VLDL (7%) [69]. After the discovery of extracellular
microvesicles (formerly called microparticles) [70], which
were not distinguished from lipoproteins in earlier experi-
ments, it might turn out that these assignments have to be
revised.

Experiments in rats have shown that after injec-
tion of [14C]sialic acid-labeled gangliosides GM3 and
[3H]sphingosine-containing labeled ganglioside GM1, the
GM1 and GM3 probes had serum half-lives of 1.4 and 1.8 h,
respectively. After three hours, 75% of the GM1 and 38% of
the GM3 probes were taken up by the liver, and a smaller
extent in the central nervous system, kidneys, and lung [71].

Subcellularly, the majority of gangliosides resides in the
plasma membrane [72]. However, gangliosides also occur in
organellar membranes such as in mitochondria, where GD3
regulates apoptosis [73], and in the nucleus, where they are
involved in Ca2+ balance [74, 75].

The glycans found in gangliosides are sometimes mod-
ified by the acylation of sialic acid residues in different
positions [20]. O-Acetylated sialic acids in gangliosides occur

especially in growing cells and tissues and are regarded as
oncofetal markers present on different tumors [76]. They
also serve as receptors for Influenza C viruses or coron-
aviruses [77].

Another modified sialic acid is N-glycolylneuraminic
acid (Neu5Gc) [42]. With the exception of certain tumors
and in fetuses, it is found only in trace amounts in human
tissues [78]. As a component of glycoconjugates, Neu5Gc is
known as the Hanganutziu-Deicher antigen [79]. It is abun-
dant in many species of the Deuterostome lineage, including
simians, mice, rat, beef, pork, or lamb, but is nearly absent
from birds and reptiles [80]. Neu5Gc on glycoconjugates
contributes to xenoantigenicity in pig-human xenotrans-
plantation [81], and in cats, Neu5Gc distinguishes the blood
groups A and B: [Neu5Gc]2GD3 is found in feline blood
group A erythrocytes, [Neu5Ac]2GD3 on blood group B,
and feline blood group AB erythrocyte membranes contain
[NeuGc]2GD3, [Neu5Ac,Neu5Gc]GD3, and [NeuAc]2GD3
[82].

Humans cannot synthesize Neu5Gc due to an irre-
versible inactivation of the CMAH gene on chromo-
some 6p21.32 encoding Cytidine monophosphate-N-acetyl-
neuraminic acid hydroxylase [83]. This enzyme converts
CMPNeu5Ac to CMPNeu5Gc and its function is thought
to be lost during a “sialoquake” in human evolution [84,
85]. Determination of Neu5Gc and Neu5Ac-containing gan-
gliosides is either achieved by classical chromatographic
techniques combined with antibody staining [86], or, with
higher sensitivity, by combination of chromatography with
ESI-MS [87]. A potential application is the immunochemical
detection of [Neu5Gc]GM3 as biomarker of nonsmall-cell
lung cancer [88].

Also ganglioside lactones (Figure 8) have been detected
in various tissues, for example, GD3 lactone in mouse brain
[89] and GD1b lactone in human brain [90]. Ganglioside
lactones are more immunogenic than gangliosides [91] and
occur on tumor cells such as melanoma as tumor-associat-
ed antigens. In vitro, lactonization of gangliosides can be
followed by a strong negative Cotton effect at 235 nm in CD
spectroscopy [92].

Temporal and spatial differences are also observed for
the ganglioside lipid part. In undifferentiated neuronal cell
cultures, gangliosides with C20 sphingosine are present only
in trace amounts, but their content increases with the onset
of cell differentiation [93]. In rat brain, the fraction of
gangliosides containing C20 sphingosine increases with age
[94] in cerebellum [95] or forebrain [96]. Spatial differ-
ences regarding the sphingoid base chain length have also
been detected in mice: while gangliosides containing C18

species were widely distributed throughout the frontal brain,
C20 species are selectively localized along the entorhinal-
hippocampus projections [97]. Fatty acid and sphingoid base
composition is also different between human motor and
sensory nerves [98].

Nutrition. Since gangliosides are components of most ver-
tebrate cell types, they are ingested with the nutrition, for
example, with egg yolk (GM3, GM4, and GD3), meat, or in
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Figure 7: Representative structures of gangliosides that are abundant in adult human brain.

milk [99]. Milk contains gangliosides, especially GD3 and
GM3, in the membrane fraction of the fat globule. Dietary
gangliosides modify the intestinal microflora and prevent
infections during early infancy [100]. In infants, more than
80% of dietary gangliosides survive the passage through
the stomach, in part with acid-catalyzed lactonization, and

are absorbed in the intestine [99]. Ingestion of dietary
gangliosides leads to an increase of gangliosides in serum.
In human nutrition, sialic acid derived from gangliosides
and other glycoconjugates is an essential nutrient for the
rapidly growing brain in infants [59]. The pathophysiological
consequences of nutritional Neu5Gc uptake are unknown.
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4. Analysis

In the past, ganglioside structures and levels were obtained
by comprehensive chemical analysis, while nowadays this is
attempted within lipidomics using mass spectrometry as the
key technology [101].

In general, gangliosides are isolated from tissues and
body fluids by chloroform-methanol extraction [102, 103].
Extraction efficiency can increase when small amounts of
water are present in the extraction solvent [104], for exam-
ple, using the solvent system chloroform : methanol : water
(5 : 5 : 1) [105]. When extraction is followed by a parti-
tion step such as that developed by Folch et al. [106],
gangliosides—in contrast to the majority of other lipid
classes—partition into the upper, aqueous phase. From
there, they can be isolated by a solid phase extraction and
separated from neutral GSLs by anion exchange chromato-
graphy [107], such as with DEAE (=diethylaminoethyl)
Sephadex [108].

O-Acetylation of sialic acids and also ganglioside lac-
tonization [90] are modifications that are lost under alkaline
conditions. These are often applied to remove glycerophos-
pholipids that contain fatty acids in ester linkage [109]. If
information on these modifications is desired, gangliosides
from tissues can be determined without alkaline treatment,
for example, after chloroform/methanol extraction in a ratio
of 1 : 2 and a subsequent partition step [110].

Separation of gangliosides according to their glycan
composition is achieved by thin layer chromatography (TLC)
[111] and by HPLC and other techniques that can be
coupled to mass spectrometry [112]. This facilitates their
identification by mass spectrometry and is required for
their characterization by staining with suitable antibodies
[113, 114], lectins, or other binding proteins [115]. Although
not required for mass-spectrometric profiling, separated
ganglioside classes can also be further separated according to
their ceramide structure by reversed phase chromatography
[116–118].

Quantification can be achieved by staining and densit-
ometry, or—if suitable standard substances are available—
by mass spectrometry. Since the biosynthetic machinery

generates heterogeneities within both, the lipid and the
glycan part, comprehensive ganglioside analysis is a highly
demanding task within lipidomics [101]. In addition to gly-
coforms that are also well known from glycoprotein analysis,
“lipoforms” [119] become increasingly important to under-
stand ganglioside metabolism and function. Various pro-
tocols for ganglioside determination by mass spectrometry
have been developed [101]. They are largely based on
electrospray mass spectrometry as ionization technique; but
also MALDI plays a role. The available methods range from
preanalytics to bioinformatic data handling and include
imaging methods using MALDI and Secondary Ion mass
spectrometry (SIMS) to determine the spatial distribution
of the analytes [101]. In addition to their constitution, little
is known about the conformation of gangliosides in their
native, membrane-bound surroundings. X-ray data are not
available for gangliosides, although isolated glycans have
been investigated by various means. For a simulation of
GM3 conformations in a bilayer, compare [120], which, for
example, shows that the glucose moiety of GM3 is buried
within phosphatidylcholine head groups.

5. Biosynthesis

The diversity of cell surface glycans, including that of
gangliosides, is generated within the Golgi apparatus [121],
and the heterogeneities within the ceramide part result from
the biosynthesis of ceramide at the endoplasmic reticulum
(ER). De novo synthesis of gangliosides can be distinguished
from salvage processes [122, 123], in which sialic acids,
sugars, fatty acids, and sphingoid bases are recycled. The
latter process can predominate by far in differentiated cells.

5.1. Ceramide Biosynthesis. Ganglioside biosynthesis starts
with the formation of ceramide (Figure 9) at the cytoplasmic
leaflet of the ER membrane [124–126]. The first step, the
condensation of L-serine and a coenzyme A-activated fatty
acid is catalyzed by the pyridoxal phosphate-dependent
serine palmitoyltransferase (SPT) [127]. The incorporation
of L-serine into GSLs can be used to monitor their de novo
biosynthesis using L-serine radiolabelled in the position 3
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(the carbon in position 1 is lost as carbon dioxide). In
the brain, the external supply of L-serine by astrocytes is
essential for neuronal lipid biosynthesis and brain develop-
ment [128]. In agreement with this observation, genetically
engineered rodents with deficient phosphoglycerate dehy-
drogenase required for L-serine formation from D-glucose
show drastically reduced ganglioside levels, defects in brain
morphogenesis, and drastically reduced lifespan [129, 130].

The next step in sphingolipid biosynthesis is the
NADPH-dependent reduction of 3-ketosphinganine to
sphinganine by 3-ketosphinganine reductase, followed by
acylation of sphinganine to dihydroceramides of different
chain lengths [131]. During salvage, also other sphingoid
bases are acylated by N-acyltransferases of the lass family.
Lass 1 encodes ceramide synthase 1, which is expressed in the
brain and involved in the formation of the membrane anchor
of gangliosides. In mice, spontaneous recessive mutations
in the lass1 gene are associated with cerebellar ataxia and
Purkinje cell degeneration [132]. Although the ceramide part
of brain gangliosides contains mostly nonhydroxylated fatty
acids, apparently all members of the lass family are also able
to transfer the corresponding 2-hydroxy-fatty acids [133].
Dihydroceramides are dehydrogenated to ceramide by the
dihydroceramide desaturase des1 [134], or hydroxylated to
phytoceramides by des2. Ceramide is the common precursor
of GSLs and sphingomyelin and is transported to the Golgi
apparatus at least in part in a protein-dependent manner by
the transport protein CERT [135–137].

5.2. General Aspects of Ganglioside Formation. GSL synthesis
continues by the stepwise transfer of nucleotide-activated
monosaccharide units first on ceramide and then on GSLs
with growing glycan chains. Glycosidation is coupled to exo-
cytosis through the Golgi apparatus to the plasma membrane
[138] at the rate of bulk vesicle flow [139].

The complex ganglioside and GSL glycoforms on eukary-
otic cell surfaces are generated by only a few enzymes
that act within a combinatorial biosynthetic pathway [140,
141]. The first glycosyltransferases involved in ganglioside
biosynthesis have been characterized in the laboratories of
Roseman and Basu [142]. According to the number of sialic
acids connected to the “inner” galactosyl residue, ganglio-
series gangliosides are classified into members of the 0-, a-,
b-, and c-series (Figure 12). b-Series gangliosides contain
the Neu5Acα2,8Neu5Ac sequence, which is commonly not
found in glycoproteins. Higher members of these different
subseries can be formed by the action of the same glyco-
syltransferases, which show less specificity than those acting
early in the pathway [143–147].

The glycosyltransferases and sialyltransferases [148, 149]
of the ganglioside biosynthetic pathway are expressed in a
cell-type- and developmental-dependent fashion. Ganglio-
side pattern changes during the development of the brain
[150], and after differentiation, differences in glycolipid
composition have even been found between different neu-
ronal cell types [151]. In addition, ganglioside patterns vary
between different cell types and change with the differentia-
tion of the cell. As an example, β1,3-N-acetylglucosaminyl-

transferase expression, which leads to the formation of
glycolipids of the lacto and neolacto series (Figure 10), is high
during murine embryonic development and decreases after
birth to undetectable levels in most cell types [152, 153].
In adult animals, expression is high in spleen [154], and in
cerebellum, it is restricted to Purkinje cells [155].

GSLs including gangliosides are formed biosynthetically
at intracellular membranes from which they are transported
to the plasma membrane by exocytotic membrane flow
[138]. While many human diseases are known that are due
to defects in GSL and sphingolipid degradation, the only
known human disease caused by a defect glycosyltransferase
of ganglioside biosynthesis is the human autosomal recessive
infantile-onset symptomatic epilepsy syndrome, which is
caused by a nonsense mutation in the gene encoding GM3
synthase [156].

A principal difference between ganglioside biosynthesis
in the Golgi apparatus and degradation in the endolysosomal
compartment is that during GSL formation, membrane-
bound glycosyltransferases interact with their membrane-
bound glycolipid substrates by diffusion within the two-
dimensional plane of the lipid bilayer. Therefore, reaction
rates can become independent of the reaction volume and
obey two-dimensional enzyme kinetics. This means that
kinetic constants can be normalized on lipid surface area
instead of reaction volume, for example, in terms of the
amount of membrane protein [157]. As a consequence, gly-
cosyltransferases that lack their transmembrane domain lose
most of their activity towards membrane bound substrates
[158]. During degradation in endosomes and lysosomes,
the glycosidases are soluble enzymes, and the substrates are
membrane-bound. This explains in part the requirement
for endosomal and lysosomal lipid-transfer proteins for
the degradation of GSLs with short glycan chains, which
is not the case in biosynthesis. In addition to ganglioside
biosynthesis in the Golgi apparatus, there are also indications
ganglioside formation by plasma membrane-associated gly-
cosyltransferases [159].

5.3. Gala Series. In the monoglycosylceramides glucosylce-
ramide (GlcCer) and galactosylceramide (GalCer), which are
also called cerebrosides, the hexosyl residues are present in β-
anomeric configuration. GalCers with α-configuration occur
only in lower organisms [42] and are highly immunogenic
for mammals [160]. Most gangliosides are biosynthetically
derived from GlcCer; only ganglioside GM4 is derived from
GalCer. Ganglioside GM4 has been discovered as a minor
component of human brain gangliosides [161], where it is
localized within myelin [162]. It also occurs, for example, on
erythrocytes, kidney, and in the intestine and is abundant
in some fish species. However, the most frequently found
members of the gala series are GalCer and sulfatide (GalCer-
3-sulfate) in oligodendrocytes, Schwann cells, kidney, testis,
and intestine. They are present in high concentrations
in the multilamellar layers of the myelin where they are
required for glial adhesion [163], apparently via interaction
between the carbohydrate head groups of sulfatide and
GalCer on different myelin layers [164]. Myelin lipids contain
the highest fraction of 2-hydroxy-fatty acids, which are
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formed by fatty acid hydroxylase-2 [165]. Their presence in
gala-series GSLs contributes to carbohydrate-carbohydrate
interactions between the GSLs [166].

In contrast to GalCer synthase, GlcCer synthase appears
to be dispensable for oligodendrocytes [167]. While ceramide
galactosylation catalyzed by UDP-glucose:ceramide galacto-
syltransferase (GalT3) [168] occurs at the ER membrane,
the later steps of gala-series GSL biosynthesis, formation of
sulfatide [169], digalactosylceramide [170], and ganglioside
GM4 take place in the lumen of the Golgi apparatus. In con-
trast to most glycosyltransferases in ganglioside biosynthesis,
which are type II transmembrane proteins, ceramide galacto-
syltransferase is a type I transmembrane protein with the cat-
alytic domain on the luminal side of the ER [171]. According
to data obtained in zebrafish and mice, GM4 can be formed
by ST3Gal V, which can also make GM3. Therefore, GM4
and GM3 formation appear to depend on the availability of
their precursors, GalCer and LacCer [172]. Little is known
about the function of GM4. It can interact with the myelin
basic protein, shows immunosuppressive properties, and can
prevent experimental allergic encephalomyelitis in guinea
pigs [173].

5.4. Gangliosides Derived from Glucosylceramide. The first
step in the biosynthesis of most gangliosides is the transfer
of a glucose residue from UDP glucose to ceramide catalyzed

by UDP-glucose:ceramide glucosyltransferase [174, 175].
Although GlcCer and GalCer synthases catalyze similar reac-
tions, their cDNAs share no sequence homology. Ceramide
glucosyltransferase is a type III transmembrane protein. It
forms noncovalent dimers or oligomers [176] with their C-
terminal catalytic domains in the cytosol [177]. Since the
formation of GlcCer occurs on the cytoplasmic face [178]
and that of LacCer on the luminal site of the Golgi membrane
[179], glucosylceramide has to be translocated across a
membrane. This is mediated by a flippase of unknown
identity: the ABC-transporters, ABC-B1 and -C1, translocate
short chain GlcCer analogs through the Golgi membrane
[180, 181]. Transversal translocation can be carried out
after transport of GlcCer by the cytoplasmic lipid-transfer
protein FAPP2 (four-phosphate adaptor protein 2) either
to the ER [182], where it might be translocated by an
uncharacterized flippase [183], or at the trans-Golgi [184].
A part of the GlcCer pool can reach the cytosolic leaflet
of the plasma membrane where it can be degraded by
the β-glucosidase Gba2 [185]. Candidate cytosolic GlcCer-
transporters are the glycolipid transfer protein GLTP and
FAPP2.

The biosynthesis of higher gangliosides occurs on the
luminal face of the Golgi apparatus [186], so that their glycan
chains are orientated extracytoplasmic. LacCer is formed by
galactosyltransferase I, which transfers a galactose residue
from UDP galactose to glucosylceramide [187]. Further
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carbohydrate residues are transferred in a stepwise manner
to the growing glycan chains. LacCer and its sialylated deriva-
tives, the hematosides GM3, GD3, and GT3 (Figure 11) serve
as precursors for complex gangliosides of the 0-, a-, b-, and
c-series.

These different series (Figure 12) are characterized by the
presence of no (0-series), one (a-series), two (b-series) or
three sialic acids residues linked to the position 3 of the
“inner” galactosyl residue. In adult mammalian brain, gan-
gliosides from the 0- and c-series are found only in trace
amounts, and GM1b and GD1α are transiently expressed
during chick brain biogenesis [188]. 0-series gangliosides
(GM1b, GD1c, and GD1α) are found in genetically engi-
neered mice deficient in ST3Gal V (GM3 synthase), where
they are present in amounts that correspond to the total
ganglioside content of normal animals [189]. These mice
are not able to form GM3 and higher gangliosides of the
a–c-series. They display altered glucose homeostasis with an
accelerated insulin receptor signalling pathway, a key finding
that demonstrates the inhibition of the insulin receptor by
GM3 or a higher ganglioside derived from it in vivo [189].

c-Series gangliosides (Figures 12 and 13) are formed dur-
ing mammalian brain development where they are thought
to be involved in growth, differentiation, and migration of
neuronal cells. They are abundant in fish brain, and in adult
rats; they occur in liver, kidney, and pancreas [190] and in
tumors such as glioma. The transferases that catalyze the
first steps in ganglioside biosynthesis show high specificity
towards their glycolipid substrates. The relative amounts of
LacCer, GM3, GD3, and GT3 seem to determine the amount
of 0-, a-, b-, and c-series gangliosides. The glycosyltrans-
ferases that act late in this pathway represent a kind of
assembly line and transfer the respective carbohydrates to
glycosyl acceptors that differ only in the number of sialic acid
residues bound to the “inner” galactose residue. The complex
“α-”gangliosides with sialic acid moieties in α2,6-glycosidic

linkage to N-acetylgalactosamine residues is specific for
cholinergic neurons [191] and has been added later to the
biosynthetic scheme [192]. In mice, the sialyltransferases that
form gangliosides GD1a and GT1b have been identified as
ST3Gal II and ST3Gal III [193].

5.5. Genetically Engineered Mice. A significant advance to-
wards understanding the function of the complex ganglioside
pattern found in eukaryotic cells is the development of mice
with defects in distinct biosynthetic steps [194]. A mouse
melanoma cell line deficient in GlcCer and GlcCer-derived
GSLs was viable and showed only minor changes in cellular
morphology and growth rate. From these observations it was
concluded that GSLs including gangliosides are not essential
for animal survival [195]. Later, it was reported that mice
with targeted disruption of the ceramide glucosyltransferase
gene displayed no cellular differentiation beyond the prim-
itive germ layers and died around day 7.5 of embryonic
development [62]. Mice deficient in B4GalNT I (GM2-
synthase) are not able to form GM2, GD2, and higher gan-
gliosides derived from them. Although these animals show
only subtle impairment of brain function [196], they exhibit
multiple defects, such as axonal degeneration, defects in
myelination [197] and motor function [198], or an impaired
response of T cells to interleukin 2 [199], only to mention
a few. Later studies showed that CD4- and CD8-positive
T cells require different ganglioside subsets for activation
[200]. The mutant male mice are sterile and also show
morphological and functional defects in the testis [196].
Further examination of GalNAc-transferase deficient mice
revealed that GM1-deficiency is accompanied by Parkinson-
like symptoms, which could be rescued by L-Dopa or the
membrane permeable GM1-analog Liga20 (see Figure 19)
[201]. This is in agreement with a series of reports that
GM1 can alleviate symptoms in models of Parkinson disease,
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for example, [202]. In Parkinson disease, anionic lipids
and especially GM1 inhibit aggregation of α-synuclein to
cytotoxic fibrils [203].

Mice deficient in ST8Sia I (GD3-synthase) do not form
GD3 and b-series gangliosides. They have a normal life
span and are without detectable developmental defects [204].
When these mice were crossbred with mice carrying a
disrupted B4GalNT I gene, the resulting double mutant mice
express only ganglioside GM3 as their major ganglioside.
These “GM3-only-mice” are extremely susceptible to sound
stimuli, develop lethal seizures, and display a sudden death
phenotype [204]. Double knockout mouse deficient in
B4GalNT I and ST3Gal V (GM3-synthase) are not able to
form any ganglioside of the ganglio-series. These animals are

severely diseased and show elevated levels of LacCer, LacCer-
sulfate, and traces of other gangliosides that are present also
in normal brain [205].

5.6. Regulation. Sphingolipid biosynthesis is a highly regu-
lated process and also coordinated with sterol and glycero-
lipid biosynthesis. Sphingolipids are major regulators of lipid
metabolism and activate sterol-regulatory element binding
proteins (SREBPs) [206]. The sphingomyelin synthase-
related synthase, the ceramide transporter CERT, and pro-
teins of the orosomucoid- (Orm)-familie seem to play key
roles in sphingolipid homeostasis [207]. Ganglioside pattern
are characteristic for a cell type in a certain differentiation
state, and, for example, mice deficient in GM3-synthase
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that cannot form the typical brain gangliosides show a
ganglioside content similar to that of normal animals [189].
How exactly the relative amounts of gangliosides are con-
trolled is not clear [208], but the transcriptional regulation
of transferase genes seems to be a key point [208]. The
picture gets more complicated by the fact that different
transferase isoforms with different properties can be present:
three murine GM3-synthase isoforms that arise from two
transcripts have been characterized. One is resident in the ER
membrane, the two others in the Golgi, but with different
half-life [209]. In addition, the kinetic parameters of the
transferases, their topological organization within the Golgi
apparatus, or spatial neighborhood to other transferases
will influence the resulting ganglioside pattern. An attempt
has been made to calculate glycolipid pattern on the bases
of the kinetic constants of the transferases, that were esti-
mated from the steady state concentrations of the glycol-
ipid substrates in intact cells [210]. Contradictory results
have been reported on the subcellular localization of the
glycosyltransferases involved in the biosynthesis of ganglio-
series gangliosides [211]. An additional feature of ganglioside
biosynthesis and its regulation [212] is the formation of
functional complexes, as predicted by Roseman [213]. In
these complexes [140], the glycosyltransferases do not only
form functional platforms, but can also show altered activity
and suborganellar localization [214]. One of these complexes
characterized in certain CHO cells [215] comprises B4GalNT
I and B3GalT IV (Figure 12), so that it can accept GM3 and
release GM1. This might explain why the brain contains large
amounts of GM1 and GD1a, but little GM2. Also GalT I,
ST3Gal V, and ST8Sia I can form such a complex [216].

6. Degradation

6.1. General. The constitutive degradation of gangliosides
takes place in endosomes and lysosomes. In addition, also the
plasma membrane-associated sialidase Neu3 [217, 218] can
degrade gangliosides and is, for example, highly expressed
on melanoma cells [219]. Even the nuclear envelope contains
sialidases, with Neu3 in the inner and Neu1 in the outer
nuclear membrane [220]. Lysosomal ganglioside degrada-
tion takes place after the endocytosis of parts of the plasma
membrane at intraendosomal and intralysosomal mem-
branes and related lipid aggregates. This requires the pres-
ence of suitable glycosidases [221], of an appropriate pH, in
some cases also of lipid-transfer proteins, and of an appropri-
ate composition of the ganglioside-containing membranes
[222].

As proposed in 1992, two different membrane pools are
present in endosomes and lysosomes [223] (Figure 15). They
differ in lipid- and protein composition and function. While
the luminal membrane pool that is derived from the plasma
membrane or by autophagy is degraded, the perimeter
membrane (Figure 15) is protected from degradation by
various means [224]. This ensures the integrity of the com-
partment, which can be abolished during apoptosis [224]. A
marker lipid that is exclusively found in luminal membranes
[225] is bis(monoacylglycero)phosphate (BMP; Figure 14),
chemically incorrect also named as lysobisphosphatidic acid

(LBPA). BMP plays a key role for membrane degradation
[226] and is formed from phosphatidylglycerol [227]. Due
to its sn1, sn1′ configuration, it is only slowly degraded by
lipases and persists on inner membranes, in which it can
amount up to 70% of total phospholipids [228]. With a
predicted pKA value of about 2, BMP is negatively charged
even at lysosomal pH. In vitro studies show that negatively
charged lipids are required for binding of lysosomal proteins
to membranes. Although other negatively charged lipids such
as dolichol phosphate or phosphatidylinositol can be present
on luminal membranes, BMP appears to be the key factor
that distinguishes this membrane pool from the perimeter
membrane. On the other hand, the perimeter membrane of
endosomes and lysosomes shows an entirely different lipid
and protein composition. It is protected by a glycocalyx
formed by highly N-glycosylated integral membrane proteins
[229, 230], and ganglioside GM3 present in this membrane
is resistant to degradation [231].

Ganglioside degradation starts with the action of gly-
cosidases that cleave off monosaccharide units from the
non-reducing end of the ganglioside glycan chains. This
happens in a sequential manner, which explains the dif-
ferent human diseases that are associated with defects in
this pathway. The glycosidases are soluble enzymes in the
lumen of endosomes and lysosomes. It turned out that
their activity is not sufficient towards GSL substrates with
cleavage sites in proximity to the intralysosomal membrane
surface. Although also other factors play a role, this can
be attributed to steric hindrance by adjacent membrane
components that impede the access of the soluble enzyme.
For example, in wild-type and GM2-activator deficient
fibroblasts, radiolabelled GD1aGalNAc (Figure 3), which has
the same terminal trisaccharide as GM2, is degraded in the
absence of the GM2-activator protein, while the degradation
of GM2 itself is strictly dependent on the presence of the
activator [232]. As glycosidase substrates, GSLs with four
carbohydrate residues or less require the additional presence
of small lipid binding glycoproteins, either the GM2 activator
protein or one of the four saposins A–D. These act in part
as lipid-transfer proteins that extract the membrane-bound
substrates and present them to the hydrolases. They have
different specificities and mechanisms of action [233]. In the
case of gangliosides, at least the GM2-activator protein and
saposin-B participate in the degradation of GM1, GM2, and
GM3 (Figure 16).

In vitro, in addition to enzymes and activator proteins,
also an appropriate membrane-lipid composition of the
ganglioside-containing membrane is required for degrada-
tion [222]. Saposin-A [234] and saposin-B [235] extract
membrane lipids much better from membranes that are
rich in BMP and poor in cholesterol. BMP also increases
the ability of the GM2 activator to solubilize lipids [236]
and stimulates the hydrolysis of membrane-bound GM1
by GM1 β-galactosidase [237] and of ganglioside GM2 by
β-hexosaminidase A [236]. BMP also stimulates hydrolysis
of the kidney sulfatide with ganglio-series GSL-core SM2
(gangliotriaosylceramide-II3 sulfate) by β-hexosaminidases
A and S in the presence of the GM2 activator [238, 239].
Cholesterol, which is known to stabilize lipid bilayers,
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Figure 16: Lysosomal ganglioside degradation pathway (modified from [233]). Names of inherited diseases (in boxes), enzymes, and lipid-
transfer proteins required in vivo are given.
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has to be transported from intraendosomal membranes
to the NPC1 protein resident in the endosomal perimeter
membrane by the soluble lipid-transfer protein NPC2. In
vitro, this transfer is greatly stimulated by BMP and strongly
inhibited by sphingomyelin [240].

6.2. Selected Key Proteins for Ganglioside Degradation

6.2.1. Saposin-B. Saposins are small, water-soluble lyso-
somal lipid-binding and -transfer proteins of about 8–
11 kDa molecular weight. They are derived from a common
precursor protein, prosaposin, by proteolytic processing.
Saposins belong to a family of proteins with conserved
three-dimensional fold [241] and occur as homo- and
heterodimers and -oligomers. The first saposin has been
characterized in 1964 as the so-called sulfatide activator since
it enables the degradation of sulfatide by arylsulfatase A
[242]. Today this protein is known as saposin-B or sap-B.
Saposin-B has many functions: it is a lipid-binding protein
with broad specificity [243] and forms water-soluble lipid-
protein complexes [244]. With respect to gangliosides, it is
able to stimulate the degradation of ganglioside GM1 by
GM1-β-galactosidase [237]. Studies in cultured human skin
fibroblast derived from saposin-B and prosaposin-deficient
patients show that it is also required for the degradation of
GM3 [245, 246]. It is important to note that glycosylation
of saposin-B is essential for some of its functions and that
human patients without this postranslational modification
die, although the unglycosylated variant protein is present in
lysosomes [235].

Mechanistically, saposin-B dimers seem to act similar to
the GM2 activator: X-ray data indicate that they can adopt
two conformations, an open one and a closed one [247].
According to a model view, the open conformation interacts
directly with the membrane and extracts the lipid ligand.
This is accompanied by a change to the closed conformation
in which the ligand is exposed to the degrading enzyme in a
water-soluble activator-lipid complex. Human patients with
an inherited deficiency of saposin-B develop an atypical form
of metachromatic leukodystrophy with the accumulation of
sulfatides, digalactosylceramide, and globotriaosylceramide
[248] (see Figure 16 for structures). Saposin-B knockout
mice show enhanced levels of sulfatides especially in brain
and kidney [249].

6.2.2. The GM2 Activator. The GM2 activator is a small
glycoprotein of 17.6 kDa in its deglycosylated form and is
required for the degradation of ganglioside GM2 by β-
hexosaminidase A in vivo [250]. Inherited deficiency of
the GM2-activator protein leads to the AB variant of
GM2 gangliosidoses [251]. Based on the X-ray structure
[252, 253] and data from photoaffinity labeling [254], in
some respects the GM2-activator acts in a way similar to
saposin-B. A more detailed picture of the binding mode
was derived from binding studies using a spin-labelled GM2
activator to phosphatidylcholine bilayers [255]. The protein
can extract a variety of lipids, which has been exploited
for assay development [256]. However, its major function
is to form a water-soluble GM2-protein complex that is

the native Michaelis-Menten substrate of β-hexosaminidase
A [250]. Negatively charged lipids such as BMP, dolichol
phosphate, or phosphatidylinositol increase the extraction
efficiency towards GM2 [236], GM1 [237], and other lipids
[257] from liposomal membranes. Binding characteristics of
the GM2 activator are altered by the presence of a His tag
[257].

In Langmuir experiments, the GM2-activator protein is
able to penetrate into a phospholipid monolayer, but only
when the lateral pressure is below a critical value, which
depend on the lipid composition and is in the range from
15 to 25 mN/m [258]. In addition to its function as a
ganglioside-transfer protein, the GM2 activator binds also
other lipids like phosphatidylcholine [259] and platelet
activating factor (PAF) and inhibits its action [260, 261].
It is not clear whether the GM2 activator displays inher-
ent hydrolytic activity towards lipid substrates such as
platelet activating factor [262] or phosphatidylcholine [259].
Apparently unrelated to its GM2 transfer property is the
function of the GM2 activator as adipokine [263]. GM2-
activator orthologs might serve different functions in other
organisms, for example as a pheromone-binding protein in
Drosophila [264], or an inhibitor of PAF-induced chemotaxis
in nematodes [265].

The saposins and the GM2-activator play major roles in
the transfer of lipid antigens to membrane-resident CD1-
proteins [266, 267].

6.2.3. Proteins Required for GM1 Degradation. GM1-β-gal-
actosidase is a protein of 64 kDa, which is derived from
an 88-kDa precursor [268, 269]. An alternatively spliced,
enzymatically inactive β-galactosidase form of 67 kDa is an
elastin/laminin-binding protein [270]. GM1-β-galactosidase
is part of a lysosomal multienzyme complex, together with
the so-called protective protein (carboxypeptidase A), siali-
dase, and N-acetylaminogalactose-6-sulfate sulfatase [271].
GM1-β-galactosidase catalyzes the hydrolytic cleavage of
several β-galactosides. The hydrolysis of ganglioside GM1
to GM2 requires the presence of either the GM2-activator
protein, or saposin-B [56], or, in vitro, of an appropriate
detergent.

6.2.4. Proteins Required for GM2 Degradation. GM2 is
degraded by the cleavage of the N-acetylgalactosaminyl
residue by β-hexosaminidases. In mice, the substrate speci-
ficity of the murine lysosomal sialidase allows for a signifi-
cant cleavage also of the sialic moiety in GM2 (to yield GA2)
[272]. Cleavage of the GalNAc residue requires the presence
of the GM2-activator protein in vivo, or of an appropriate
detergent in vitro. Three gene products participate in GM2
hydrolysis, the β-hexosaminidase α- and β-chains, and the
GM2-activator protein. β-Hexosaminidases are dimers that
result from the combination of their α- and β-subunits and
differ in properties such as stability and substrate specificity.
β-Hexosaminidase A with subunit composition α,β cleaves
terminal β-glycosidically linked N-acetyl-glucosamine and
N-acetylgalactosamine residues from negatively charged
and uncharged glycoconjugates by a retaining double-
displacement mechanism. The enzyme has two active sites,
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one on the α-chain and the other on the β-chain [273]. β-
Hexosaminidase B (ββ) [274, 275] predominantly cleaves
uncharged substrates such as GA2 and oligosaccharides with
terminal N-acetyl-hexosamine residues (see also Figure 16).
β-Hexosaminidase S (αα) is thermolabile and of secondary
significance for GM2 degradation, but it contributes to the
degradation of glycosaminoglycans and sulfated glycolipids
[238].

7. Pathobiochemistry

Defects in enzymes and other proteins required for lyso-
somal degradation of complex lipids and of oligomeric
or polymeric biomolecules lead to inherited diseases, the
lysosomal storage diseases [276]. They can be classified
according to the stored substances, as sphingolipidoses [277],
mucopolysaccharidoses, mucolipidoses, glycoprotein-, and
glycogen-storage diseases [278, 279]. Ganglioside degrada-
tion is impaired in the gangliosidoses and secondarily also
in other sphingolipid storage diseases [280]. The principles
[281] governing pathogenesis [282, 283] and therapy of sph-
ingolipidoses [284] are also valid for the ganglioside storage
diseases.

Key factors are the residual activity of the degrading
system, which determines the course of the disease [285,
286], and the cell-type-specific expression of storage mate-
rial. Due to the cell-type-specific expression of gangliosides,
the central nervous system is especially affected in the
gangliosidoses. In sphingolipidoses in general, the storage
lipids coprecipitate other hydrophobic substances present
in the endolysosomal compartment, lipids and proteins, as
secondary storage products [280]. In Niemann-Pick disease,
type C, which is a primary defect of endosomal choles-
terol transport, a secondary accumulation of sphingomyelin
(therefore the name Niemann-Pick) and of gangliosides is
observed that is also of therapeutic relevance [287, 288]; for
a remarkable treatment of Niemann Pick C1 fibroblasts with
a histone deacetylase inhibitor, compare [289]. Secondary
storage of gangliosides GM2 and GM3 occurs also in
Hurler disease [290] (mucopolysaccharidosis type I; α-L-
iduronidase deficiency). Lipid storage produces a kind of
traffic jam [291, 292], which interferes with lipid transport
and lysosomal function. Primary and secondary storages
substances can impair nutrient delivery via the endolyso-
somal system: as demonstrated in mouse models of GM1
gangliosidoses and in a variant form of the GM2 gangliosi-
doses, Sandhoff disease, iron homeostasis is impaired in the
animals, and supplementation of the animals with iron ions
increased their life expectancy by nearly 40% [293]. Since
also autophagy can be impaired in lysosomal storage diseases
[294], both pathways may lead to a shortage of nutrients.

Ganglioside degradation is impaired in the gangliosi-
doses. In another disease, galactosialidosis, the primary
defect of carboxypeptidase A (protective protein), leads to a
secondary loss of β-galactosidase and sialidase Neu1 accom-
panied by GM1 storage [271]. Gangliosidoses are caused
by defects in the genes encoding glycosidases or lipid-
transfer proteins that are required for lysosomal ganglio-
side degradation. The theoretical basis for the therapeutic

approaches towards gangliosidoses is the “threshold theory”
[286], which predicts that the ratio of substrate influx into
the lysosomes and the degradation capacity determine the
course of the diseases. Both parameters can be addressed by
different therapeutic approaches [281].

7.1. GM1 Gangliosidosis. GM1 gangliosidosis is caused by
an inherited deficiency of GM1-β-galactosidase (acid β-
galactosidase; GLB1; EC3.2.1.23) [295]. After the description
of the first patients [296] it became also known as Landing
diseases [297]. It is a rare disease with an autosomal
recessive mode of inheritance and characterized by the
accumulation of GM1 and GA1 (Figure 16) in neuronal
cells [12]. According to the substrate specificity of the
variant enzyme in the patients, an inherited defect of the
β-galactosidase can also lead to another disease, Morquio
disease, type B. Three clinical forms of GM1 gangliosidosis
can be distinguished, infantile (type 1) GM1 gangliosidosis
with the developmental arrest and progressive deterioration
of the nervous system in early infancy and a life expectancy
of about 2 years, late infantile/juvenile form (type 2),
and an adult/chronic form (type 3). Dysmorphic changes
characteristic for Morquio disease type B are less prominent
or completely absent in these clinical forms.

In addition to GM1, other enzyme substrates accumu-
late, such as GA1 (Figure 16) [12], oligosaccharides from
glycoproteins, and intermediates of keratin sulfate degrada-
tion [268]. These substances are stored in different organs,
according to their major site of biosynthesis. Lysosomal GM1
accumulation in neurons leads to the degeneration of the
nervous system. Like in other storage diseases, an inflam-
matory response [298], neurorestorative properties of excess
ganglioside GM1 [299] in the plasma membrane, and an
unfolded protein response [300] contribute to pathogenesis.
Such as in other sphingolipidoses [281], severity and pro-
gression of the disease correlate with the residual enzymatic
activity in cells and body fluids.

Morquio type B disease clinically resembles a mild
phenotype of Morquio A disease, where keratan sulfate
accumulates due to N-acetyl-galactosamine-6-sulfatase defi-
ciency. Like GM1 gangliosidosis, Morquio type B is due to
the inherited defect of GM1-β-galactosidase. It is charac-
terized by the predominant storage of keratan sulfate and
oligosaccharides with terminal β-galactosyl residues. Patients
show generalized skeletal dysplasia without involvement of
the nervous system and without hepatosplenomegaly; for
a clinical description, compare [268]. Differences between
GM1 gangliosidosis and Morquio B disease can be attributed
to a lower affinity and activity of β-galactosidase variants
towards substrates with Gal-β1,4-GlcNAc motifs in Morquio
patients compared to the Gal-β1,3-GalNAc motive present in
ganglioside GM1 [301]. There is no causal therapy available
for GM1-gangliosidosis; however, progress is made towards
the development of pharmacological chaperones also for this
lysosomal disease [302–304].

7.2. GM2-Gangliosidoses. The GM2-Gangliosidoses are
caused by defects in degradation of ganglioside GM2 [305].
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The three variant forms of the GM2-gangliosidoses are
named according to the hexosaminidase isoenzyme that
remains intact. The B-variant, in its infantile course better
known as Tay-Sachs disease, is caused by the deficiency of
hexosaminidases A and S, but with normal hexosaminidase
B. The 0 variant, or Sandhoff disease, is caused by the
deficiency of the β-chain and the resulting deficient activity
of β-hexosaminidases A and B (therefore, none of the major
enzymes is intact), however with the remaining activity of
β-hexosaminidase S. The AB-variant—β-hexosaminidases
A and B (and S) intact—results from mutations in the
GM2-activator gene; so that tissue samples from the patients
are able to degrade GM2 in detergent-containing enzyme
assays.

7.2.1. Tay-Sachs Disease. Clinically, the B variant of GM2
gangliosidoses can be subclassified into infantile, juvenile,
chronic, and adult onset forms. The infantile form, Tay-
Sachs disease, has a higher prevalence among Ashkenazi Jews
with a heterozygote frequency of 1 : 27. Affected children
are normal at birth and show first symptoms, such as mild
motor weakness, a cherry red spot in the central retina,
and increased startle reaction between 3 and 6 months of
life. Progressive deterioration with weakness, hypotonia, or
poor head control leads to a vegetative state and death often
between the second and fourth year of life. Juvenile and adult
course is observed in patients with a higher residual activity
of the variant hexosaminidase A [285]. Symptoms are very
heterogeneous; for a clinical description, compare [305].

The B1 variant of GM2 gangliosidoses [309, 310] was
very difficult to elucidate: synthetic uncharged substrates
used for diagnosis such as MufGlcNAc (Figure 17; for kinetic
parameters see [311]) were cleaved, suggesting the presence
of β-hexosaminidase, and also the GM2 activator was
present. As it turned out, the B1 variant differs enzymatically
from the B variant by an altered substrate specificity of the
variant β-hexosaminidase A. While uncharged substrates are
cleaved, no activity is detected towards GM2 and towards
sulfated, negatively charged [312] synthetic fluorogenic
substrates. In the B1 variant, the function of the α-chain
active site is defective, but subunit association, enzyme
processing, and the activity of the β-chain are not impaired.
Homozygous patients with the B1 mutation show the course
of the juvenile disease; compound heterozygotes with a B1
and a null allele show a late infantile course.

7.2.2. Sandhoff Disease. The 0 variant of GM2 gangliosidosis
was the first gangliosidosis for which the underlying enzy-
matic defect was identified [14]. Due to the deficiency of
two enzyme activities, β-hexosaminidases A and B, storage
of negatively charged glycolipids characteristic for Tay-Sachs
disease and, in addition, of uncharged substrates such as
GA2 in the brain and globoside in visceral organs (Figure 16)
is observed. In infantile Sandhoff disease, patients show
clinical and pathological manifestations of Tay-Sachs disease
(infantile B variant) and in addition also organomegaly and
slight bone deformations. For further symptoms and the
description of juvenile and adult forms, compare [305].

7.2.3. AB Variant of GM2 Gangliosidosis. The AB variant is
due to the deficiency of the GM2-activator protein [251],
with intact β-hexosaminidases A and B (and S), therefore the
name. The disease is characterized by accumulation of GM2
and GA2 (for structures, see Figure 16). The clinical picture
[305] resembles that of Tay-Sachs disease with a delayed
appearance of symptoms; an animal model is available [313].

7.2.4. Pathogenesis and Therapy. Although lysosomal GM2
as the major storage compound in GM2 gangliosidoses is
neither toxic nor immunogenic, its accumulation induces
inflammatory responses as demonstrated for glycoconjugates
in the murine model of Sandhoff disease [108]. Huge axon
hillock enlargements, the so-called meganeurites, have been
observed in neurons of patients with different lysosomal
storage diseases, which might be attributed to the storage
substance GM2 and contribute to synaptic dysfunction
[314]. As in other sphingolipidoses [281], the corresponding
(more toxic) lysolipid, in this case lysoGM2 (Figure 18),
is elevated [315, 316] and contributes to the pathogenesis.
LysoGM2 has been suggested as a biomarker for Tay-
Sachs and Sandhoff disease [317]; for occurrence and role
of lysoGSLs in acquired diseases, compare [318]. Despite
naturally occurring animal models of GM2 gangliosidoses in
dogs, cats, and pig, murine models are used for therapy stud-
ies. Since the mouse model of Tay-Sachs disease is largely
asymptomatic, the mouse model of Sandhoff disease is used
for most studies [272].

Despite some success in the experimental treatment of
juvenile and adult patients as well as in the animal models,
there is no causal therapy available for the severe forms of
the GM2 gangliosidoses. The limitations of the substrate
reduction approach, which reduces the GM2 influx into the
lysosomal compartment, have been evaluated by a genetic
experiment: Sandhoff-disease mice were crossbred with mice
defective in GM2 synthase. The lifespan of these animals was
much longer than that of Sandhoff-disease mice, but instead
of GM2 storage they developed a oligosaccharide storage,
neurological disease [319].

Therapeutic approaches such as bone-marrow trans-
plantation [320], enzyme-replacement therapy with recom-
binant highly phosphomannosylated β-hexosaminidase A
[321], or transplantation of neural stem cells [322] have
been investigated in the animal model of the 0 variant,
substrate-reduction therapy with N-butyl deoxynojirimycin
[323, 324], and with pyrimethamine as pharmacological
chaperone [325, 326] in adult patients and gene therapy
in endothelial cells [327]. Treatment of the accompanying
inflammation is beneficial [328].

7.3. Selected Other Aspects. In addition to inherited diseases,
ganglioside levels can also be altered in several acquired
diseases [318]. For example, gangliosides play roles in neu-
rological diseases such as Alzheimer’s [329], Parkinson, or
Huntington’s disease [330]. In cancer, ganglioside expression
can also be altered in tumor cells with an impact on
signalling and tumor-host interactions [331]. [Neu5Gc]GM3
[332], GD2, GD3, GM2, and fucosylGM1 are regarded as
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tumor-associated antigens [333] and are targets for the
immunotherapy of cancer [334].

Also several neuropathies including variant forms of
Guillain-Barré and Miller-Fisher syndrome are caused by
serum antibodies against gangliosides [335].

There are only a few therapeutic roles for gangliosides,
especially since they can induce neuropathies. In the past,
gangliosides isolated from bovine brain have been investi-
gated and also applied to human patients to improve neural
repair and for the treatment of stroke [336, 337]. Also the
direct application of ganglioside GM1 into the brain of
patients with Alzheimer disease has been evaluated [338].
As indirect roles, the inhibition of ganglioside biosynthesis
for the treatment of insulin resistance [339], the interference
with microbial binding to gangliosides [340], or the reduc-
tion of neurotoxicity with Liga20 [341] has to be mentioned.

8. Functional Aspects

A plethora of functions has been attributed to gangliosides
[342], for example, for GM3 [343], the most abundant
ganglioside in most mammalian cell types, but not in
neurons, or for GM1 [344]. In general, gangliosides mediate
their function via interaction with soluble or membrane-
bound binding molecules outside the cell (“trans” interac-
tion), or by influencing properties of proteins within the
same membrane (“cis” interaction) [32, 345–348]. “Trans”
interactions occur between the glycan part of gangliosides
on the one side with lectins on the other side. Also gan-
gliosides contribute to the chemical high-density sugar code
of cell surfaces [349]. For example, GM1 can be recog-
nized by galectin-1 [350] and sialic acids in α2,3-linkage
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are recognized by the sialic acid binding immunoglobu-
lin lectins Siglec-4, α2,6-sialosides by Siglec-2, and α2,8-
sialosides by Siglec-7 [347]. Also carbohydrate-carbohydrate
interactions can play a role [351, 352]. Although inter-
actions between individual carbohydrate residues [353]
are weak, clustering of gangliosides offer the possibility
for multivalent interactions, if they are not buried under
glycoprotein glycans. Apparently, GM3 on mouse melanoma
B16 cells can mediate cell adhesion to mouse lymphoma
L5178 cells by binding to GA2 (gangliotriaosylceramide,
GalNAcβ1,4Galβ1,4Glcβ1,1Cer; see Figure 12 or Figure 16)
[354]. Within the nervous system, gangliosides act in
a “trans” manner with the myelin-associated glycopro-
tein MAG. MAG recognizes NeuAcα2-3Galβ1-3GalNAc-
termini on axonal gangliosides, an interaction that is essen-
tial for axon–myelin stability and axon regeneration [355].

“Cis” interactions can happen via a direct interaction,
or, indirectly, via the properties of the membrane or of
putative-membrane domains [356]. This way gangliosides
influence the activities of receptor-tyrosine kinases in the
plasma membrane, such as the receptors of epidermal-
growth factor, nerve growth factor, and insulin and therefore
cell signaling [357]. For example, GM1 enhances TrkA neu-
rotrophin receptor-activation in a “cis”-manner [358]; for a
brief overview of proteins affected by certain gangliosides,
compare, for example, [359]. Since the characterization of
lipid microdomains in living cells is difficult, some con-
clusions can be drawn from in vitro experiments. For
example, GM3 inhibits the autophosphorylation of purified
EGFR reconstituted into the proteoliposomes of defined
lipid compositions, but not the EGF binding [360]. There
are indications that gangliosides may not act only in an
autonomous manner, but might also support the formation
of distinct membrane phases, although it is a matter of debate
to which extent this operates in vivo. It is believed that
gangliosides are not homogeneously distributed on the cell
surface, but segregate into membrane domains together with
GPI-anchored proteins, sphingomyelin and cholesterol. Such
rafts have been supposed to be the physiological surround-
ings of many membrane proteins, although no rigid proof for
their existence has been provided. Ganglioside plays a largely
unexplored role for membrane structure [356]. Due to their
large hydrated head groups, they stabilize membrane areas
with positive curvature [361]. A multitude of reports propose
a segregation of gangliosides and other GSLs with cholesterol
and GPI-anchored proteins into the lipid platforms known
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as “rafts” in the membranes of living cells [362–365]. Since
most of the applied methods (detergent extraction, antibody,
and toxin staining) constitute a bias towards the formation of
such domains [366], the existence, size, and lifetime of rafts
are a matter of debate. From thermodynamic considerations,
it is clear that procedures such as detergent extraction can
(or have to) produce artificial results and are not suitable
for raft characterization [367–370]. Although it has been
demonstrated that the treatment of cellular membranes
with detergents causes the redistribution of gangliosides and
GPI-anchored proteins [371, 372], these techniques are still
applied and not always critically examined. Experiments
in living cells using STED microscopy [308] and other
visualization techniques [373] point to an upper limit of
lifetime and size of such domains in the range of 20 ms and
20 nm.

In addition, sialic acids and oligosialic acids present on
gangliosides can modulate membrane surface charge density,
the pH at the membrane surface, and membrane potentials
[374]. In planar lipid bilayers, ganglioside GD1a can increase
the excitability of voltage-dependent sodium channels [375].

8.1. Infection. “Cis” and “trans” interactions of gangliosides
play multiple roles in the immune system [376] and in infec-
tious diseases [377, 378], where gangliosides act as cellular
receptors and coreceptors for viruses, bacteria, and microbial
toxins. The most prominent example is GM1 as the receptor
for cholera toxin [379]; other examples are the toxin of
Clostridium botulinum and the SabA adhesin of Helicobacter
pylori [380] that bind to cell surface gangliosides of the host
[381]. Binding of sialylated cell surface glycoconjugates to
Siglecs [382] on white blood cells is used within innate and
adaptive immune responses to distinguish between self and
nonself and to dampen autoimmune responses [383]. Many
pathogens use sialic acids on cell surface glycoconjugates
for cellular entry, for example, periodontal pathogens [384].
Recent examples include ganglioside GT1b, which seems to
be the host cell receptor for the Merkel cell polyomavirus
[385]. This virus has been identified as the cause of Merkel
cell carcinoma, an aggressive type of skin cancer. Also
sialidase-insensitive rotaviruses recognize sialic acid, for
example, on ganglioside GM1, which is not substrate of all
sialidases due to its branched structure [386] and the glycan
present in ganglioside GD1a serves as host receptor for
the adenoviruses that cause epidemic keratoconjunctivitis
[387].

9. Tools

9.1. Loss of Function. Gangliosides are secondary gene prod-
ucts. Their function can be analyzed by knockout experi-
ments, where in cells, tissues, or organisms their formation
or degradation is interrupted by genomic, posttranscrip-
tional, or chemical strategies. Especially valuable were geneti-
cally engineered mice with defects in ganglioside biosynthesis
[388], which revealed, for example, a role of gangliosides
in calcium homeostasis [389], neural repair [390], or
neurological diseases [330]. Also investigations in human
patients [277], genetically engineered mammals [391], and

other organisms [392] allowed insight into various aspects
of ganglioside metabolism and transport. Also mutant and
silenced cells have been applied for functional studies. In
vitro systems such as liposomes or planar monolayers allow
investigations that are to difficult to be carried out in cells.
For example, when GM3 is incorporated into liposomes,
a phase separation into GM3-rich and GM3-poor phases
occurs above a certain GM3 content [393]. This would fit to
reports on GM3-enriched microdomains in living cells.

In experimental approaches, ganglioside biosynthesis can
be modulated by inhibitors [394]. Also the enhancement of
ganglioside biosynthesis can be used, for example, chemi-
cally, or by the introduction of glycosyltransferase encoding
cDNA in cultured cells [395, 396]. An enantiomer of the glu-
cosylceramide synthase inhibitor D-threo-PDMP (PDMP =
1-phenyl-2-decanoylamino-3-morpholino-1-propanol), L-
threo-PDMP, acts as an enhancer of ganglioside biosynthesis
by upregulating glycosyltransferases. This was accompanied
by increased neurite outgrowth [397]. Additional possibil-
ities are the generation of mutant cells, for example for
GM2 synthase [398] or by posttranscriptional silencing like
RNA interference. While even complex systems like cultured
cells can survive without GSLs, they are required for the
development of multicellular organisms [399].

9.2. Structurally Defined and Modified Gangliosides. Struc-
turally homogenous gangliosides and ganglioside probes that
are modified by isotopes, fluorescence, chemical reporter
groups, photoaffinity, or affinity ligands are valuable tools for
the analysis of ganglioside function, metabolism, and trans-
port. These tools are available by total or partial chemical
synthesis, or by biosynthetic incorporation of suitable—for
example, photolabile—N-acylmannosamine precursors into
gangliosides [400] using the methodology for biosynthetic
sialic acid modification developed by Kayser et al. [401]. For
enzymological, transport, and crosslinking studies, tritium
and 14C are incorporated into different positions of ganglio-
sides, but also radioiodination is possible in the presence of
aryl residues [402, 403].

Ganglioside total synthesis is a time-consuming and
demanding task and usually performed only in specialized
laboratories for examples, see [49, 50]. It relies predomi-
nantly on the sequential glycosidation of a 3-O-protected azi-
dosphingosine [404] with suitably protected and activated
glycosyl donors. This includes the trichloroacetimidates
[405] as well as methods for α-selective sialylation reactions
[406]. Also chemoenzymatic procedures have been devel-
oped, where different glycosidation steps are catalyzed by
glycosyltransferases [407] or glycosidases [408], or where
oligosaccharyl fluorides are coupled to native or fluorescent
ceramide anchors using an engineered endoglycoceramidase
(glycosynthase) [49, 409]. Ganglioside oligosaccharides, such
as those of GM3, GM2, GM1, GD3, and GT3, can be
produced by genetically engineered bacterial strains. For the
biotechnological production of ganglioside head groups, lac-
tose can be internalized in E. coli as a precursor to be used as
acceptor for glycosyltransferases [410–415]. An application
of the ganglioside biosynthetic machinery is the preparative
production of neoglycolipids with ganglioside head groups
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Figure 20: Schematic ganglioside uptake by cultured cells (modified from [306]).
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Figure 21: Example of a GM1 analog [307] spin labelled with a 4,4-dimethyl-oxazolidine-1-oxyl- (DOXYL-) residue and a fluorescent GM1
analog used for STED microscopy [308].

using a lung squamous-cell carcinoma line (RERF-LC-A)
and 12-azidododecyl β-lactoside as a suitable primer [416].

GSLs isolated from natural sources can be used for the
preparation of chemically modified derivatives [417] like
labelled GSLs [418, 419], or those of enhanced metabolic
stability [420]. The chemical release of the ganglioside glycan

chain can be achieved by osmium tetroxide/periodate treat-
ment of protected gangliosides [421, 422], or by ozonolysis
of native gangliosides [423]. Initially, both methods give
rise to ganglioside aldehydes, which are not isolated but
subsequently fragmented by alkaline treatment, or, if desired,
are isolated for further applications [424]. The glycan part
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can also be released enzymatically by ceramide glycanase
[425, 426]. Lysogangliosides that lack the acyl moiety at the
sphingosine nitrogen can be prepared by chemical proce-
dures [427, 428], or by enzymatic treatment of gangliosides
with sphingolipid N-deacylase [429–431].

Lysogangliosides (see Figure 18) can be used for the
introduction of fluorescence, spin, or radiolabels or other
modifications into the lipid backbone of gangliosides. A
semitruncated, dihalogenated GM1 analog that is able to pass
the blood-brain barrier is Liga20 [398] (Figure 19). There are
also several approaches to the synthesis of photoactivatable
GSL derivatives [432].

It has to be noted that when gangliosides are added to
the medium of cultured cells, they are largely present as
oligomers in the form of micelles or vesicles, as monomers
bound to proteins, and as free monomers. In aqueous sur-
roundings, gangliosides form aggregates of different size and
shape [361, 433]. In most cases these are micellar structures
of 280–630 kDa [361], in the case of the gangliosides with
small head groups, GM3 and GM4 also vesicles [361, 434,
435]. The critical micellar concentrations of GSLs are in the
range of 10−9–10−5 M [436] and depend on temperature, pH,
and, in part, on the method of determination. Typical values
are 3.4× 10−9 M for GM3 to 3.9× 10−8 M for GT1b [434].

Uptake of exogenously added gangliosides by cells in
culture [437] can proceed in different ways [306, 420]
(Figure 20). With the aid of radiolabelled [438] and spin-
labelled gangliosides [307] (Figure 21), three modes of
adherence have been distinguished: 60–90% of the exoge-
nous ganglioside consist in loosely associated micelles and
also monomers, which can be removed by delipidated serum
proteins. A second fraction is attached to cellular proteins in
a trypsin-labile fashion, and, finally, a trypsin-stable fraction
is presumably inserted into the plasma membrane of the
cell. Only the last fraction is in the topologically correct,
native orientation. When bound to proteins, the offrate of
gangliosides with native alkyl chain lengths can be very low.
This is not the case for synthetic, semitruncated derivatives
of higher solubility, which are frequently used, but show dif-
ferent intracellular transport behaviour compared to native
gangliosides [420]. Fluorescently labelled glycosphingolipids
[439] have been applied, but also their properties can differ
significantly from the ones of native glycosphingolipids.

Gangliosides can also be transferred from cultured donor
to acceptor cells that are separated by a membrane [440].
By this process known as “shedding” [441], tumor cells can
release up to 0.5% of their gangliosides per hour [442].

Fluorescent ganglioside probes that bear the fluorophore
in at the membrane-water interphase (Figure 21) behave
physicochemically more like native gangliosides. Such com-
pounds have been used as probes for STED microscopy [308]
or to quantify the transfer capacity of GM2 activator in a
liposomal FRET assay system [443].

10. Conclusion

Despite the fast development of analytical and biophysical
tools, the analytical determination of ganglioside pattern,

their spatial resolution, and their correlation with function
is still a challenge. Especially a convincing characterization
of ganglioside-containing membrane domains in living cells
and of their roles at the cellular level would constitute a
considerable advance in the field.
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4Glcβ1Cer (II3Neu5AcGg3Cer)

GM1a: Galβ1,3GalNAcβ1,
4(Neu5Acα2,3)Galβ1,
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(IV3Neu5AcII3Neu5AcGg4Cer)

GT1a: Neu5Acα2,8Neu5Acα2,3Galβ1,
3GalNAcβ1,4(Neu5Acα2,3)Galβ1,
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3Galβ1,4Glcβ1Cer (II3(NeuAc)3LacCer)

GT2: GalNAcβ1,4(Neu5Acα2,8Neu5Acα2,
8Neu5Acα2,3)Galβ1,
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8Neu5Acα2,3)Galβ1,4Glcβ1Cer
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II3(Neu5Ac)3Gg4Cer)

GD1b-lactone: II3[Neu5Ac-(2–8,1–9)-Neu5Ac]Gg4Cer
GalNAc-GD1a: GalNAcβ1,4Galβ1,3GalNAcβ1,

4(Neu5Acα2,3)Galβ1,
4Glcβ1Cer
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Neu5Ac: N-Acetyl-neuraminic acid
Glc: Glucose
Gal: Galactose
GalNAc: N-Acetyl-galactosamine.
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