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Many experimental and theoretical studies have suggested that the reliable propagation

of synchronous neural activity is crucial for neural information processing. The

propagation of synchronous firing activity in so-called synfire chains has been studied

extensively in feed-forward networks of spiking neurons. However, it remains unclear

how such neural activity could emerge in recurrent neuronal networks through synaptic

plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a

higher frequency than the other, spontaneously active neurons in the network, can shape

a network to allow for synchronous activity propagation. We use two-dimensional, locally

connected and heterogeneous neuronal networks with spike-timing dependent plasticity

(STDP). We find that, in our model, local excitation drives profound network changes

within seconds. In the emergent network, neural activity propagates synchronously

through the network. This activity originates from the site of the local excitation and

propagates through the network. The synchronous activity propagation persists, even

when the local excitation is removed, since it derives from the synaptic weight matrix.

Importantly, once this connectivity is established it remains stable even in the presence

of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in

a relatively simple way in realistic neural networks by locally exciting the desired origin of

the neuronal sequence.

Keywords: synfire chains, spike timing dependent plasticity (STDP), locally connected random networks,

feed-forward networks, neuronal sequence

1. Introduction

The propagation of neural spiking activity has been observed in various parts of the brain, including
neocortex (Mao et al., 2001; Ikegaya et al., 2004; Pinto et al., 2005) and hippocampus (Miles
et al., 1988; Nádasdy et al., 1999; Buhry et al., 2011; Cheng, 2013). It has been suggested that
the reliable propagation and transformation of neural activity between different brain regions is
crucial for neural information processing. Therefore, a number of computational and theoretical
studies have studied the conditions under which neural activity can propagate reliably in neural
networks (Diesmann et al., 1999; Kistler and Gerstner, 2002; Yazdanbakhsh et al., 2002; Aviel
et al., 2005; Kumar et al., 2008). A prominent model for activity propagation is the synfire chain
model, in which groups of neurons that fire synchronously are chained together into a larger
feedforward network (Abeles et al., 1993; Mao et al., 2001; Abeles, 2009). Although isolated
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feedforward networks can account for the repeated dynamics
in cortical networks (Diesmann et al., 1999; van Rossum et al.,
2002), anatomical studies suggests biological networks are more
adequately modeled by local recurrent connectivity than by
feedforward structures (Hellwig, 2000).

Furthermore, most biological networks are not hard-wired;
they are often structured by synaptic plasticity, such as spike-
timing dependent plasticity (STDP) (Gerstner et al., 1996;
Markram, 1997; Bi and Poo, 1998; Zhang et al., 1998; Kempter
et al., 1999). STDP is widely thought to underlie learning
processes, and is the focus of many theoretical studies (Leibold
et al., 2008; Voegtlin, 2009; Masquelier et al., 2009; D’Souza
et al., 2010; Gilson et al., 2010). The shape of the STDP curve
has been proposed to trade off two competing features of STDP,
synaptic competition and synaptic stability (Gütig et al., 2003;
Morrison et al., 2007; Babadi and Abbott, 2010, 2013). In the case
of anti-symmetric STDP, reversing the ordering of pre- and post-
synaptic spikes reverses the direction of synaptic change. It breaks
strong reciprocal connections between neuron pairs (Abbott and
Nelson, 2000; Kozloski and Cecchi, 2010). Any inhomogeneity in
initial synaptic weights, or in firing rates, determines which of the
synapses will be potentiated and which will be eliminated (Babadi
and Abbott, 2013). Through structural changes such as these,
STDP also alters the network dynamics. For instance, STDP
tends to enhance population synchrony in recurrent networks
(Levy et al., 2001; Kitano et al., 2002a,b; Takahashi et al., 2009),
and facilitates the formation of synfire chains when applied to
feedforward or random networks (Hertz and Prügel-Bennett,
1996; Suri and Sejnowski, 2002).

The converse effect, that is the network activity affects the
network structure, is observed as well. For instance, if some
components in a network fire at a higher rate than the remaining
network, the dynamics of physical (Gavrielides et al., 1998;
Valizadeh et al., 2010) or biological systems (Glass and Mackey,
1988; Panfilov and Holden, 1997) change. The neurons with
the highest inherent frequency can serve as pacemaker and
train their post-synaptic partner neurons in networks with all-
to-all (Bayati and Valizadeh, 2012) and random connections
(Takahashi et al., 2009). If the neurons in a two-neuron network,
which are connected mutually, fire at different intrinsic rates,
STDP strengthens the synapse from the high-frequency to the
low-frequency neuron and weakens the other one. This occurs
if the initial synaptic strengths are set to the values which are
enough for onset of frequency synchronization after changing
the strengths due to the STDP. The same argument holds for
larger networks as well. With discrepancy in the intrinsic firing
rates of neurons, the reciprocal connections are broken in favor
of the fast-to-slow links such that an effective flow of connections
emerges from fast to slow neurons (Bayati and Valizadeh, 2012).
This example shows how STDP as a spatially local mechanism
for modification of synapses induces global structure in recurrent
networks (Babadi and Abbott, 2013).

Here, we therefore asked whether local excitation together
with STDP can drive the establishment of robust propagation of
synchronous activity that is characteristic of synfire chains. To
do so, we study the population activity in a locally connected
random network (LCRN). Local excitation is provided by a small

number of neurons that fire at a higher frequency (fast-spiking
neurons, FSNs). We find that robust activity propagation indeed
arises and does so quickly within seconds of simulated time. The
synchronous activity originates at the location of the FSNs and
propagates away from them. This network behavior is the result
of an effective feedforward structure that emerges spontaneously
in a recurrent network through STDP. Once the network reaches
the steady state, synchronous activity propagation remains stable
even when the local excitation is removed. It is thus conceivable
that temporary local excitation is provided to a biological neural
network to establish synchronous activity propagation, and to
have that activity pattern continue after the excitation is removed.

2. Materials and Methods

2.1. Network Dynamics and Topology
In our simulations we use a LCRN (Mehring et al., 2003; Kumar
et al., 2008) comprising N = 51× 51 units on a two-dimensional
square grid. The distance between two neighboring units along
the main axes of the grid is one unit. The adjacency matrix aij
(Reka and Barabási, 2002) indicates whether neuron j projects
to neuron i (aij = 1), or not (aij = 0). We choose the
probability of a connection between any pair of neurons to
decrease with the Euclidean distance (dij) between the neurons
since anatomical studies have found that cortical networks are
mostly locally connected (Hellwig, 2000). More specifically, we
connected neuron i to ki post-synaptic partner neurons, which
are chosen at random according to a local connectivity kernel, a
Gaussian with zero mean and standard deviation σ = 2 (in units
of the grid spacing) (Figure 1A). The post-synaptic partners were
determined as follows. We sampled a random number according
to the connectivity kernel, which indicates the distance between
the pre- and post-synaptic neurons, and a random number from
a uniform distribution between zero and 360, which indicates
the direction from the pre- to the post-synaptic neuron. The
connection was discarded, if the chosen position of the post-
synaptic partner laid outside the boundaries of the network,
which was more frequently the case for neurons at the edges of
the network. We repeated the sampling of post-synaptic partners
40 times, so that ki ≤ 40. Our connection procedure allows
only one connection between two neurons. Anatomical studies
suggest σ ≃ 0.5 mm (Hellwig, 2000). So our model covers a
cortical surface of about 6 cm2 with only 2601 neurons. That
means, we assume that the network described here constitutes
a subset of a larger cortical network whose effect is considered
as external currents to the modeled neurons (Kumar et al., 2008;
Hahn et al., 2014).

The neurons’ subthreshold dynamics were modeled by a leaky
integrate-and-fire (LIF) model:

τm
d

dt
Vi(t) = Vrest − Vi(t)+ Ii +

∑

j

Iij, (1)

where Vi represents the membrane potential of neuron i and i =
1, 2, ...,N. The membrane potentials were set to random initial
values at the beginning of each simulation. τm = 20 ms is the
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A B C

FIGURE 1 | Network setup. The network consists of a square grid of

N = 51× 51 = 2601 excitatory leaky integrate-and-fire neurons. (A)

Synaptic connectivity kernel in the two-dimensional network model. Each

neuron is pre-synaptic to 40 of its neighbors. (B) An example for the

firing rate of the neurons in the network. Each neuron receives a

constant external input current, independently selected from a uniform

distribution on the interval [I0 − δ, I0 + δ] with I0 = 16.21 mV, δ = 0.2 mV,

which leads to background firing rates from 3.4 to 6.8 Hz. Twelve

neurons in the center of the network (shown in red) receive higher input

currents (I0 = 18.05 mV, δ = 0.15 mV), and therefore fire at higher rates

between 11.1 and 11.7 Hz. These high-frequency neurons provide local

excitation to the network above the background firing. Firing rates are

measured in isolated neurons without recurrent connections. (C) A layer

index is assigned to each neuron based on the synaptic distance to the

high-frequency neurons. All neuron with the same layer index can be

thought of being arranged in an abstract layer.

membrane time constant,Vrest = −70mV the restingmembrane
potential, Ii the external input current and Iij the synaptic current
from neuron j to neuron i. Although these inputs appear as
currents, they are measured in units of the membrane potential
mV since a factor of the membrane resistance has been absorbed
into their definition. The differential equations were solved using
the Runge-Kutta second-order method with a timestep of 0.1 ms.
Whenever the membrane potential of a neuron reaches a fixed
threshold at Vth = −54mV, the neuron generates an action
potential, the membrane potential is reset to the resting potential,
and a refractory period of 2ms followed. Each time a neuron
spikes, a synaptic current gij is transmitted from the pre-synaptic
to the post-synaptic neuron as a pulse, with a delay of D =

1ms regardless of the distance between the connected neurons.
Thus, the synaptic dynamics is neglected. Writing the neuron’s
response function (Dayan and Abbott, 2001) as xj(t) =

∑

m δ(t−
tmj ), where t

m
j is the time of them-th spike of neuron j and δ(x) is

the Dirac delta function, the synaptic current Iij is given by

Iij = aij gij xj(t), (2)

In the units that we adopted here, gij represents the synaptic
strength. It is positive throughout this study since we only
modeled excitatory synapses. All synaptic weights were initially
set to g0 = 0.02mV.

Inhomogeneity in the intrinsic firing rates were imposed by
unequal external currents. The external input currents of all
neurons, except for the FSNs, were randomly chosen from a
uniform distribution on the interval [I0 − δ, I0 + δ]. With I0 =

16.21 mV and δ = 0.2 mV, the background firing rates range
between 3.4 and 6.8 Hz. Local excitation was provided to the
network by choosing those n neurons that are closest to the center
of the network and providing them with higher input currents
(I0 = 18.05mV, δ = 0.15mV). These neurons therefore fire at
higher rates between 11.1 and 11.7 Hz (Figure 1B), which is why
we call them FSNs. These background firing rates are measured

in isolated neurons without recurrent connection. Firing rates are
different when the network is recurrently connected as described
above and fluctuate during the evolution of the network (see
Figure 7A). Throughout this paper n = 12, unless otherwise
noted.

The synaptic strengths evolved according to a pair-based
STDP rule with nearest spike neighbors interaction (Izhikevich
and Desai, 2003), neglecting interactions between remote spike
pairs (Froemke and Dan, 2002; Pfister and Gerstner, 2006). A
change of synaptic strength1gij was induced by a pair of pre- and
post-synaptic action potentials with time difference 1t = tpost −
tpre. The functional relation between the synaptic modification
and the pairing interval was

1gij =

{

A+ exp (−|1t|/τ+) if tpost > tpre

−A− exp (−|1t|/τ−) if tpost ≤ tpre
(3)

The positive parameters A+ and A− specify the maximum
potentiation and depression, respectively. We expressed the
synaptic strengths in units of the membrane potential (mV),
so A+ and A− have units of mV. The time constants τ+ and
τ− determine the temporal spread of the STDP window for
potentiation and depression, which have been reported to be in
the 10 - 20ms range (Song et al., 2000). We impose hard bounds
on the synaptic weights (0 < g < gmax, where gmax = 2g0),
by truncating any modification that would take a synaptic weight
outside the allowed range.

Therefore, all synapses in the network are excitatory, which
is in accord with in vitro findings that synchronous activity
propagation depends mainly on excitatory synaptic connections
(Pinto et al., 2005), but may be modulated by inhibitory neurons
(Mehring et al., 2003; Aviel et al., 2005).

To set the value of A±, we assumed that synaptic
weakening through STDP is, overall, slightly larger than synaptic
strengthening (A−τ− > A+τ+). This condition ensures that
uncorrelated pre- and post-synaptic spikes weaken synapses
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(Song et al., 2000). In our simulations, we used A−τ−/A+τ+ ≃

1.06. The individual parameters were A+ = 5 × 10−5 mV,
A− = 4.4× 10−5 mV, τ+ = 10 ms, and τ− = 12 ms.

2.2. Network Analysis
To better illustrate the structure of the network, we assigned
each neuron a layer index to indicate its distance from the FSNs
(Figure 1C). We define the layer index li as the smallest number
of directed edges that are necessary to move from a FSN to
neuron i. Neurons with the same layer index are considered to be
in the same abstract layer (Masuda and Kori, 2007). In Figure 1C,
all pixels of the same color represent neurons in the same layer.
In a strictly feedforward network, neurons would project only
to other neurons that are located in a higher layer. To compare
the network structures that emerge after synaptic plasticity to a
feedforward network, we therefore quantified the connectivity
between the abstract layers in our recurrent networks.

In reference to the FSNs, for each layer (l), we call the sum of
the weights of all the ij links for which the layer index of their
post-synaptic neuron is larger than the pre-synaptic one (li > lj)
as “forward synaptic flow”:

C+
l
=

∑

lj = l, li>lj

gij, (4)

And the sum of the weights of all the ij links for which the
layer index of their post-synaptic neuron is smaller than the
pre-synaptic one (li < lj), as “backward synaptic flow”:

C−
l
=

∑

li = l, li<lj

gij, (5)

To quantify the asymmetry of connections, we introduced the
difference between the forward and backward synaptic flows
for each layer Cl = C+

l
− C−

l
as the feedforward parameter.

For simplicity, we normalized the feedforward parameter by
dividing it by its total forward and backward synaptic flows.
A positive feedforward parameter means that the forward
synapses are stronger than the backward synapses. The opposite
would be indicated by a negative feedforward parameter. Note
that in the calculation of feedforward parameter only the
inter-layer connections are considered and the large value of
feedforward parameter does not rule out the presence of intra-
layer connections.

To quantify the effective imbalance in the network we
introduced an average feedforward parameter

Cnet =
1

Nl

∑

l

Cl, (6)

in which Nl is the total number of abstract layers. The
average feedforward parameter can be used as a tool to survey
the evolution of network and determine the emergence of
feedforward structures (Bayati and Valizadeh, 2012). When all
the feedforward parameters are zero the average feedforward
parameter is also zero, but the inverse is not true.

2.3. Analysis of Network Activity
To study the coherence of the neural activity in the network, we
used the average response of all the neurons in the network

X(t) =
1

N

∑

i

xi(t), (7)

which we call the population activity. In our simulation,
the population activity was calculated in time bins of 1ms.
Asynchronous firing of neurons results in low and noisy
population activity (Figure 2A). By contrast, large values of the
population activity indicates that the network is active coherently,
such as during oscillatory behavior (Figure 3). The population
activity can thus be used to measure the degree of synchrony in
the network.

In this study, we were interested in the temporal fine structure
of population bursts in the network activity and therefore we
identified the time periods in which the population bursts
occurred with the following algorithm. We first defined a search
window of 180ms, which corresponds roughly to the average
period of neurons in the network. This search windowwasmoved
through time in steps of 15ms until the population was silent at
the beginning of the search window t0, i.e., X(t0) = 0. Once this
condition was satisfied, we similarly moved the end of the search
window t1 forward in time until X(t1) = 0. Therefore, the width
of the search window was variable. If at any time between t0 and
t1, the population activity exceeded the threshold Xth = 0.015,
we considered the search window to contain a population burst
and used it for further analysis (see next paragraph). Otherwise,
we rejected the search window.

To quantify how orderly neural activity propagates through
the abstract layers, we calculated the rank-order correlation
between the time of the first spikes fi that the neurons fired
within the search window and the layer indices li. We refer to
this correlation value as the propagation parameter.

ρ =

∑

i(xi − x)(yi − y)
√

∑

i(xi − x)2
√

∑

i(yi − y)2
, (8)

where xi is the rank of neuron i in the list fi, and yi is its rank
according to li. The means of these values are represented by x
and y, respectively.

3. Results

3.1. Activity in a Locally Connected, Random
Network is Asynchronous Despite STDP
As the asynchronous state is a more realistic description of
ongoing cortical activity in the absence of strong external
excitation, we set the initial conditions such that the network
activity remains asynchronous. In this case, the population
activity remains relatively low and noisy with irregular small
peaks due to the synchronous firing of few neurons by chance
(Figure 2A). In line with this irregular activity, the synaptic
weights in the network fluctuate, as evident in the evolution of
500 randomly selected synaptic weights (Figure 2B). It is well-
known that after a long time, most of the synapses reach the
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FIGURE 2 | Population activity remains asynchronous in the

absence of local excitation. (A) Global network activity, as

measured by the average number of neurons firing within a time

bin of 1 ms, increases over time due to ongoing synaptic

plasticity. However, the network activity remains relatively low and

noisy, which indicates that the neurons in the network are firing

asynchronously. While there is a tendency for the peak of the

population activity to increase slightly, reflecting more synchronous

activity, there is no evidence for global synchrony in the network.

(B) Time course of 500 randomly chosen synaptic weights. Most

of the synaptic weights fluctuate between the bounding values,

which are g = 0 mV and g = 0.04 mV, respectively. Since STDP

eliminates synaptic loops in neural networks, after a sufficiently long

simulation time, about 50% of the synaptic weights reach the

threshold values, but there is no specific direction for the

elimination of synaptic connections. The reason is that the

heterogeneity between the firing rates are large enough and the

initial synaptic weights are not strong enough to overcome the

inhomogeneity (disorder) in the network and synaptic connections

are eliminated in a random directions in the network.

limiting values imposed by the hard bounds in the conventional
linear STDP (Song et al., 2000). However, in the intermediate
time range no specific network structure emerges andmost of the
synaptic weights remain in-between the bounding values. These
results demonstrates that in the homogeneous network, in the
absence of local excitation, STDP cannot establish synchronous
firing. Similar asynchronous network activity has been reported
for a different type of STDP rule (Morrison et al., 2007).

3.2. Synchronous Activity Propagation Develops
due to Local Excitation
It was reported that the presence of neurons with higher firing
rate can substantially change the dynamics of neural networks
(Masuda and Kori, 2007; Bayati and Valizadeh, 2012). In our
simulation, we introduced stronger inputs to n = 12 neurons
than to the other neurons in the network (see Materials and
Methods). This setup can be related to a biological neural
network in which only a small subset of neurons receive
external inputs while the remaining neurons do not. With the
local excitation, the network dynamics gradually changes from
asynchronous initially to synchronous after about 5 s simulated
time (Figure 3). The periodic peaks in the population activity
in the stationary state is related to the maximum firing rate
of the background firing rate (6.8 Hz). We confirmed that
an overall increase in network activity, e.g., by increasing the
background firing rate of all neurons to the range [7.4−10.4] Hz,

does not give rise to synchronous activity propagation (data are
not shown). We therefore conclude that local excitation in a
LCRN with STDP drives the network toward global synchronous
activity.

Next, we examined the population activity within a population
burst at a finer temporal resolution to reveal the relative
spike timing of the neurons. Figure 4A shows one particular
population burst in which the neural activity propagates
from the center outward. A comparison with the layer index
(Figure 1C) suggests that neural activity starts in the FSNs
(first layer) and then propagates to downstream layers. In
addition, neurons that belong to the same or nearest layers
fire synchronously. These observations are confirmed by a
direct comparison of relative spike times during the population
burst and the assigned layer index (Figure 4B). The population
burst in Figures 4A,B shows that activity is propagated along
the abstract layers much like in synfire chains (Abeles, 1991,
2009). Note that this synchronous activity is evident in the
first layer, in that spike times in the first layer have a narrow
distribution (Figure 4B), and then propagates through the
network. This pattern contrasts with other models in which,
for instance, synchrony builds up as activity propagates through
the layers of a feedforward network (Tetzlaff et al., 2002,
2003). Our model therefore shows how synfire chains could
emerge in recurrent networks driven by a small number of
FSNs.
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A

B C

FIGURE 3 | Global synchronous activity is established by local

excitation. (A) In presence of local excitation, after about 5 s

simulation time, global synchrony emerges in the network. Periodic

network activity with relatively large amplitudes indicates that the

system is in a one-cluster state. Insets of the network activity at

magnified time scale show that (B) in the transient state synchronized

network activity emerges gradually and (C) activity peaks are precise

in the steady state. Thus, local excitation enables the network to

overcome the disorder in the firing rate of neurons and to establish

global synchronous activity. We used one particular population burst

[shown by red circle in (A)] to show reliable synchronous activity

propagation in Figures 4A,B.

To quantitatively measure synchronous activity propagation
in the network, we calculated the propagation parameter
for each population burst, i.e., the rank-order correlation
between layer index and time of first spike (see Materials
and Methods). For instance, the propagation parameter for
the example in Figures 4A,B is about 0.98, which indicates
highly reliable activity propagation. We then followed the
propagation parameter across time. During the initial stages
of the simulation, the propagation parameter increases rapidly,
then fluctuates at a high level, and finally stabilizes after about
10 s (Figure 4C). This temporal pattern is seen consistently
across multiple simulations, when the propagation parameter
is averaged across 50 simulations with different random input
currents (Figure 4D). Note, in particular, the higher standard
deviation for the data points during the transient state. When
the network reaches the stationary state, the variability is fairly
small. During the transient state, the network is in two or
more cluster states and the propagation can be seen in part of

the network (results not shown). In conclusion, local excitation

drives network changes such that initially asynchronous firing
becomes coherent and neurons in each layer fire successively one
after another.

3.3. Local Excitation and STDP Create
Feedforward Network Structures
How does local excitation lead to the emergence of synchronous
activity propagation? We hypothesized that the answer lies in the
changes in the network structure, rather than the dynamic effects
of FSNs alone. The evolution of 500 randomly selected synaptic
weights reveals that the network activity and STDP force most of
the synaptic weights (about 90%) to converge to the bounding
values (Figure 5A), g = 0mV and g = 0.04mV. We sought
to confirm this observation by examining the distribution of all
synaptic weights at different times during the simulation. After
the transient state, the synaptic weights quickly reach a stable
bimodal distribution (Figure 5B). Note that the convergence of
the synaptic weights to the limiting values is much faster than in
the case of the networks without local excitation.

We next studied the directionality of synaptic connections,
which is more important for activity propagation than the
distribution of synaptic weights. Due to the random assignment
of initial synaptic connections, the synaptic projections in the
forward and backward directions are initially balanced, i.e.,
the initial feedforward parameters in all layers are close to
zero (Figure 6A). Over time, a feedforward structure gradually
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A

C

D

B

FIGURE 4 | Quantitative analysis of synchronous activity propagation.

(A) One particular population burst of activity propagation in the stationary

state. Colors indicate the spike time of each neuron relative to the beginning

of the population burst (t0 = 18 s). Note how the activity propagates from the

first layer (high-frequency neurons) to higher layers (compare to Figure 1C).

(B) Direct comparison of spike time and assigned layer index for each

neuron, for the same time window as in (A). Neurons indeed fire sequentially

according to their layer index. Since neurons in the same layer also fire

synchronously, activity in our network propagates much like in synfire chains.

Note that this synchronous propagation emerged in our network in a

self-organized manner and was not hand-tuned. To quantitatively measure

synchronous activity propagation in the network, we calculated the

rank-order correlation between layer index and spike time (propagation

parameter). For instance, the propagation parameter in this example is about

0.98 (red circle in C). (C) The propagation parameter as a function of time for

one example network. In this case, activity propagation is established after

about 5 s. The fluctuations are reduced after 10 s. (D) The propagation

parameter averaged across 50 simulations with different random input

currents. Errorbars indicate the standard deviation. It decreases as the

synchronous propagation in the network stabilizes after about 10 s.

emerges in the network. The feedforward structure first emerges
in the layers with larger indexes, i.e., those far from the FSNs,
and later in layers close to the FSNs. After about 20 s simulation
time, the feedforward parameter is close to one in all the
layers.

The example studied above is representative of other instances
of the random network. When averaged across 50 simulations,
in which networks receive a different sampling of random input
currents, the evolution of the average feedforward parameter
clearly shows the three stages discussed for the example
above. The network is initially (t < 2 s) symmetric and the
average feedforward parameter is near zero with little variability
(Figure 6B). As the network structure changes in the transient
state (2 s < t < 8 s), the average feedforward parameter increases
and there is large variability. When the network reaches the
stationary state, the average feedforward parameter approaches
the maximal value and the variability is markedly reduced. The

evolution of the network structure, while not perfectly matching,
parallels the evolution of network activity.

3.4. Synfire Chain Activity Persists in Absence of
Local Excitation
Since we view the local excitation as a model of some salient,
but temporary, external stimulation (Ritz and Sejnowski, 1997),
one might expect that the firing rates of the FSNs return to
baseline once the external stimuli are removed. We therefore
asked whether the established network structure and activity
patterns remain stable after the local excitation ceases. After
the network has reached the stationary state (t = 20 s), we
reset the external input current to the FSNs to values drawn
from the same distribution as for the background neurons. Thus,
the firing rates of the former FSNs are now the same as those
of the other neurons in the network (Figure 7A). Importantly,
the population activity remains synchronous (Figure 7B) and
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A

B

FIGURE 5 | Evolution of synaptic weights driven by local

excitation. (A) Results are shown for 500 randomly selected

synapses. Most weights (about 90%) converged toward the limiting

values of 0 mV and 0.04 mV. (B) Histogram of the synaptic weight

distribution at the different timepoints marked by red dots in A. The

distribution of synaptic weights converge from delta-function distribution

to a stable bimodal distribution. There are no apparent changes in the

weight distributions between t = 20 s and t = 30 s. So we conclude

that the network has reached a steady state after 20 s of simulation

time.

neural activity continues to propagate through the abstract
layers of the network (Figures 7C–E). Surprisingly, the values of
the population activity and propagation parameter are slightly
higher and less variable after local excitation has been removed
(Figures 7B,E), indicating more stable activity propagation.

We then investigated the mechanism responsible for the
synchronous activity propagation through the network in more
detail in two different ways. First, we removed the local excitation
at earlier timepoints (t = 2.5 s, t = 5 s, and t = 10 s) in the
same network we used to generate Figure 6. Synchronous activity
propagation degraded in each of these cases. By comparing the
network structure at these times (Figure 6A) and the propagation
parameter after removing the local excitation (Figure 7E), we
found that only when the whole network, including the first
layer, reaches a feedforward structure, the synfire-chain-like
propagation remains stable without local excitation. This result
is consistent with previous studies of synfire chains, but unlike in
previous models, STDP continues to operate in our model and
could therefore change synaptic weights after the local excitation
has been removed. In other words, the overall network structure
is stable against changes in individual synapses, which continue
to occur in our model (Figure 8).

Second, we changed the extent of the local excitation, i.e., the
number of FSNs, while fixing the average firing rate of FSNs at
fFSN ≈ 11.4 Hz. Otherwise, networks simulation were setup
as before and run for t = 20 s, before the local excitation
was switched off. It is striking, but consistent with experimental

evidence (Miles and Wong, 1983), that even a single FSN can
drive synfire chain activity in the network (Figure 9, top left
panel). However, the network activity pattern is not stable when
local excitation is removed (t > 20 s). This stability occurs only
for larger numbers of FSNs, n > 8 (Figure 9, left column).
The reason for this difference appears to be that the structure of
the network is not completely feedforward for small number of
FSNs (Figure 9, middle column). In particular, at the end of the
learning period (t = 20 s) the feedforward parameter of the first
layer is quite small for n ≤ 8 (Figure 9, right column). These
results suggest that even a small number of FSNs can change the
network structure for synchronous activity propagation, but only
a larger number of FSNs can drive more substantial changes in
the network that are sustained after the FSNs are removed.

To confirm the relationship between feedforward network
structure and sustained synchronous activity propagation, we
systematically study the dependence of these properties on the
model parameters. Since plasticity is driven by the FSNs, we
chose as independent variables the extent of the local excitation,
as introduced above, and the intensity of local excitation, i.e.,
the difference between the average firing rate of FSNs and
the background firing rate. In the presence of local excitation,
synchronous activity propagation emerges in the steady state (t =
20 s; Figure 10A) for a large number of parameter combinations.
However, in only a subset of these cases is synchronous activity
propagation sustained after the local excitation is removed (t =
30 s; Figure 10B, see white outlines). In the same parameter
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A

B

FIGURE 6 | Formation of a feed-forward structure in locally

connected networks. Local excitation drives STDP in the network

such that synapses from lower to higher layers become

strengthened, while the synapses in the reverse direction are

weakened. Note that “layers” in our study refers to abstract layers

based on synaptic distance to high frequency neurons (Figure 1C).

We do not manually set up a feedforward structure in our

network. (A) The feedforward parameter as a function of the layer

is shown at different times (same as Figure 5B) for one

representative network simulation. Initially, the feed-forward parameters

are close to zero because the initial synaptic weights are

symmetric. Values of the feedforward parameter near 1 indicate a

feedforward structure. Due to plasticity the feedforward structure

emerges gradually in the network, first in higher layers (t = 5 s) and

later in the lower layers. (B) Feedforward parameter as a function

of simulation time averaged across 50 simulations with different

random input currents. There are no apparent changes in the

structure of the network after t = 20 s. Errorbars show the standard

deviation (SD) at each timepoint. Note that the SD decreases as

the weights reach the steady state.

regime (Figure 10, white outlines), and only there, the average
feedforward parameter is approximately ≥ 0.7 (Figure 10C).
These results confirm our hypothesis that the synchronous
activity propagation is sustainable in the absence of local
excitation if the network has a strong feedforward structure.

4. Discussion

Here, we have explored the dynamics of the network activity
and the structure of a locally connected random network
(LCRN) using computational simulations. Specifically, we have
studied the role of local excitation in shaping such a network
through spike-timing dependent plasticity (STDP) to generate
synchronous activity propagation through the network. This
synfire-chain like pattern of activity emerges when a feedforward
structure self-organizes in the network.

Our work is clearly distinct from previous models of
synchronous activity propagation in neural networks. Most
previous models use hard-wired synaptic connections (Abeles,
1991; Diesmann et al., 1999; Kumar et al., 2010; Azizi et al.,
2013, for instance), but models in which synchronous activity
propagation self-organizes also differ from ours. For instance,
Fukai and colleagues (Kitano et al., 2002a,b) discuss models in

which a chain of a handful of clusters emerged. The neurons
within the clusters fire nearly synchronously, while the clusters
excite each other sequentially. Thus, in their model, activity
propagates in volleys through the network. By contrast, in our
model, activity propagates at the single neuron level and there is
significant overlap between the activity in different layers, which
appears to be a better description of in vivo data (Ikegaya et al.,
2004).

4.1. Relation to Other Studies and Predictions
Our modeling results can account for modeling findings which
show that network activity propagation can be transiently
synchronized by external stimulation and return to an
asynchronous state after the stimulation is removed (Tsodyks
and Sejnowski, 1995; Mehring et al., 2003). We showed here
that synchronous activity propagation remains transient, if the
network structure has not become fully feedforward during
the stimulation, because the external stimulation was not
long-lasting, extensive or intense enough (Figures 7, 10). We
therefore predict that changing the stimulation parameters in
the experiments will result in synchronous activity propagation
that persists beyond the duration of stimulation. Furthermore,
our results predict that the switch between transient and stable
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A

B

C D

E

FIGURE 7 | Synchronous activity propagation persists after local

excitation is removed. (A) Average firing rate of background neurons

(blue points) and high-frequency neurons (red points) as a function of

time. After the network has reached the stationary state, the local

excitation is removed at t = 20 s (vertical line), i.e., the high-frequency

neurons receive an input current from the same distribution as the other

neurons in the network. Despite this manipulation, (B) the network

activity remains highly synchronized and the activity propagation remains

stable (C–E). (C,D) Example of spike times, taken at the time indicated

by the red dot in (B). (E) If anything, the activity propagation appears

to be more stable since there are smaller fluctuations in the propagation

parameter (blue data points). The same analysis was performed with the

local excitation removed at different times as indicated by the vertical

lines (black, red, green, and blue). When the local excitation is removed

at earlier time points, activity propagation destabilizes. This simulation

used the same network parameters as the one shown in Figure 6.

Visual inspection suggests that the feedforward parameter (Figure 6A)

determines whether activity propagation remains stable after the local

excitation has been removed. If the network structure is feedforward,

including the first layer, i.e., the feedforward parameter is larger than

about 0.75, then stable synfire-chain- like propagation remains stable

after learning.

synfire chain activity is controlled by the degree to which the
network structure is feedforward. Finally, our model predicts
that the feedforward network structure starts to forms first in the
last layer and then propagates backwards to the first layer. These
predictions of our model can be contrasted with an alternative
account of the experimental observation based on balanced
excitation and inhibition (Marder and Buonomano, 2004). In
this account, the network initially responds with an explosion
in activity when the stimulation is applied, and then switches
to an asynchronous state due to the global inhibition when the
excitation is removed.

In our study, local excitation drives the self-organization of a
largely feedforward network structure in LCRN through STDP.

Our results thus further strengthen the view that feedforward
network structures are particularly well-suited to propagate
synchronous activity. An in vitro study reported that the
neural activity becomes progressively more synchronized as
it propagates through the layers of constructed feedforward
networks (Reyes, 2003). Furthermore, after removing local
excitation in the stationary state (t > 20 s), the synchronous
activity propagation appears to be robust. For instance, when we
resampled the external input to all neurons from the interval of
background firing rates ([3.4–6.8] Hz), the network continued
to support the propagation of synchronous activity (data not
shown). This result suggests that the feedforward structure of
the network can compensate for the perturbation in the network
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A

B

C

FIGURE 8 | Stability of feed-forward structure after removing local

excitation. Comparing the evolution of the network structure in the

presence of local excitation t < 20 s and after removing it (t > 20 s). (A) After

the local excitation is removed, the synaptic weights remain at their stationary

values, although STDP is still active in the network. Furthermore, as shown at

selected timepoints [red dots in (A)], (B) the bimodal distribution of synaptic

weights, and (C) the feedforward structure remains stable after removing the

local excitation.

inputs. The robustness to other forms of network manipulation
remains to be explored in the future.

Although neural synchronization might be important for
information processing in the nervous system, excessive
synchrony may impair brain function and causes several
neurological disorders (Pyragas et al., 2007). Therefore, it is
important for the brain to control this spontaneous synchronous
activity. In Section 3.4, we showed that synchronous activity
persists even though local excitation is switched off. We also
found that reducing the average background firing rate by 0.6 Hz
switches off the synchronous activity propagation (data not
shown). In other words, the activity in the network is driven by
the external input and synchronized by the synaptic connections.
Without any external input the activity in the network ceases.

4.2. The Importance of the Initial Weights and
Baseline Firing Rates
The population activity is sensitive to any sufficiently large
inhomogeneity. In the absence of local excitation the network
breaks into several synchronous subclusters, probably because
of small disparity in the firing rates. For a range of parameters,
local excitation can override this clustering effect and establish
a feedforward network structure. However, after the local
excitation is removed, the network structure breaks into the
subclusters again and abolishes the synfire chain activity. To

avoid this clustering effect, we had to adjust the initial weight
matrix and dispersion of the input currents. If the initial
weights are low and baseline firing rates are drawn from a wide
distribution, the neurons near the boundary cannot be trained
by the central ones and network activity remains asynchronous.
On the other hand, some neurons randomly have higher firing
rate than their neighboring neurons and due to that they are
able to entrain some of their neighbors. As a result, there is a
tendency of the population activity to become more synchronous
and increasing in peak of population activity (Figure 2A), despite
the absence of local excitation.

The asynchronous network state is considered a more realistic
model of cortical background activity in the absence of external
stimulation to the network (Brunel, 2000; Mehring et al., 2003).
However, the initial weights cannot be too small since activity
has to propagate through the abstract layers in order to train the
weights (Kumar et al., 2008, 2010; Jahnke et al., 2013). Therefore,
the initial weights and dispersion of input currents in our model
were chosen to balance these opposing requirements.

There is little experimental data to suggest what the
distribution of initial synaptic weights before the learning period
look like, even though the initial weights play a central role in
the dynamics of the network activity and structure. For instance,
Babadi and Abbott (2013) have shown for networks of two
excitatory neurons that different initial weights of the reciprocal
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FIGURE 9 | The extend of local excitation that is required to establish

lasting network structures. Each row shows the results for local excitation

involving a different number n of fast spiking neurons, as indicated on the far

right. The networks are simulated in the presence of local excitation for 20 s,

after which the local excitation is removed. All data points are averaged

across 50 simulations with different random input currents. The average

propagation parameter (left column) shows that stable activity propagation

can be established for any number of fast-spiking cells. However, after the

local excitation is removed the average propagation parameter remains

stable only for n ≥ 8. The reason for this differentiation is evident in the

network structure. For n < 8, the average feedforward parameter (middle

column) is smaller and, importantly, the feedforward parameter of the fist

layer at the stationary state (right column) is smaller as compared to the

simulations with n ≥ 8.

A B C

FIGURE 10 | Synchronous activity propagation is sustained only if

the network is feedforward. We systematically characterized the

propagation of synchronous activity in the network as a function of two

properties of the local excitation: the extend and the intensity of local

excitation. (A,B) The average propagation parameter in the steady state

[t = 20s, (A)] and after removing the local excitation [t = 30 s, (B)]

indicated by the color scale. The white outline indicates the region with

sustained propagation of synchronous activity in the absence of local

excitation. Note that for some parameters synchronous activity

propagates through the network only when the local excitation is

present. (C) The average feedforward parameter in the steady state

(t = 20 s) is indicated by color scale. Only when the structure of the

network is mostly feedforward (average feedforward parameter

approximately ≥ 0.7), is the synchronous activity propagation sustained

after removing the local excitation (see white outlines). All data points are

averaged across 100 simulations with different random input currents.
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connections lead to different final network structures in the
steady state. The exact relationship depends on the STDP rule
and on the firing rates of the two neurons. If the STDP rule is
dominated by depression, which is the case in our model, and
firing rates are the same, then the stronger weight will prevail and
the other connection is eliminated. That is, unless the weights
are both weak, in which case both synapses are eliminated. If,
on the other hand, the two neurons have different firing rates
and equal initial synaptic weights, the low frequency neuron
receives more excitation, and as a result, the synapse from the
high to low frequency neuron grows and the other synapse
weakens, ultimately leading to a feedforward network (Bayati
and Valizadeh, 2012, for instance). These results also suggest
that in large networks, the initial distribution of synaptic weights
might be an important factor in determining the final steady
state structure of the network. In our current simulations, we
used identical weights; future work is needed to study the impact
of the initial weight distribution on the synchronous activity
propagation.

4.3. Other Directions for Future Studies
In addition to the initial synaptic weights and baseline firing rates,
a number of other variables might affect synchronous activity
propagation. The network dynamics of a simulated recurrent
network of spiking neurons where all connections between
excitatory neurons are subject to STDP is quite sensitive to the
particular STDP-rule that is used. Variants of this STDP rule
have been proposed in order to prevent the instability induced
by conventional STDP (Pfister and Gerstner, 2006; Babadi and
Abbott, 2010, 2013; Clopath and Gerstner, 2010; Clopath et al.,
2010). In this study, we used the additive STDP model which
modifies the synapses independently of the synaptic weight (Song
et al., 2000). This STDP rule leads to a bimodal synaptic weight
distribution, which in turn forms synfire-chain-like structure in
our work. In contrast, weight-dependent STDP does not lead to
the emergence of synfire-chain-like connectivity patterns from a
random architecture, despite local excitation of selected neuron
groups (Morrison et al., 2007). The main reason is that weight-
dependent STDP gives rise to a unimodal weight distribution and
strong synapses are harder to potentiate than weak ones. While
the network effects of the STDP rule can be partly predicted
by the results for a two-neuron network, our work shows that
the emergent structure is also affected by the initial network
architecture and the presence of local excitation. Further studies
are needed to reveal how different STDP rules affect the emergent
structure.

Another variable of interest are synaptic delays which can
be implemented either as axonal delay or dendritic delay.
Previous studies showed that these different type of delays lead
to different results. When only dendritic, and not axonal, delays
are implemented (Morrison et al., 2007), simultaneous firing
of two reciprocally connected neurons lead to the selective
strengthening of recurrent connections between those neurons,
instead of exerting a decoupling force as observed in the case of

implementing the axonal delay (Lubenov and Siapas, 2008). Here
we have used an axonal delay of 1 ms for all synapses regardless of
the distance between the neurons. This might be another reason
for the discrepancy between our results and those of Morrison
et al. (2007).

On the other hand, several studies have suggested that
conduction delays are heterogeneous (Soleng et al., 2003; Pyka
et al., 2014) and that this heterogeneity has important functional
consequences (Izhikevich, 2006; Pyka and Cheng, 2014; Sadeghi
and Valizadeh, 2014). It was shown previously that neuronal
synchrony can arise in a network which contains long conduction
delays (Vicente et al., 2008). Nevertheless, more work is needed
to study whether the results reported here can be reproduced in
networks with heterogeneous and long conduction delays. There
is an overwhelming consensus in neuroscience that information
processing in the brain is organized in functional modules (Perkel
and Bullock, 1968) and that these modules are further arranged
in hierarchies, such as in the visual system (Payne and Peters,
2001). If we consider LCRNs to be the modules, in which
activity is synchronized locally, as we show in this paper, then an
interesting question is how a system with multiple synaptically
linked modules would behave.

5. Conclusion

Synfire chains have been popular for modeling the synchronous
propagation of neural activity in neural networks. Here we found
a biologically plausible mechanism for the self-organization of
synfire-chain-like activity by combining local excitation and
STDP in a LCRN. Local excitation could be supplied either by
external stimuli or by another brain region. Only a few seconds of
local excitation suffice to drive the establishment of a feedforward
structure that persists even after the local excitation is removed.
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