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Colorectal cancer (CRC) remains a devastating human malignancy with poor prognosis.
Of the various factors, immune evasion mechanisms play pivotal roles in CRC progression
and impede the effects of cancer therapy. Myeloid-derived suppressor cells (MDSCs)
constitute an immature population of myeloid cells that are typical during tumor
progression. These cells have the ability to induce strong immunosuppressive effects
within the tumor microenvironment (TME) and promote CRC development. Indeed,
MDSCs have been shown to accumulate in both tumor-bearing mice and CRC
patients, and may therefore become an obstacle for cancer immunotherapy.
Consequently, numerous studies have focused on the characterization of MDSCs and
their immunosuppressive capacity, as well as developing novel approaches to suppress
MDSCs function with different approaches. Current therapeutic strategies that target
MDSCs in CRC include inhibition of their recruitment and alteration of their function, alone
or in combination with other therapies including chemotherapy, radiotherapy and
immunotherapy. Herein, we summarize the recent roles and mechanisms of MDSCs in
CRC progression. In addition, a brief review of MDSC-targeting approaches for potential
CRC therapy is presented.

Keywords: myeloid-derived suppressor cells, colorectal cancer, cancer immunology, colorectal cancer
immunotherapy, tumor microenvironment
INTRODUCTION

Colorectal cancer (CRC) remains the third most common cancer and the third leading cause of
cancer-related deaths in males and females (1). Despite improvements in systemic treatments for
advanced CRC in recent years, only 12–14% of patients with metastatic CRC survive for five years
(2). Moreover, patients with advanced CRC develop resistance to chemotherapy, radiotherapy,
immunotherapy and targeted drug therapy, which results in increasing challenges in treating CRC.
Recently, different types of immune cells such as myeloid-derived suppressor cells (MDSCs),
dendritic cells (DCs), tumor-associated macrophages (TAMs), natural killer (NK) cells, and
regulatory T cells (Tregs) were shown to impact CRC progression (3, 4).
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CRC patients’ responses to chemotherapy, radiation therapy,
targeted drugs therapy and immunotherapy are affected by the
tumor immune microenvironment (5, 6). Growing evidence has
demonstrated that MDSCs accumulate and expand in the
peripheral blood and tumor tissues, where they regulate host
anti-tumor immune responses (7, 8). Once the MDSC
population is expanded and activated in the immune system, it
executes its numerous functions in tumor progression. MDSCs
not only suppress anti-tumor immunity but also impede the
efficacy of therapeutic agents for cancer treatment (9).

Immunosuppression is an important hallmark of most cancer
growth and progression (10). In recent years, accumulating data
have indicated that MDSCs, as one of the main immunosuppressive
cell populations, are pivotal for cancer development (11). MDSCs
represent a heterogeneous population of immature myeloid cells
(IMCs) that fail to complete their differentiation into macrophages,
DCs, or granulocytes (12). MDSCs consist of two large groups of
cells: granulocytic or polymorphonuclear MDSCs (PMN-MDSCs)
and monocytic MDSCs (M-MDSCs) (13). In general, the
immunosuppressive function of MDSCs is regulated by multiple
signaling pathways as well as interactions with several immune cell
populations and mediators, which directly or indirectly suppress
anti-tumor immunity and support cancer progression (7, 9). An
increasing number of studies have focused on MDSCs, which are
involved in regulation of the immune response in many types of
cancer, but are poorly understood in CRC. It has been shown that
different populations of MDSCs are observed in the peripheral
blood and tumor tissue of CRC patients (14). A positive relationship
between MDSCs and CRC progression including growth,
metastasis, invasion, and angiogenesis has also been reported (15).
Therapeutic agents targeting MDSCs have been proven to promote
anti-tumor immunity and enhance the effects of immunotherapy
against CRC. In this review, we discuss developments on the role of
Abbreviations: DCs, Dendritic cells; TAMs, tumor-associated macrophages; NK,
natural killer; Tregs, regulatory T cells; UCB, umbilical cord blood; MDSCs,
myeloid-derived suppressor cells; IMCs, immature myeloid cells; PMN-MDSCs,
polymorphonuclear MDSCs; M-MDSCs, monocytic MDSCs; e-MDSCs, early-
stage MDSCs; PBMCs, peripheral blood mononuclear cells; F-MDSCs, fibrocytic
MDSCs; PGE2, prostaglandin E2; TGF-b, transforming growth factor beta; HIF-
1a, hypoxia-inducible factor-1a; CRC, colorectal cancer; CCR2, C-C chemokine
receptor type 2; iNOS, inducible nitric oxide synthase; CCL2, chemokine ligand 2;
CXCR, C-X-C motif chemokine receptor; ENTPD2, ectonucleoside triphosphate
diphosphohydrolase 2; RONS, reactive oxygen and nitrogen species; RNS, reactive
nitrogen species; G-CSF, granulocyte colony-stimulating factor, GM-CSF,
granulocytes macrophage colony-stimulating factor; M-CSF, macrophage
colony-stimulating factor; STAT3, signal transducer and activator of
transcription 3; NADPH, nicotinamide adenine dinucleotide phosphate; TME,
tumor microenvironment; NF-kB, nuclear factor-kB; NO, nitric oxide; ROS,
reactive oxygen species; VEGF, vascular endothelial growth factor; JAK3, Janus
kinase 3; MHC, major histocompatibility complex; IDO, indoleamine
2,3dioxygenase; Bcl-2, B-cell lymphoma 2; TIM3, T-cell immunoglobulin
domain and mucin domain 3; ADAM17, disintegrin and metalloproteinase
domain17; IFN-g, interferon gamma; HCC, hepatocellular carcinoma; IRF2,
interferon regulatory factor 2; RIPK3, receptor-interacting protein kinase 3;
COX-2, cyclooxygenase-2; IBD, inflammatory bowel disease; VISTA, V-domain
Ig suppressor of T-cell activation; GNAI1, G protein subunit alpha i1; PAR2,
protease-activated receptor 2; S1PR1, sphingosine-1-phosphate receptor 1; ATRA,
all-trans-retinoic acid; HDC, histamine dihydrochloride; XIAP, X-linked inhibitor
of apoptosis protein; PI3K, phosphatidylinositol 3-kinase; CTLA-4, cytotoxic T
lymphocyte-associated antigen-4.
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MDSCs in CRC: (1) MDSCs and their functional correlation with
cancer, (2) MDSCs-mediated signaling pathways in CRC
progression, and (3) MDSCs-targeting approaches for potential
CRC treatment.
MOLECULAR FEATURES AND
SUPPRESSIVE FUNCTION OF MDSCs

Phenotypic Features
Under normal circumstances, IMCs do not have immuno-
suppressive functions and are believed to be constitutively present
in healthy individuals. The generation of IMCs occurs in the bone
marrow and is regulated by growth factors including granulocyte
colony-stimulating factor (G-CSF), granulocyte macrophage
colony-stimulating factor (GM-CSF), and macrophage colony-
stimulating factor (M-CSF) (16, 17). During this process, IMCs
migrate to the blood and various peripheral organs, where they
differentiate into myeloid cells such as macrophages, neutrophils,
and DCs. However, in pathological conditions including cancers,
chronic infections and autoimmune diseases, IMC differentiation is
impaired leading to an accumulation of MDSCs (18–20).

MDSCs are IMCs that expand during the growth and
metastasis of malignant tumors and in inflammatory conditions.
Their heterogeneity is tumor-dependent, and their phenotype and
functions change with cancer progression (21). Recently,
neutrophils were distinguished from MDSCs by the expression
of the lectin-type oxidized LDL receptor 1 (LOX-1). LOX-1+

neutrophils have been shown to suppress T cells proliferation
(22). These cells, also called tumor-associated neutrophils (TANs),
were found in the tumor microenvironment (TME) and promote
cancer cell migration and invasion (23). However, the main
difference between MDSCs, neutrophils, and monocytes is their
functions, with MDSCs having the potential to suppress
immune activity.

There are two types of macrophages, namely, M1-like
macrophage and M2-like macrophage. The macrophages found
in the TME are known as TAMs and are predominantly M2
macrophages (24). TAMs are abundant in the microenvironment
of CRC and are strong promoters of angiogenesis and
lymphogenesis, thus contributing to tumor progression (25).
Interferon gamma (IFN-g), LPS, and GM-CSF induce
polarization of M1 TAMs from monocytes, which are involved in
antitumor immunity (26). In contrast, CSF-1, interleukin (IL)-4, IL-
10, transforming growth factor beta (TGF)-b, and IL-13 contribute
to M2 TAM polarization (27). M2 macrophages suppress cytotoxic
T cell activities and attract Tregs, which promote tumor growth and
immune escape (28). Furthermore, while M1 macrophages express
CD64, suppressor of cytokine signaling 1 (SOCS1), indoleamine
2,3-dioxygenase (IDO) and chemokine (C-X-C motif) ligand 1
(CXCL1), M2 macrophages express mannose receptor C-type 1
(MRC1), CD23, and chemokine ligand 22 (CCL22) (29).
Macrophages are highly plastic, and under certain physiological
and pathological conditions, M1 macrophages can repolarize into
M2 macrophages, and vice versa (30). However, the molecular
mechanisms that regulate the macrophage polarization remain
poorly understood.
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Although TAMs and MDSCs are distinct cell types, they are
not clearly distinguishable and have several characteristics in
common. In the TME, cytokines and chemokines from tumor
cells can influence normal myelopoiesis and increase the
differentiation of M-MDSCs into PMN-MDSCs (31). M-MDSCs
and inflammatory monocytes migrate to the tumor site via the
CCL2/CCR2 pathways and differentiated into TAMs in response
to various factors secreted by tumor cells (32). In addition,
infiltrating MDSCs can also differentiate into TAMs through a
combination of Toll-like receptor (TLR) and cytokine signaling
(33, 34). MDSCs are phenotypically distinct from neutrophils,
macrophages and monocytes. They can be divided into two major
types based on their cell surface markers. In mice, PMN-MDSCs
are defined as CD11b+Gr-1+Ly6GhighLy6Clow cells, whereas M-
MDSCs are defined as CD11b+Gr-1+Ly6GlowLy6Chigh cells. The
frequencies of PMN-MDSCs andM-MDSC subsets differ between
tumors and organs in tumor-bearing mice with PMN-MDSCs
accounting for 70–80% of MDSCs and M-MDSCs representing
20–30% (35). In humans, PMN-MDSCs are HLA-DR-
CD11b+CD14−CD33+ (CD15+ or CD66+) cells and M-MDSCs
are HLA-DRlow/−CD11b+CD14+CD15− cells (36). Other cell
surface molecules can also be used to identify other subsets of
MDSCs, such as CD115, CD80, and CD124 (37, 38). Moreover,
M-MDSCs express inducible nitric oxide synthase (iNOS) and
generate nitric oxide (NO), while PMN-MDSCs produce reactive
oxygen species (ROS) and arginase-1 (39).

In human peripheral blood, early-stage MDSCs (e-MDSCs),
which are comprised of more immature progenitors than
conventional MDSCs, are defined by Lin− (including CD3, CD14,
CD15, CD19, CD56) HLA-DR-CD33+. While e-MDSCs markers for
murine cells have yet to be determined (36, 40–42), a subset of e-
MDSCs with the phenotype of CD11b+Gr-1−F4/80−MHC-II− has
been described in IL-6 high-expressing 4T1 mice mammary
carcinoma models (43). Human fibrocytic MDSCs (F-MDSCs),
which can be differentiated from umbilical cord blood (UCB)
precursors, have been identified as a new MDSCs subset with
fibrocytic phenotypes and immunosuppressive functions. They are
defined as CD11blowCD11clowCD33+IL-4Ra+ (44, 45). In addition,
PMN-MDSCs and M-MDSCs are also phenotypically different from
neutrophils. Compared to neutrophils, PMN-MDSCs have fewer
granules and low expression of CD16 and CD62L (36, 41, 42, 46).
The phenotypes and markers of MDSCs are shown in Table 1.

Recruitment and Expansion of MDSCs
Cytokines can facilitate the recruitment and expansion of
MDSCs in the TME. Tumor-induced factors, including
prostaglandin E2 (PGE2), IL-6, IL-10, IL-1b, and transforming
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growth factor beta (TGF)-b have been shown to result in the
recruitment and activation of MDSCs in the TME in malignant
tumors (47). For example, IL-1b and IL-6 can induce the
accumulation and activation of MDSCs at tumor sites (48–50).
IL-1b not only promotes the accumulation of MDSCs but also
induces expression of other molecules that are necessary for the
expansion of MDSCs such as vascular endothelial growth factor
(VEGF), IL-6 and GM-CSF (51). Other cytokines, such as IL-10
and TGF-b have the ability to generate MDSCs populations, as
well as mediate their suppressive functions (52, 53). Thus,
MDSCs are able to produce TGF-b and create a feedback loop
that sustains their antitumor immunity. Furthermore, IL-17,
which is secreted by Th17 cells, is overexpressed in cancer cells
and promote MDSCs translocation from the periphery to the
tumor sites (54).

Chemokines also influence MDSCs expansion and activation.
Some of them, such as chemokine ligand 2 (CCL2) can interact
with its corresponding receptor C-C chemokine receptor type 2
(CCR2) to promote chemotaxis to areas of inflammation (55,
56). IL-8 is released by cancer cells and binds to G protein-
coupled receptors C-X-C motif chemokine receptor 1 and 2
(CXCR1 and CXCR2) on MDSCs (57). Moreover, the CCL3/
CCR5 axis has been reported to induce the maintenance of
immunosuppressive myeloid cells in tumor areas (55).

Hypoxia is commonly found in the TME and is recognized as
an important factor that mediates MDSCs expansion. It has been
shown that hypoxia inducible factor 1 alpha (HIF-1a) can induce
the expression of ectonucleoside triphosphate diphosphohydrolase
2 (ENTPD2), an ectoenzyme on MDSCs, resulting in MDSCs
expansion in the TME (40). In addition, hypoxia can upregulate
VEGF and functional molecule expression and lead to MDSCs
accumulation in both mice and patients with lung cancer (58, 59).
This process is mediated by the VEGF receptor, which is expressed
on MDSCs (58).

MDSCs Immunosuppressive Mechanism
Notably, one of the features of MDSCs in TME is the immune
suppressive function. MDSCs suppress the activity of immune
cells through multiple mechanisms, including the generation of
reactive oxygen and nitrogen species (RONS), the degradation of
L-arginine, the production of immunosuppressive cytokines
such as IL-10 and TGF-b, the inhibition of T cells, and the
induction of other immunosuppressive cells (41, 60). Firstly,
MDSCs can regulate anti-tumor immune responses through the
production of RONS including NO and ROS (61, 62). MDSCs
require activation of signal transducer and activator of
transcription 3 (STAT3) and increase nicotinamide adenine
TABLE 1 | Summary of commonly expressed markers in mice and human MDSCs.

MDSCs PMN-MDSCs Markers M-MDSCs Markers e-MDSCs F-MDSCs

Mice CD11b+Gr-1+Ly6Ghigh

Ly6Clow
CD11b+Gr-1+Ly6GlowLy6Chigh

– –

Human HLA-DR-CD11b+

CD14−CD33+(CD15+/CD66+)
HLA-DRlow/−CD11b+

CD14+ CD15−
Lin−(CD3/CD14/CD15/CD19/
CD56)HLA-
DR-CD33+

CD11blowCD11clowCD33+IL-4Ra+
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dinucleotide phosphate (NADPH) oxidase activity to produce
ROS (13, 41). However, NADPH oxidase may also synthesize
reactive nitrogen species (RNS) like NO by metabolizing L-
arginine (63). ROS are also activated via the STAT3
transcription factor and are associated with the metabolism of
L-arginine (52, 64). Taken together, these data suggest that
production of ROS, NO, and RNS are dependent on L-arginine
metabolism. Furthermore, these factors can suppress T cell
populations, thus rendering them incapable of facilitating an
anti-cancer response (65). In the TME, S100A8/A9 has been
shown to activate the production of ROS in a STAT3-dependent
manner. This leads to nitration of the T cell receptor-alpha-beta
(TCRab) chain, resulting in T cells that lack the ability to
interact with the peptide antigen bound to the major
histocompatibility complex class II (MHC-II) and are therefore
unable to initiate an anti-cancer response (51). Similarly, iNOS
released by MDSCs is an additional mechanism responsible for
inducing oxidative stress in the TME. NO produced by iNOS can
suppress the T cells’ response and induce T cell apoptosis via
various mechanisms, including the inhibition of Janus kinase 3
(JAK3), STAT5, and MHC-II expression (11, 13). Synergistically,
S100A8/A9 also increases the production of iNOS through
activation of STAT1 (66).

Secondly, MDSCs can suppress T cell activation and
proliferation by depleting essential amino acids. MDSCs
increase arginase-1 activity and induce T cell suppression via
the depletion of L-arginine (11, 13, 67). The lack of L-arginine
suppresses proliferation of activated T cells and decreases the
expression of the T cell receptor-zeta (TCR-z) chain (68). As a
result, arginase-1 leading to depletion of L-arginine in the TME
suppresses the ability of the T cells to exert their anti-tumor
functions (69). Indeed, MDSCs have the ability to inhibit T cell
proliferation by regulating the G0/G1 phase of their cell cycle
(70). Expression of IDO by MDSCs can also suppress T cell
proliferation by decreasing tryptophan levels and producing
cytotoxic metabolites (71). Furthermore, it was reported
that chronic psychological stress can also lead to MDSCs
accumulation in the bone marrow of Balb/c mice where they
inhibit T cells proliferation (72).

Other mechanisms that result in MDSCs-induced T cell
apoptosis have been described. For example, MDSCs can
decrease expression level of B-cell lymphoma 2 (Bcl-2)
expression and increase FAS (CD95 ligand) expression in T
cells. Furthermore, MDSCs express galectin-9, which binds to T-
cell immunoglobulin domain and mucin domain 3 (TIM3), an
inhibitory surface molecule on lymphocytes, leading to decreased
T cell viability (73, 74). Interestingly, different subtypes of MDSCs
utilize different mechanisms to mediate immunosuppressive
functions in the TME. M-MDSCs produce high levels of NO
and immunosuppressive cytokines such as IL-10, which suppress
both antigen-specific and non-specific T-cell responses (55). In
contrast, PMN-MDSCs suppress T-cell responses by generating
ROS based on an antigen-specific approach (75, 76).

Thirdly, MDSCs-mediated lymphocyte trafficking and
viability are restricted. MDSCs can suppress T cell movement
to the lymph nodes via down-regulation of L-selectin (CD62L)
Frontiers in Oncology | www.frontiersin.org 4
on the surface of T cells by increasing expression of disintegrin
and metalloproteinase domain17 (ADAM17). MDSCs can also
interrupt the migration of CD8+ T cells to tumor sites by
peroxynitrite modification of CCL2 (77, 78). Finally, MDSCs
can promote the induction of other immunosuppressive cells.
MDSCs have been shown to induce the generation of FoxP3+

Treg cells in vivo through the production of IFN-g, TGF-b and
IL-10. This effect is independent of NO production (38).
Furthermore, the CCR5 ligands CCL3, CCL4, and CCL5 were
shown to promote CCR5+ Treg cell recruitment in mouse models
of melanoma (74). It has been reported that CD14+HLA-DR–/low

M-MDSCs could induce CD4+CD25+Foxp3+Treg cells when co-
cultured with autologous T cells in hepatocellular carcinoma
(HCC) patients (79). Moreover, F-MDSCs can inhibit T cell
proliferation by releasing IDO and promoting the expansion of
Tregs (80). With the exception of Tregs stimulation, MDSCs can
also reverse macrophages to an M2-like phenotype with low IL-
12 production, thereby promoting tumor growth (81). In
addition, MDSCs impair NK cell function and cytotoxicity by
suppressing the production of IFN-g from NK cells and
decreasing the expression of natural killer group 2 member D
(NKG2D) (82). Induction of MDSCs in a tumor-bearing mouse
model of lung cancer can lead to impairment of B cell
differentiation and function though an IL-7 and STAT5-
dependent manner (83). The MDSCs immunosuppressive
mechanisms described above are outlined in Figure 1.
ROLES OF MDSCs IN COLORECTAL
CANCER

Prognostic Values of MDSCs in CRC
MDSCs play an important role in the immunosuppressive
mechanism associated with CRC progression. Several studies
have demonstrated that MDSCs in the peripheral blood and
tumor tissues are associated with tumor stage, histological grade
of cancer and lymph node metastases in CRC (84, 85). It has
been reported that the peripheral blood of CRC patients contains
a significantly increased percentage and absolute number of
CD33+CD11b+HLA-DR−/low MDSCs compared with healthy
donors. This increasement was closely correlated with
clinical cancer stage and tumor metastasis but not primary
tumor size. Interestingly, radical operation can significantly
decrease the level of circulating MDSCs in CRC patients (76,
85). Moreover, the proportion of PMN-MDSCs and immature
MDSCs (I-MDSCs) was found to be higher in the tumor tissues
of CRC patients compared to tumor-adjacent tissues (86).

In a recent study, CD33+ MDSCs and Yes-associated protein 1
(YAP1) were identified as predictors for the prognosis of CRC
patients. This study demonstrated that CD33+MDSCs numbers and
YAP1 expression levels were increased in tumor tissues compared
with those of tumor-adjacent tissues from the same CRC patients
(87). Furthermore, CD33+CD11b+HLA-DR−/lowmyeloid cells were
shown to be expanded in the peripheral blood of CRC patients,
with the number of circulating MDSCs positively correlating with
December 2020 | Volume 10 | Article 610104
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poor prognosis and low survival rates (88). In addition, a lower
lymphocyte-to-monocyte ratio (LMR) was associated with poor
prognosis in CRC patients, who were found to have higher levels of
circulating MDSCs (89). Unresectable metastatic CRC patients
with high M-MDSCs levels in their peripheral blood were also
shown to have a significantly shorter progression-free survival (90).
Interestingly, it was proven that although Tregs, Th17, and PMN-
MDSCs were significantly increased in metastatic CRC, only high
levels of PMN-MDSCs were associated with a poor prognosis for
CRC patients (91).

Signaling Pathways for MDSCs-Mediated
Functions in CRC
The immunosuppressive function of MDSCs relies on the
activation of different intracellular signaling pathways. Many
studies indicate that MDSCs-associated signaling pathways are
involved in CRC development. KRAS mutations, for example,
are frequently observed in human CRC and correlate positively
with tumor aggressiveness and metastasis (92–94). KRAS-
mediated repression of interferon regulatory factor 2 (IRF2)
was associated with high expression of CXCL3, which led to
MDSCs migration to the TME through binding to CXCR2 on the
MDSCs (95). Receptor-interacting protein kinase 3 (RIPK3) is
essential for mucosal repair in CRC. It has been reported that
reduction of RIPK3 in CRC cells induces expansion of MDSCs
and increases cyclooxygenase-2 (COX-2) expression, which then
catalyze PGE2 and enhance MDSCs function (96). Similarly,
RIPK3 signaling in an I-MDSCs subset promoted intestinal
tumor development in MC38 cell tumors by expanding IL17-
producing T cells (97).
Frontiers in Oncology | www.frontiersin.org 5
It has been suggested that down-regulation of mucin 1
(MUC1) in hematopoietic cells increases MDSCs expansion in
inflammatory bowel disease (IBD) leading to the development of
CRC (98). Moreover, MUC13 promotes colitis-associated
colorectal tumors development through the b-catenin signaling
pathway and increases MDSCs expansion in the TME (99). In
addition, MDSCs can increase the expression levels of ROS and
NO, which may result in DNA damage and promote tumor
progression in CRC (100). Previous studies have also
demonstrated that CRC cells secrete VEGF-A, which leads
to TAMs induction and subsequent production of chemokine
(C-X-C motif) ligand 1 (CXCL1) in the primary tumor.
Increased CXCL1 in liver tissue was shown to recruit CXCR2-
positive MDSCs to form a premetastatic niche in CRC (101). In
addition, overexpression of CXCR4 has been found to play a crucial
role in the invasion of CRC, as well as promoting the epithelial–
mesenchymal transition (EMT) and infiltration of MDSCs in
colonic tissue, accelerating colitis-associated and Apc mutation-
driven colorectal tumorigenesis (102). Recently, Varun Sasidharan
Nair et al. reported some genes associated with histone deacetylases
(HDAC) activation, DNA methylation, Wnt and IL-6 signaling
pathways are upregulated in CRC tumor infiltrating I-MDSCs, and
propose that they could be exploited as potential targets for CRC
therapy (86).

The JAK/STAT pathway is considered to be a major player in
mediating immunosuppression (103, 104). MDSCs isolated from
the spleen of CT26 cell-bearing mice exhibited inhibition of
phosphorylation of STAT1 (p-STAT1) in response to IFN-a or
IFN-g (105). However, another study demonstrated that IFN-g
is not a key regulator of MDSCs and that targeting it would be
FIGURE 1 | Main mechanisms of immunosuppression function mediated by MDSCs in the tumor microenvironment.
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unlikely to alter MDSCs accumulation or function in tumor-
bearing mice (106). It has been reported that IL-6 activates
expansion of MDSCs via the JAK2/STAT3/NF-kB signaling
pathway, resulting in AOM/DSS-induced colon tumor
development in G protein subunit alpha i1 (GNAI1) and
GNAI3 (GNAI1;3) double-knockout (DKO) mice (107). It has
also been shown that protease-activated receptor 2 (PAR2)
deficiency significantly promotes tumor development in the
AOM/DSS-induced colitis-associated colon cancer model
through accumulation of MDSCs and enhancement of their
immunosuppressive activity via STAT3-mediated ROS
production (108). Previous studies have demonstrated that G-
CSF could promote MDSCs’ survival and activation through the
STAT3 signaling pathway in a mouse colitis-associated cancer
model (109). Additionally, CCL2 was initially characterized as a
cytokine that was found to be increased in CRC tissues and
reported to enhance PMN-MDSCs’ function in a STAT3-
mediated manner (110). Xu et al. demonstrated that
sphingosine-1-phosphate receptor 1 (S1PR1) and STAT3 are
elevated in human CRC tissues and propose that they recruit
MDSCs through the S1PR1–STAT3–IL-6 axis to promote tumor
growth and liver metastasis niche (111). In addition,
STAT6 appears to promote expansion of MDSCs and
contributes to intestinal tumor progression in ApcMin/+ mice
(112). Finally, S100A8/A9 is another pro-inflammatory
molecular that activates the STAT3 signaling pathway, which is
responsible for maintaining the MDSCs suppressive
function (113).

Of significance, a highly hypoxic environment leads to the
accumulation and activation of MDSCs in CRC development.
Hypoxia within the TME is associated with increased V-domain
Ig suppressor of T-cell activation (VISTA) expression, which
promotes MDSCs function. VISTA is highly expressed in the
CRC microenvironment, while both VISTA and HIF-1a activity
were found to be increased in a cohort of CRC patients (114).
Notably, malignant tumors can potentially recruit MDSCs from
the bone marrow by releasing exosomes. Previous studies have
shown that hypoxia can induce MDSCs to secrete more
exosomes in a HIF-1a dependent manner (115). The exosomal
contents can reprogram the target cell and increase mobility of
MDSCs to the tumor sites. Inhibition of S100A9 was found to
Frontiers in Oncology | www.frontiersin.org 6
suppress the susceptibility of mice to AOM/DSS-induced colitis-
associated colon cancer (116).

Targeting MDSCs in CRC Therapy
The safety and efficacy of using MDSCs inhibition as a CRC
therapy have been evaluated in an increasing number of studies
(Table 2). Here we summarize novel preclinical approaches
targeting MDSCs in CRC (Figure 2). Current treatments aim
to deplete MDSCs, inhibit their immunosuppressive function,
and block their expansion to the tumor site (128). Several studies
have proved that depletion of the number of MDSCs and
inhibition of their function in tumor tissue are an important
strategy for CRC therapy. For example, targeting MDSCs with
all-trans-retinoic acid (ATRA) has been shown to decrease their
number and suppress their function in tumor bearing mice
(117). Consequently, ATRA may consider being a novel
immunotherapeutic protocols to target CRC in the future.
Similarly, histamine dihydrochloride (HDC), a NADPH
oxidase 2 (NOX2) inhibitor, has also been shown to inhibit
tumor progression by reducing the accumulation of tumor
MDSCs in MC-38 cell-bearing mice (118). Embelin (2,5-
dihydroxy-3-undecyl-1,4-benzoquinone) is a non-peptidic
small molecule inhibitor of X-linked inhibitor of apoptosis
protein (XIAP). Wu et al. found that embelin can significantly
reduce the accumulation number of MDSCs in the peripheral
lymphoid organ and tumor tissue, and impair the
immunosuppressive function of MDSCs by reducing the
production of ROS and arginase-1 level in colitis-associated
tumorgenesis (119). Naringin (4′,5,7-trihydroxyavanone-7-
rhamnoglucoside), a major flavanone glycoside that occurs
naturally in citrus fruits, inhibits the severity of colitis
and CRC development through regulation of the MDSCs’
immunosuppressive function via the NF-kB/IL-6/STAT3 axis
in colorectal tissues (120).

Recruitment of tumor MDSCs is dependent on the receptor
tyrosine kinase CSF-1R. Thus, inhibition of CSF-1R signaling
can significantly block the number of tumor-infiltrating MDSCs
number and enhance anti-tumor T cells responses in tumor
bearing mice (121). In addition, blocking the immunosuppressive
function of MDSCs can be achieved by targeting anti-G-CSF
monoclonal antibody. Treatment with an anti-G-CSF
TABLE 2 | Summary of preclinical studies analyzing the role of MDSCs in CRC and therapeutic agents.

Mouse models Cells lines Therapeutic agents Targets Ref.

C57/BL6 mice MC38 cells all-trans-retinoic acid (ATRA) – (117)
C57/BL6 mice and Nox2-KO mice MC38 cells Histamine dihydrochloride (HDC) NOX2 (118)
C57BL/6 mice – Embelin XIAP (119)
C57BL/6 mice – Naringin – (120)
Balb/c mice CT26 cells CSF-1R kinase inhibitors (PLX647 and PLX5622) CSF-1R (121)
C57/BL6 mice and SCID mice – anti-G-CSF mAb G-CSF (109)
C57BL/6 mice MC38 cells anti-DC-HIL mAb DC-HIL (122)
Balb/c mice CT26 cells Curcumin – (123)
Balb/c mice CT26 cells TLR7/8 agonist, R848 TLR7/8 (124)
C57BL/6 mice,CCR2−/− and CCL2−/− mice MC38 cells anti-CCR2 mAb CCR2 (125)
Balb/c mice and C57BL/6 mice CT26 cells and MC38 cells anti-IL-6 mAb IL-6 (126)
Balb/c mice CT26 cells (-)-4-O- (4-O-b-D-glucopyranosylcaffeoyl) quinic acid (QA) PI3Kd/g (127)
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monoclonal antibody reduces MDSCs accumulation and
decreases the migration, proliferation, and functional
maintenance of MDSCs and could therefore become a potential
therapeutic agent for colitis-associated cancer (109). Previous
results have indicated that DC-HIL+MDSCs are expanded in
the blood of metastatic CRC patients. Since, anti-DC-HIL mAb
treatment can suppress the function of MDSCs isolated from
treated mice, functionally blocking DC-HIL on MDSCs could
also be potentially beneficial in the treatment of metastatic
CRC (122).

Other treatments include the induction of MDSCs
differentiation alone or in combination with radiotherapy,
chemotherapy, surgery or other kinds of immunotherapy to
target CRC (129). Curcumin has been shown to inhibit the
expansion of MDSCs, activate STAT3 and NF-kB in MDSCs,
and polarize MDSCs toward a M1-like phenotype in CT26 cell-
bearing mice (123). Recently, the TLR7/8 agonist R848, as a
new immunologic adjuvant, was found to reverse the
functional orientation of MDSCs towards M1 macrophages,
suggesting that R848 may be a potential immunologic adjuvant
in chemotherapy for oxaliplatin-resistant CRC (124). It has
been reported that treatment with anti-CCR2 antibody can
alleviate radiation-induced MDSCs infiltration in CRC tumor
tissues by activation of the STING pathway (125). Hence, anti-
CCR2 antibody treatment may improve radiotherapy for
advanced CRC patients. A previous study indicated that
IL-6 induces strong immunosuppression in the CRC
microenvironment by recruiting MDSCs and impairing
Frontiers in Oncology | www.frontiersin.org 7
T cells infiltration. Interestingly, an anti-IL-6 and anti-PD-L1
combination treatment prolonged tumor-bearing mouse
survival, providing a novel strategy to overcome anti-
PD-L1 resistance in CRC (126). In addition, blocking the
immunosuppressive function of MDSCs can also be achieved
by targeting phosphatidylinositol 3-kinase (PI3K)d/g. Hence,
(-)-4-O-(4-O-b-D-glucopyranosylcaffeoyl) quinic acid (QA),
a selective small molecule inhibitor of PI3Kd/g, has the
ability to reshape the tumor immune microenvironment and
promote responses to anti-PD-1 treatment in a colon tumor
model (127).

While there is an abundance of preclinical data supporting
the theory that suppression of MDSCs could be a beneficial
therapeutic tool. Several clinical studies have also indicated that
inhibition of MDSCs is beneficial to CRC patients. Metastatic
CRC patients treated with a first-line combination regimen of 5-
FU, oxaliplatin, and bevacizumab (FOLFOX-bevacizumab) were
associated with a better survival outcome. Furthermore, the
FOLFOX-bevacizumab treatment was found to decrease the
PMN-MDSC population in metastatic CRC patients (91).
While docosahexaenoic acid (DHA) has been shown to inhibit
caspase-1 activity in 5-fluorouracil (5-FU) treated MDSCs, a
negative relationship between the DHA content in plasma and
the induction of caspase-1 activity in MDSCs of CRC patients
treated with 5-FU-based chemotherapy has been reported (130).
Thus, these data provide new insights into the regulation of DHA
and its potential benefit in 5-FU-based chemotherapy for CRC
patients. Previous studies demonstrated that CD38 is a
FIGURE 2 | Novel strategies to target MDSCs in CRC.
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transmembrane receptor–ectoenzyme expressed by MDSCs in
esophageal cancer and multiple myeloma (131, 132).
Interestingly, a significant expansion of CD38+M-MDSCs were
observed in PBMCs of CRC patients when compared with
healthy donors, and CD38+M-MDSCs frequencies were
significantly higher in CRC patients who had previously
received any form of cancer treatment (surgery, chemotherapy
or radiotherapy, targeted therapy, or a combination of these
methods) when compared with treatment-naive patients (133).
This study supported a method to target M-MDSCs with an anti-
CD38 monoclonal antibody could be a valuable therapeutic tool
for the treatment of metastatic CRC patients.

Immune Checkpoints
Growing evidence suggests that the immunosuppressive
microenvironments in tumors result from the activation of
MDSCs, PD-1/PD-L1 and cytotoxic T lymphocyte-associated
antigen-4(CTLA-4) pathways (134). PD-1 has been found to
bind to its ligand PD-L1 and then induce T cell anergy and
apoptosis (135). CTLA-4 is another receptor expressed on the
surface of T cells, which inhibits T cells activities by competing
with CD28 to bind to the two T cell activation antigens, CD80
and CD86 (136). PD-1 and CTLA-4 are immune checkpoint
proteins expressed on activated T cells (Figure 3). Blocking PD-
L1 or CTLA-4 signaling has been shown to be beneficial for
cancer patient survival. MDSCs express high levels of PD-L1, and
this upregulation of PD-L1 has been associated with expression
of S100A9 and HIF-1a (69, 137). It has been indicated that PD-
L1 expression on MDSCs is increased in CRC patients and colon
tumor bearing mice, suggesting that it may be a potent mediator
of immunosuppression function (138, 139). Furthermore, PD-
L1+MDSCs were significantly decreased after neutralization of
IFN-g in the TME (139). Interestingly, PD-L1+MDSCs are
significantly increased in HCC patients, while M-CSF and
Frontiers in Oncology | www.frontiersin.org 8
VEGFA have been shown to induce PD-L1+MDSCs in vitro
(140). Compared to responding patients, PMN-MDSCs also
expressed high levels of PD-L1 in non-responding melanoma
patients treated by ipilimumab (141).

Several studies found that MDSCs and other molecules such
as PD-L1 and CTLA-4 in tumor tissues are sensitive predictive
markers for patients’ response to chemoradiotherapy for rectal
cancer patients (142). In the latest study, it was demonstrated
that blockade of CXCR2 on MDSCs can overcome resistance to
anti-PD-1 therapy in CRC-expressing oncogenic KRAS (95).
Similarly, MDSCs elimination can reverse resistance to anti-PD-
L1 or combination of normo-fractionated radiotherapy plus
immunotherapy in CRC (143). Moreover, HDC can reduce the
accumulation of intratumoral MDSCs in colon tumor-bearing
mice and improve the anti-tumor efficacy of the PD-1/PD-
L1 checkpoint blockade (118). Interestingly, IL-6 blockade was
also reported to reverse the anti-PD-L1 resistance and inhibit
CRC growth by reducing the number of MDSCs (126). MUC13-
deficient mice have fewer MDSCs and are sensitive to anti-PD-
L1 therapy, suggesting that MUC13 may be useful for in the
treatment of colitis-associated cancer (99). Additionally, it has
been revealed that treatment using an anti-KIT monoclonal
antibody in a mouse colon cancer model enhanced the anti-
tumor activity of anti-CTLA-4 and anti-PD-1 therapy by
selectively reducing the MDSCs population (144).

Several studies have shown that the increasing number of
TAMs in tumor correlates with favorable 5-year overall survival
(OS) for CRC patients (145, 146). Increased M2 macrophage
numbers in the TME promote the initiation and growth of
tumor. However, few strategies are currently available to
modulate TAMs by repolarizing the M2 macrophages to
become M1 macrophages. A recent study demonstrated that
PD-L1+ T cells can engage PD-1+ macrophages, inducing an
alternative M2-like program, which have effects on adaptive
FIGURE 3 | The expression of PD-L1 in MDSCs causing T cell anergy via binding to its respective receptor.
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antitumor immunity (147). In addition, Wang et al. showed that
CD30L deficiency promote the accumulation of MDSCs,
increase the expression of PD-L1 on MDSCs and TAMs, and
enhance immunosuppressive function in an AOM/DSS-induced
CAC model, suggesting that CD30L/CD30 signaling could be a
potential candidate target for immunotherapy in CAC (148).
CONCLUSIONS

In conclusion, numerous studies have documented the
important role of immunosuppressive MDSCs in CRC
development in mice and cancer patients. During CRC
progression, MDSCs-mediated immunosuppressive activity is
regulated by many different signaling pathways. MDSCs
promote CRC progression by increasing cell proliferation,
cancer stemness, enhancing tumor invasiveness and metastasis.
Given that the mechanisms controlling expansion and activation
of MDSCs in tumor tissues or in the peripheral blood are
distinct, it is difficult to devise a therapeutic approach to
reduce their numbers or arrest their function. Furthermore,
monotherapies targeting MDSCs have shown promising but
limited efficacy. Thus, it is important to elucidate novel
mechanisms involving different stromal components and
Frontiers in Oncology | www.frontiersin.org 9
myeloid cells such as cancer associated fibroblasts (CAFs),
TAMs and neutrophils. Further studies are required to
strengthen the knowledge about MDSCs and to better
understand the effects in combination with other therapies
involving different immunotherapeutic approaches for
CRC therapy.
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