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The G protein-coupled bile acid receptor (GPBAR1) has been recognized as a promising

new target for the treatment of diverse diseases, including obesity, type 2 diabetes,

fatty liver disease and atherosclerosis. The identification of novel and potent GPBAR1

agonists is highly relevant, as these diseases are on the rise and pharmacological

unmet therapeutic needs are pervasive. Therefore, the aim of this study was to develop

a proficient workflow for the in silico prediction of GPBAR1 activating compounds,

primarily from natural sources. A protocol was set up, starting with a comprehensive

collection of structural information of known ligands. This information was used to

generate ligand-based pharmacophore models in LigandScout 4.08 Advanced. After

theoretical validation, the two most promising models, namely BAMS22 and TTM8,

were employed as queries for the virtual screening of natural product and synthetic

small molecule databases. Virtual hits were progressed to shape matching experiments

and physicochemical clustering. Out of 33 diverse virtual hits subjected to experimental

testing using a reporter gene-based assay, two natural products, farnesiferol B (27) and

microlobidene (28), were confirmed as GPBAR1 activators reaching more than 50%

receptor activation at 20µM with EC50s of 13.53µM and 13.88µM, respectively. This

activity is comparable to that of the endogenous ligand lithocholic acid (1). Seven further

virtual hits showed activity reaching at least 15% receptor activation either at 5 or 20µM,

including new scaffolds from natural and synthetic origin.

Keywords: GPBAR1, TGR5, pharmacophore, virtual screening, natural product, triterpene

INTRODUCTION

The G protein-coupled bile acid receptor 1 (GPBAR1), also commonly named M-BAR or
Takeda G-protein-coupled receptor 5 (TGR5), is a rhodopsin-like G protein-coupled receptor
(GPCR) expressed in various tissues. It is primarily present in the bile duct, digestive system,
spleen, and placenta. It is a cell-surface receptor comprising an extracellular N-terminus, an
intracellular C-terminus and seven trans-membrane helices connected by intra- and extracellular
loops. Its endogenous ligands are bile acids and neurosteroids. The binding pocket is predicted
to be located between the trans-membrane helices. Next to the transcription factor farnesoid
X receptor (FXR), GPBAR1 was the second receptor discovered to be responsive to bile acids
(Maruyama et al., 2002; Kawamata et al., 2003; Keitel et al., 2010; Gertzen et al., 2015).
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In the past decade, this receptor has attracted attention as
a potential drug target for a variety of pathologic conditions
(Hodge and Nunez, 2016), predominantly because GPBAR1
is a key receptor in the adjustment of energy expenditure
and glucose metabolism with possible implications for the
treatment of obesity and type 2 diabetes. Its activation in
enteroendocrine L-cells leads to the release of the incretins
peptide tyrosine tyrosine (PYY) and glucagon like peptide
1 (GLP1), which promote insulin secretion in the pancreas
and are important in the suppression of appetite (Woods
and D’Alessio, 2008; Bala et al., 2014). GPBAR1 activation in
pancreatic cells leads to an enhanced insulin secretion and a
recovery of β-cell mass and function switching from glucagon
to GLP1 (Kumar et al., 2012, 2016). In striated myocytes and
brown adipocytes, GPBAR1 activation leads to thyroid hormone
activation. In white adipocytes it mediates remodeling into
beige cells and improves mitochondrial dynamics and cellular
respiration rate (Watanabe et al., 2006; Velazquez-Villegas et al.,
2018). Moreover, endothelium- and liver-protecting, as well as
immunosuppressing effects offer perspectives for new therapies
for diseases like atherosclerosis and inflammatory liver diseases
(Keitel et al., 2007, 2008; Keitel and Haussinger, 2011; Pols et al.,
2011; Asgharpour et al., 2015). Unusual for GPCRs, the GPBAR1
seems to only transfer signaling via G proteins and not via
β-arrestins (Jensen et al., 2013).

In animal trials, GPBAR1 agonists showed promising results,
however, difficulties have also been encountered since GPBAR1
agonists may induce itching and gallbladder extension (Vassileva
et al., 2006; Alemi et al., 2013). Interestingly, gallbladder
extension upon GPBAR1 activation is mainly caused by smooth
muscle relaxation via induction of the cAMP–PKA pathway
independent of the agonist scaffold (Lavoie et al., 2010; Li
et al., 2011). The plethora of GPBAR1-mediated biological
functions appears to be an obvious opportunity, but a major
drawback at the same time (Vassileva et al., 2006; Alemi et al.,
2013; Hodge and Nunez, 2016). Novel agonistic scaffolds may
incorporate a different and possibly more favorable side effect
profile in terms of receptor and functional selectivity as well
as pharmacokinetic properties. In this sense there is a demand
for new GPBAR1 ligands as they may help to cope with
pharmacologically unmet therapeutic needs against metabolic
diseases.

Beside bioassay-guided fractionation of plant extracts (Sato
et al., 2007), bioisosteric replacement (Park et al., 2014), and
exploitation/lead optimization of bile acid scaffolds (Pellicciari
et al., 2009), previous efforts in the discovery of GPBAR1
modulators have focused on high throughput screening
(HTS) (Evans et al., 2009; Herbert et al., 2010; Londregan et al.,
2013; Martin et al., 2013) leading to a broad range of agonists of
which some are depicted in Figure 1.

Chenodeoxycholic acid (CDCA, 3) is a primary bile acid,
which activates both GPBAR1 and the nuclear receptor FXR.
By bacterial dehydroxylation, CDCA is transformed into the
more potent lithocholic acid (LCA, 1). The bile acid’s potency on
GPBAR1 can be further increased by conjugation with glycine
or taurine, whereas taurine-conjugated lithocholic acid (TLC)
is the most potent endogenous ligand (Sato et al., 2008). Lead

optimization of the bile acid scaffold led to INT-747 (4), an
approved drug for the treatment of primary biliary cholangitis
and dual agonist of GPBAR1 and FXR as well as INT-777 (2), a
more selective GPBAR1 agonist (Pellicciari et al., 2009; Fiorucci
et al., 2014; Floreani and Mangini, 2018). Beside bile acids,
several secondary plant metabolites activate this receptor (5-8).
The antidiabetic effect of e.g., Olea europaea L. leaves may be
linked to GPBAR1 activation by its major constituent oleanolic
acid (6) (Sato et al., 2007). Moreover, HTS and extensive SAR
efforts gave access to a large range of synthetic compounds
activating this receptor in the nanomolar and low micromolar
range (9-12).

Absence of a crystal structure of GPBAR1 forced researchers to
rely either on homology models or ligand-based approaches for
in silico studies, as this is the case for most GPCRs (Peeters et al.,
2011; Vaidehi et al., 2014). Several GPBAR1 homology models
have been described up to now. They all represent fundamentally
different bile acid binding poses, but none of them is able to
cover all results from mutagenesis studies (Macchiarulo et al.,
2013; D’Amore et al., 2014; Gertzen et al., 2015; Yu et al., 2015).
This prompted us to develop a ligand-based approach using
pharmacophore modeling for the identification of new GPBAR1
agonists.

Pharmacophore modeling and subsequent virtual screening
(VS) is a well-established method in the early drug discovery
process showing some important benefits: (1) pharmacophore
screening can retrieve ligands with structurally diverse
scaffolds and allows for so called “scaffold-hopping”; (2) it
can automatically and rapidly filter large compound libraries;
(3) ligand-based pharmacophore VS has been able to retrieve
satisfactory results, also without structural information on the
target (Evers et al., 2005; Ha et al., 2015; Akram et al., 2017).
Here, we report on the construction of two ligand-based 3D
pharmacophore models, their in silico and in vitro validation,
and the directed discovery of sesquiterpene coumarins as a new
class of potent GPBAR1 agonists.

MATERIALS AND METHODS

Software
The generation of pharmacophore models, their subsequent
refinement and VS was performed with LigandScout 4.08
Advanced, available by Inte:Ligand GmbH (Wolber and
Langer, 2005). The conformational libraries for both
pharmacophore modeling and the VS process were created
with i:Con, LigandScout’s implemented conformer generator
(Friedrich et al., 2017). Shape comparison was performed
with OpenEye’s ROCS 3.2.1.4 (Hawkins et al., 2007; OpenEye,
2016). 2D structures were drawn with ChemDraw Professional
15.0.

Data Sources
For model generation in LigandScout, structural data of GPBAR1
ligands with bioactivity annotations were collected. The data for
GPBAR1 available in the ChEMBL database was extracted on
March 15th 2016. It consisted of 24 different publications with
623 reported EC50 values (Bento et al., 2014). The reliability of the
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FIGURE 1 | Chemical structures of examples for GPBAR1 agonists.

content was checked with the original literature. This molecule
set was extended by extracting data from another 18 publications,
24 patents and previous in house projects, resulting in a total of
1025 activity annotations.

Decoy Set
For the experimental validation of pharmacophores, next to a
set of active molecules, also a set of inactive molecules and/or
a set of decoys is necessary (Schuster et al., 2006). In contrast
to true inactives, which are molecules reported in the literature
not to be active at the target, decoys are hypothetical structures,
which are unlikely to show activity at the target, but have not
yet been tested experimentally. Due to the shortage of published
negative data and therefore the presence of only a small set of
reliably tested inactive compounds, a set of decoys was generated
using the Dude decoys database (http://dude.docking.org/): 338
molecules from the “High Actives” dataset was submitted to the
DUDE decoy online generator (Mysinger et al., 2012) to obtain
decoys with similar 1D physicochemical properties but dissimilar
2D topology in comparison to the active compounds. Using
this strategy, a “Decoy” set comprising 18 043 substances was
created.

Conformational Sampling, Ligand Set
Clustering
The “High Actives,” “Decoys,” and “True Inactives” sets were
transferred into multi-conformational databases via i:Con
with the default “BEST” settings [Timeout (s): 600, RMS
threshold: 0.8, energy window: 20.0, max. pool size: 4,000, max
fragment build time: 30, max number of conformers: 200].
The 338 compounds of the “High Actives” set were clustered
in LigandScout 4.08 using the implemented pharmacophore
clustering tool. The tool clusters molecules with similar
pharmacophore characteristics in the dataset: It generates
pharmacophores for each molecule in the dataset for a
desired number of conformations. The similarity of these
pharmacophores is measured with the cosine similarity (value
between 0 and 1) of their radial distribution function score
(RDF) vectors. Options, distance 0.9 and cluster distance
calculation method “maximum” with three conformations for
each molecule, were used.

Pharmacophore Generation
With LigandScout pharmacophores can be generated as
shared or merged feature pharmacophores. A shared feature
pharmacophore only appoints common features observed
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during 3D alignment of the validation set molecules. A merged
feature pharmacophore merges several shared pharmacophores.
Features, which are not shared by the whole validation set, are
appointed as optional. The initial pharmacophore model for
cluster 7 was built as a shared feature pharmacophore with six
molecules as templates using “pharmacophore fit and atom
overlap” as the scoring function. The initial model for cluster
12 was built as a merged feature pharmacophore with four
molecules as templates using “pharmacophore fit and atom
overlap” as the scoring function. The models were refined and
theoretically validated until favored theoretical performance was
achieved.

Theoretical Validation
For theoretical validation, the scoring function was set to
“pharmacophore-fit,” the screening mode to “match all query
features” with maximum number of omitted features zero. To
assess the performance of the individual models, the resulting
hit list were used to calculate common enrichment metrics, as
comprehensively outlined in a review by Seidel and coworkers
(Seidel et al., 2010).

Virtual Screening
Several freely available molecular structure databases
were deployed for VS, having a strong focus on NP. The
conformational libraries were generated with i:Con (Friedrich
et al., 2017). Depending on the size of the database the
recommended “BEST” or “FAST” settings were used (Table 1).
For VS, the same settings were used as in the theoretical
validation, although the retrieval method “get best matching
conformation” was used.

Hit List Prioritization
A principal component analysis using the chemGPS online
tool (Larsson et al., 2007) was determined and a hierarchical
cluster analysis with SIMCA facilitated the assignment of the
compounds into 9 groups, each inhabiting a different chemical
space. For clustering, the default Ward’s minimum variance
agglomerative clustering algorithm for the quantitative first three
chemGPS principal components, PC1, PC2, and PC3, were used.
A molecule’s size, polarizability and shape are characterized by
PC1, while PC2 describes its aromatic and conjugation-related
properties and PC3 corresponds to its lipophilicity, polarity, and
hydrogen bond (HB) capacity. Shape-focused VS was performed
with Open Eye ROCS to retrieve a TC score, which combines a
shapematching with a chemistry alignment Tanimoto score. This
scoring function assesses the goodness of the alignment between
the query and the candidate molecules. ComboScore puts
exactly equal weights on both of its components, a shape-based
scoring function and a function considering pharmacophore-like
chemical pattern matching. Theoretically, the TC score can lie
between 0 and 2 (Hawkins et al., 2007; OpenEye, 2016). The
best fitting conformation of 13 derived from the alignment with
model BAMS22was used as query with the ROCS default options.
The PAINS filters of the FAF-Drugs 4 online tool were applied to
identify potential promiscuous hitters.

In Vitro GPBAR1 Activity and Statistical
Analysis
In vitro evaluation of the selected hit list was performed
with a reporter gene-based luciferase assay in HEK 293T cells
(obtained from ATCC, USA), which was described previously
(Ladurner et al., 2017). Cells were grown and maintained in

TABLE 1 | Screened databases with content type (origin of molecules) and size (number of molecules), their source and the used standard settings for conformer

generation with i:Con.

Database Number of molecules Type Source Settings

Analyticon-MEGx 4,355 NPs Analyticon http://www.ac-

discovery.com/

Best settings

Analyticon-Triterpenes 409 NPs Analyticon http://www.ac-

discovery.com/

Fast settings

Drugbank 6,863 Approved/

trialed drugs

DrugBank 4.5 http://www.

drugbank.ca/

Fast settings

In house database

Department of

Pharmacognosy;

University of Vienna

1,152 NPs In house (Update 2016) Fast settings and best

settings

NPDB 115,275 NPs (Rollinger et al., 2004) Fast settings

NuBBE 1,628 NPs (Valli et al., 2013) http://

nubbe.iq.unesp.br/portal/

nubbedb.html

Best settings

SPECS NP 871 NPs SPECS http://www.

specs.net/

Fast settings

SPECS SC 212,446 Synthetic

compounds

SPECS http://www.

specs.net/

Fast settings

TCM-Taiwan 35,993 NPs (Chen, 2011) http://tcm.

cmu.edu.tw/

Fast settings
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Dulbecco’s modified eagle medium (DMEM) without phenol
red with 10% heat-inactivated fetal bovine serum (FBS),
4.5 g/L glucose, 2mM glutamine, 100 U/mL benzylpenicillin,
and 100µg/ml streptomycin. During the experiments, charcoal-
strippedmediumwith 5% FBS was used. 6× 106 cells were grown
in 15 cm dishes for 19 h and then transiently transfected using the
calcium phosphate method with 5 µg of a GPBAR1 expression
plasmid and 5 µg of a CRE-Luc plasmid. For later normalization,
3 µg of an EGFP expression plasmid was co-transfected. Control
experiments were performed with cells transfected only with 3µg
EGFP and 5µg CRE-Luc plasmids. After 6 h, transfected cells
were reseeded to 96 well plates (5× 104 cells/well) and incubated
with 5µM and 20µM compound dilutions, respectively, for
18 h. 0.1% DMSO served as vehicle control and 10µM LCA
as positive control. After incubation the medium was removed,
and the plates were immediately frozen at −80◦C. Plates were
kept frozen for at least 1 h to facilitate lysis and measurements
were performed in the following 10 days. For the measurement,
cells were thawed, lysed and transferred to black 96-well plates.
After addition of ATP and luciferin, emitted luminescence and
fluorescence was measured with a Tecan Infinite 200 PRO
plate reader (Tecan, Austria). GPBAR1 activity was expressed
as fold activation compared with the solvent control (0.1%
DMSO) or as % activation compared to the positive control
10µM LCA (arbitrary 100% activation). The measured relative
luciferase units (nRLU) were normalized to the transfected
cell mass expressed as EGFP-derived relative fluorescence units
(RFU) from at least three independent experiments (mean
values ± standard error mean) performed in quadruplicate.
Quantified EGFP-derived fluorescence was used as an indicator
for transfected cell mass and thus used to assess the compounds’
cytotoxicity. Compounds, which resulted in significantly lower
RFU values than the control, were considered as cytotoxic. For
statistical analysis GraphPad Prism 4.03 was used. Statistical
significance was assessed by One Way ANOVA and Bonferroni
post-test (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ns not significant).
Non-linear regression was used to calculate EC50 values with the
sigmoidal dose response (variable slope) settings.

Compounds and Chemicals
Hederagenin (CAS#465-99-6) and bayogenin (CAS#80368)
were ordered from Phytolab (Germany). 2,3-O-isopropylidenyl-
euscaphic acid (CAS#220880-90-0) was ordered from Proactive
Molecular Research (USA). Phytolaccoside B (CAS#60820-
94-2) and euscaphic acid (CAS#53155-25-2) was purchased
from Cambridge Chemicals (USA). Phytolaccagenic acid
(CAS#54928-05-1) and 16-dehydropregnenolone (CAS#1162-
53-4) were obtained from Carbosynth (UK). Spironolactone
(CAS#52-01-7) and methylhyoxycholate (CAS#2868-48-6) were
purchased from TCI Deutschland GmbH (Germany). The
screening compounds (CAS#1019061-83-6, CAS#303139-94-
8, CAS#330636-58-3, CAS#353253-76-6, CAS#353779-79-0,
CAS#432530-00-2, CAS#444931-63-9, CAS#496937-29-2,
CAS#791840-52-3, CAS#902244-06-8, CAS#915930-57-3,
CAS#932954-51-3, CAS#352644-32-7, CAS#500218-51-9,
CAS#314757-83-0, CAS#380633-89-6, CAS#26179-09-9,
CAS#664993-86-6, CAS#525577-20-2) were obtained from

SPECS (Netherlands). Microlobidene (CAS#89783-66-4)
and farnesiferol B (CAS#54990-68-0) were available from a
previous project (Rollinger et al., 2008). Nordihydroguaretic acid
(CAS#500-38-9) was purchased from Fluka (Switzerland). The
positive controls LCA (CAS#434-13-9) and CDCA (CAS#474-
25-9) were obtained from Sigma Aldrich (Austria). Alphitolic
acid (CAS#19533-92-7), was obtained by hydrolysis from a
previously isolated saponin (Mair et al., 2018). The purity was
checked using UPLC-PDA-MS and determined as ≥ 98% for
compounds 20, 21, 23, 24, 28, 30-35, 37, 40, 41, 44-46, 48, 49,
and 52. For all other compounds it was between 90 and 98%.
MS and NMR data of all in house compounds (27, 28, 52) are
provided in the literature (Rollinger et al., 2008; Mair et al., 2018)
and the Supplementary Information (Supplementary Figures
4–10).

Cell Culture Reagents and Plasmids
DMEM, L-glutamine, benzylpenicillin and streptomycin were
purchased from Lonza, (Switzerland), FBS, and trypsin were
obtained from Gibco via Invitrogen (Austria). The GPBAR1
transcript variant 3 (NM170699) plasmid was obtained from
Origene via Biomedica (Vienna, Austria). The CRE-Luc plasmid,
(pGL4.29[luc2P/CRE/Hygro), luciferase assay system and used
lysis buffer were ordered from Promega (Germany) and the
EGFP (pEGFP-N1) plasmid was purchased from Clontech
(USA).

RESULTS AND DISCUSSION

Workflow
The workflow of this study is divided into 3 levels, as depicted
in Figure 2: (1) Literature search for the compilation of a
database of known GPBAR1 actives and inactives to be split
and used as pharmacophore training set and a validation set for
theoretical validation; The generation of a pharmacophore model
collection with LigandScout and the subsequent theoretical
validation. (2) VS of multi-conformational databases consisting
of structures of natural and synthetic compounds (Table 1) using
the two most promising models as queries; Evaluation of the hit
list applying shape-based screening and physicochemical space
clustering of virtual hits. (3) Selection of 33 virtual hits and
their experimental validation in a HEK 293T cell based luciferase
assay.

Pharmacophore Modeling
A pharmacophore model is the abstract three dimensional
representation of the molecular interactions between a target
and a ligand structure, which is reduced to a collection of
steric and chemical features that are necessary to trigger a
desired pharmacological effect. The quality of a ligand-based
pharmacophore model strongly relies on the selection of training
set molecules. Therefore, it is mandatory to strictly select only
highly potent activators for the training and validation sets
(Seidel et al., 2010). In the case of GPBAR1, available bioactivity
data were not only obtained by different working groups, but
also with different cellular assays. This raised concerns about
direct data comparison among the used assays. Only ligands
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FIGURE 2 | Workflow of model generation, VS and experimental validation.

FIGURE 3 | Databases used for the generation and validation of the pharmacophore models: Molecules with reported or measured GPBAR1 agonistic activity were

gathered into a comprehensive “Database”. Compounds with low or not assignable bioactivities were discarded. The “High Actives” dataset was grouped into 12

clusters using LigandScout’s pharmacophore clustering tool. The two best-performing models were derived based on training sets from clusters 7 and 12. The

clusters were further used to generate validation sets for corresponding models.

tested clinically or with a reported activity, which was proven
to be both potent and directly comparable to respective positive
controls, were therefore used in this study. Subsequently, 428

of 815 compounds had to be discarded. The remaining 338
compounds formed the “High Actives” dataset. 49 compounds
were categorized as “True Inactives.” The data handling used
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as basis for the generation of the ligand-based phamacophore
models is illustrated in Figure 3.

A pharmacophore model built of several query compounds
binding at different ligand binding sites to the target protein
would clearly distort the quality of such a model and
devastate its predictive power. Therefore, the “High Actives”
dataset compounds were divided into 12 clusters using the
pharmacophore clustering tool implemented in LigandScout.
Cluster 1 was discarded as it only consisted of one compound.
The remaining 11 clusters contained between 11 and 80
molecules and were separated each into test and validation
set.

Out of the retrieved 11 cluster sets, 12 pharmacophore
models were generated. Altogether, in parallel screening, these
models were able to predict 275 of 338 compounds (81%) in
the “High Actives” database as true positives. However, a high
number of false positives were retrieved, when the models were
screened against the “Decoys” and “True Inactives” databases.
This resulted in poor metrics of this entire model collection’s
enrichment factor (EF = 11.22). Two models, which were
based on the pharmacophores of natural products, showed
promising metrics and were selected for the prospective VS and
experimental validation. The first model, BAMS22, was based
on a training set of 6 molecules (depicted in Figure 4) resulting

from cluster 7. They had been selected for covering nearly the
whole physicochemical space and for incorporating most of the
structure-activity information contained in cluster 7. BAMS22
was used for VS of the “Decoys”/“True Inactives” (n = 18.112)
databases and the cluster 7 validation set (n= 20), which resulted
in a specificity of 1 (0.998785) and a sensitivity of 1, achieving an
EF of 823.3. Along with the molecules from cluster 7, the potent
ligand TLC from cluster 12 was retrieved as highly ranked virtual
hit.

The BAMS22 model consists of two mandatory hydrophobic
features, two mandatory HB acceptor features, an optional
HB donor, an optional hydrophobic, and an optional
negatively ionizable feature, as well as a rigid exclusion
volume coat. In agreement to the TLC binding predictions and
experiments of Gertzen and coworkers (Gertzen et al., 2015), our
pharmacophore model, although not based on the homology
model’s input information, depicts a very similar interaction
pattern (Figure 5). Gertzen stated that the 3-hydroxyl moiety
of TLC forms a HB to E169 and Y240, the sulfonic acid group
forms a salt-bridge to R79 and hydrophobic interactions appear
with L244. All of these statements were underlined with alanine-
scanning experiments and are in accordance with our model.
The model also suggests a second important HB interaction
with the C-24 carboxamide group of TLC (Figure 5C), as well

FIGURE 4 | Chemical structures of training compounds for the generation of the pharmacophores BAMS22 (blue molecules) and TTM8 (green molecules).
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as with the C-24 hydroxyl group of 14, or in the case of 16
with the C-20 keto group. The hydrophobic interactions were
placed where hydrophobic alignment was possible. Although the
model showed a very high specificity, it only consisted of four
mandatory pharmacophore features, two HB accepting and two
hydrophobic features, a widespread pattern of pharmacophore
features. Therefore, not only steroid-like structures can putatively
be retrieved in the prospective VS.

It is questionable whether triterpenes and bile acids share
the same binding mode, as it was not possible to generate a
restrictive pharmacophore model incorporating both scaffolds,
although the binding modes appear to be very similar. It is likely
that they have a different binding mode within the same binding
position. Therefore, it was preferred to explain the steroidal
structures with two highly specific local models and not with
a single global model. It has previously been acknowledged
for the identification of cyclooxygenase inhibitors that a set of
highly specific local models leads to lower false positive hit

rates, compared to one pleiotropic global model (Schuster et al.,
2010).

The second model, TTM8 is based on a training set of 4
molecules (Figure 4) from cluster 12. The model consists of 4
mandatory hydrophobic, two mandatory HB acceptor features,
and a mandatory negatively ionizable feature (Figure 5). TTM8
was theoretically validated against the set of “Decoys”/”True
Inactives” datasets (n = 18,112) and the cluster 12 validation set
(n = 16), and showed a specificity of 1 and sensitivity of 0.81,
achieving an EF of 919.5.

Genet and co-workers (Genet et al., 2010) were the first
evaluating the SAR of triterpenes on the GPBAR1 receptor. They
concluded that essential features for agonistic activity are a 3α-
hydroxyl group, a carboxyl group in position 17α, and a rigid
pentacyclic scaffold, in the best case a lupane backbone with
high lipophilicity. Further publications regarding triterpenes are
scarce, although some have shown higher selectivity over FXR
and higher potency on the GPBAR1 than bile acids. Therefore,

FIGURE 5 | Representation of the pharmacophore model BAMS22 aligned to TLC in 3D with exclusion volume spheres (A), without exclusion volumes (B) and in 2D

(C). Depiction of TTM8 aligned to oleanolic acid (6) in 3D with exclusion volume spheres (D), without exclusion volumes (E) and in 2D (F) The gray spheres in A,D

depict so-called exclusion volumes reflecting steric hindrances. The colored spheres represent the pharmacophore features, explained at the bottom, whereby

opaque spheres represent mandatory features and spheres with light shading optional ones. In the 2D graphs (C,F), HB features are illustrated as dashed arrows,

hydrophobic features as yellow circles and negatively ionizable features as red marks with red bolts attached.
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TABLE 2 | Results of the experimental validation of the virtual hits tested at 5µM and 20µM, the pharmacophore fit score (PF), the TC score (calculated in OpenEye

ROCS with 13 as a query), the model with which they were predicted and their underlying database.

Compound Database predicted by

BAMS22

predicted

by TTM8

PF score TC score Activity (at 5µM) Activity (at

20µM)

20 SPECs X 45.31 0.873 2.34% (± 1.40) 1.74% (± 1.36)

21 SPECs X 56.55 0.913 Not evaluable neither at 5µM nor 20µM, due to

cytotoxic properties

22 SPECs X 46.23 0.703 1.42% (± 1.39) −0.06% (± 0.39)

23 SPECs X 56.31 0.720 1.69% (± 1.01) 11.00% (± 4.15)

24 SPECs X 46.23 0.703 4.75% (± 1.51) 6.12% (± 2.01)

25 SPECs X 45.24 0.627 1.16% (± 0.35) 0.70% (± 0.54)

26 SPECs X 45.08 0.701 0.47% (± 1.82) 0.58% (± 0.89)

27 In house X 46.39 0.737 4.70% (± 1.99) 60.85% (± 20.05)

28 In house X 56.72 0.726 5.07% (± 1.36) 83.81% (± 12.00)

29 SPECs X 46.23 0.783 1.54% (± 0.91) 1.65% (± 0.69)

30 SPECs X 47.83 0.860 −0.60% (± 0.36) 0.92% (± 0.67)

31 SPECs X 46.32 0.806 −0.31% (± 0.38) 0.88% (± 1.69)

32 SPECs X 57.09 0.877 3.00% (± 0.58) 19.45% (± 6.00)

33 SPECs X 56.50 0.801 0.98% (± 1.13) 1.00% (± 0.18)

34 SPECs X 65.59 0.773 −0.02% (± 0.14) 9.27% (± 2.62)

35 SPECs X 46.2 0.777 −0.06% (± 0.44) 3.10% (± 0.46)

36 SPECs X 46.15 0.821 1.07% (± 0.10) 0.34% (± 0.18)

37 SPECs X 46.28 0.838 0.33% (± 0.63) 3.87% (± 1.89)

38 SPECs X 45,25 0.810 1.67% (± 2.54) Not evaluable at

20µM, due to

cytotoxic

properties

39 SPECs X 46.14 0.774 2.63% (± 0.69) 2.45% (± 1.42)

40 In house X 46.16 0.783 −0.13 (± 0.31) 1.72% (± 0.90)

41 NPDB X 65.87 0.664 3.73% (± 2.99) 4.35% (± 1.28)

42 TCM-DB X 73.71 0.662 3.76% (± 1.67) 8.78% (± 3.87)

43 NPDB X 73.16 0.815 3.23% (± 0.86) 26.28% (± 2.18)

44 NPDB X 73.41 0.779 3.45% (± 4.66) 22.19% (± 15)

45 NPDB X 55.93 1.222 5.20% (± 2.42) 22.58% (± 0.74)

46 drugbank X 46.71 0.938 12.80% (± 6.60) Not evaluable at

20µM, due to

cytotoxic

properties; at 15

µM: 17.34% (±

0.91)

47 NPDB X 56.19 0.954 Not evaluable neither at 5µM nor 20µM, due to

cytotoxic properties

48 NPDB X 68.54 1.611 1.13% (± 0.77) 23.22% (± 5.29)

49 In house X 72.75 0.896 1.99% (± 1.07) 12.08% (± 6.51)

50 In house X 73.53 0.897 12.69% (± 5.33) 35.95% (± 2.37)

51 In house X 72.75 0.864 −1.39% (± 1.17) Not evaluable at

20µM, due to

cytotoxic

properties

52 In house X 73.88 0.822 29.79% (± 10.79) Not evaluable at

20µM, due to

cytotoxic

properties

Vehicle control (0.1% DMSO) 0%

LCA (1) (10µM) 100%

CDCA (3) (50µM) 66.69% (± 8.72)
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a cherry-picking pharmacophore model, highly sensitive to these
pentacyclic triterpene acids, was created. It can be considered
as a highly suitable filtering tool with a high applicability in
in silico assisted NP research as previously reported e.g., for
pharmacological profiling of secondary metabolites or target
identification of NPs (Schuster, 2010; Waltenberger et al., 2011;
Grienke et al., 2015; Kratz et al., 2016).

Prospective Virtual Screening and Hit
Selection
A prospective VS was performed with the two pharmacophores
against over 350,000 molecules from nine different databases
(Table 1). After removing duplicates, 1,069 virtual hits were
obtained and clustered according to physicochemical diversity
into 9 groups (Figure 6). As obvious from Figure 6, groups 1 and
2 differ from the other groups on a very early hierarchical level.
The main structural difference of these two groups compared
to the others is that they comprise synthetic compounds and
NPs with aromatic rings, more conjugated double bonds and
heteroatoms, while groups 3–9 consist of steroidal structures,
reaching from cardenolides, pregnanes, bile acids to steroids
and triterpenes. The most interesting molecules, in terms of
structural diversity, are found in groups 1 and 2, as they comprise
scaffolds dissimilar to the query molecules of the underlying
pharmacophore models.

For prioritization of virtual hits to be experimentally tested
a ranking was performed using shape-focused VS employing
the ROCS Tanimoto Combo (TC) score (Hawkins et al., 2007;
OpenEye, 2016). For this purpose best matching conformations
derived from the pharmacophore-based VS were aligned with
query molecule 13. Hit selection considered a high TC score,
but also compound availability in sufficient purity, and structural
variance. Finally, 33 compounds were subjected to experimental
validation (Table 2): 11 compounds had been clustered in

groups 4–9 (Supplementary Figure 3), 9 compounds in group
1 (Supplementary Figure 1), and 13 compounds in group 2
(Supplementary Figure 2).

Biological Evaluation
GPBAR1 activity of selected hits (Supplementary Figures
1–3) was determined in a reporter gene-based luciferase
assay performed in HEK 293T cells. This assay assesses the
upregulation of the cAMP-PKA-CREB pathway upon GPBAR1
activation and all conclusions are therefore limited to this
receptor pathway. Compounds were considered active when
they achieved at least 50% receptor activation. Compounds
reaching at least 15% receptor activation were counted as weak
activators. The response to 10µM LCA was set to 100% receptor
activation. Vehicle control with a final dimethylsulfoxide
(DMSO) concentration of 0.1% was set to 0% activation. Initially,
compounds were tested at 2 concentrations, i.e., 5µM and
20µM. From the 33 compounds, only two (47 and 50) were
cytotoxic in both concentrations tested. From the remaining
31 compounds, two showed significant activity with more than
50% receptor activation at 20µM and six further compounds
achieved more than 15% receptor activation either at 5µM
or 20µM (Table 2). Compounds 22, 24, 30, 34-36, and 41

were identified as potential pan-assay interference substance
(PAINS) but none of them showed activity in the experimental
validation. At 5µM, only one compound (52) achieved the
arbitrary threshold of 15% receptor activation. Spironolactone
(46) an approved drug for the treatment of heart failure, showed
17.3 % receptor activation at 15µM. Table 2 gives an overview of
the experimental results.

As a result of this screening, the sesquiterpene coumarins 27
and 28 were discovered to be potent activators of the GPBAR1
receptor, which corroborated the scaffold-hopping competence
of BAMS22. The two compounds are present in the gum resin

FIGURE 6 | Hit list clustering into 9 groups and chemical space analysis of virtual hits. Left: Hierachical cluster analysis dendrogram with Ward’s clustering technique

using the first three chemGPS (Larsson et al., 2007) calculated principal components (PC1, size; PC2, aromaticity; PC3, lipophilicity) as parameters. The linkage

distances were expressed as Euclidean distances. The height of the branches is similar to the distance of each node. Right: The chemical space analysis of the hit list

with molecules colored according to their groups. The position of each virtual hit is defined by its calculated chemGPS principal components.
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of Ferula assa-foetida L., used in central Asia as spice and
medicine. The concentration response curves for 27 and 28 were
determined and are shown in Figure 7. Compounds 27 and 28

were cytotoxic in transfected HEK cells at concentrations higher
than 27.5 and 22.5µM, respectively. Due to this limitation the
determination of Emax values could not be accurately determined
in this assay. Accordingly, the analyzed fold activations and
extrapolated EC50 values of 27 and 28 are limited to the
non-cytotoxic concentration-response range and may not be
completely accurate. Although limited by these constraints,
farnesiferol B (27) showed 10.54 ± 2.25 fold activation at 20µM

(60.85% ± 20.05) and an EC50 of 13.53µM. Microlobidene
(28) achieved 16.21 ± 1.64 fold activation at 20µM (83.81%
± 12.00) and an EC50 of 13.88µM. Whether the differences in
sigmoidal slopes of LCA (1) and the newly identified ligands 27
and 28 are due to different interaction modes warrants further
investigations. In the same assay the endogenous ligand CDCA
only reached a fold activation of 11± 1.05 at 50µM. The positive
control LCA (1) reached 18.59 ± 0.97 fold activation at 10µM
and 20.19 ± 3.77 at 30µM. The activity of compounds 27 and
28 can therefore be regarded as in the range of endogenous bile
acids.

FIGURE 7 | (A) Concentration-dependent increase of GPBAR1 activity in response to LCA (1), farnesiferol B (27) and microlobidene (28). HEK-293 cells were

transfected and stimulated as described in the Methods section. Luciferase activity was normalized to EGFP-derived fluorescence. Results are expressed as fold

induction compared with the solvent control (DMSO, 0.1%) as the mean with SEM of at least three independent experiments. The two highest concentrations of 27

are the mean of two independent experiments. GraphPad Prism’s non-linear regression with the sigmoidal dose response settings (variable slope) was used to

calculate curves. (B) Fold activation of compounds 1 (10µM), 27 and 28 (20µM) in comparison to vehicle control 0.1% DMSO in (left) GPBAR1 transfected cells and

(right) GPBAR1 untransfected cells. HEK 293T cells were transfected with GPBAR1, EGFP and CRE-Luc expression plasmids (left), or with EGFP and CRE-Luc

expression plasmids only (right). Cells were treated for 18 h with 20µM of 27 and 28 as well as 10µM LCA (1) as positive control and 0.1% DMSO as vehicle control.

Luciferase activity was normalized to EGFP-derived fluorescence. Results are expressed as fold induction compared with the solvent control (0.1% DMSO). All given

values are the mean of at least 3 independent experiments and the variance is given as SEM. Significance was evaluated with one-way ANOVA-Bonferoni post-test

(***p < 0.001; **p, < 0.01; ns, not significant vs. vehicle control).
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Many NPs are well-known PAINS or frequent hitters (Baell,
2016). In order to prevent such unintentional false-positive
results, the experiments with the two GPBAR1-activating NPs
have been repeated without transfecting GPBAR1. EGFP and
CRE-Luc plasmids have been transfected as usual with the
same concentrations. In these control experiments, none of the
compounds showed a significant increase in luminescence values.
In contrast to that, the increase in luminescence in GPBAR1
transfected cells in response to the positive control LCA (1), as
well as to compounds 27 and 28, was significant, confirming a
direct interaction with GPBAR1 (Figure 7).

CONCLUSION

The two presented 3D pharmacophore models have proven their
quality as VS queries, both theoretically and experimentally.
The combined computational and experimental efforts led to
the successful identification of novel GPBAR1 agonists with
unreported scaffolds derived both from nature (27 and 28)
and from synthetic origin (32). They not only enlarge the
chemical diversity of receptor activators, but can also be
promising starting points for SAR and further optimization. It
is also the first study reporting the activity of spironolactone
(46) on GPBAR1, highlighting the possibility that already
approved drugs may interact with GPBAR1. The elucidation
of the mechanism underlying the GPBAR1 activation by these
compounds may be an interesting starting point for further
research. The physicochemical clustering process enabled a
scaffold rich hit selection and a solid predictive power, with 6.5%
correctly predicted strong activators and 18.8% weak activators,
recommending the presented workflow for future works. The

study shows that the two models in combination are qualified
for their application in the future assessments of a molecules’
GPBAR1 activating profile, in particular for the assessment of
NPs, as the models comprise scaffolds that are widespread in
nature. This is particularly helpful for increasing our insight into
the molecular mechanism of traditionally used herbal remedies
with complex compositions of secondary metabolites. A fast
appraisal of their pharmacological profile can give direction
and fast-forward research (i.e., pinpointing most promising
constituents), alongside reducing expenses.
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