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Abstract

Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune
disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous
genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and
reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new
GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43
susceptibility loci, including 10 novel associations. Assisted by dense genome coverage,
imputation provided evidence for missense variants underpinning associations in eight genes.
Other likely causal genes were established by examining associated alleles for cis-acting eQTL
effects in a range of ex vivo immune cells. We found an over-representation (n=16) of
transcription factors among SLE susceptibility genes. This supports the view that aberrantly
regulated gene expression networks in multiple cell types in both the innate and adaptive immune
response contribute to the risk of developing SLE.

SLE is a clinically heterogeneous disease with a strong genetic component, as demonstrated
by the tenfold increase in concordance rates between monozygotic and dizygotic twins?, and
familial aggregation (sibling risk ratio, As = 29)2. Since 2008, the field of SLE genetics has
been transformed by GWA3-8 and independent replication studies®:1%. However, while the
pace of discovery has been unprecedented, providing a richer understanding of lupus genetic
etiology, these findings were driven by modestly-sized GWA studies, utilizing 1,800
European patients®# and slightly fewer Asian cases®®; they therefore had limited power to
detect loci with relatively low odds ratios and/or minor allele frequencies!®. The size of our
study, coupled with a meta-analysis and replication study, has greatly increased the power to
detect susceptibility loci.

We genotyped 4,946 individuals with SLE and 1,286 healthy controls using the Illumina
HumanOmnil-Quad BeadChip. These data were combined with the genotypes of 5,727
healthy controls taken from the University of Michigan Health and Retirement Study (HRS),
genotyped using the Illumina HumanOmni2.5 BeadChip. Following quality control (QC)
analyses, our data comprised 4,036 SLE cases and 6,959 controls (1,260 controls mainly
from southern Europe genotyped using the Omnil-Quad chip and 5,699 controls from the
HRS cohort). The final SNP set comprised 644,674 markers that were present on both the
Omnil-Quad and Omni2.5 chips (see Online Methods). Four principal components were
used as covariates to correct for population structurel2.13, The genomic inflation factorl4.15
for our data, A10gg, was 1.02, with Agc = 1.16.

Our analysis strategy is described in detail in Online Methods, and is shown schematically in
Supplementary Fig. 1. This GWAS identified 25 loci (Table 1 and Supplementary Fig. 2a) of
genome-wide significance (P< 5 x 10708). Three of these associations are novel in SLE:
rs6740462 and rs3768792 on chromosome 2p14 and 2934, respectively and rs7726414 on
chromosome 5¢31.1.
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To validate these findings, and to search for additional susceptibility loci, we carried out a
meta-analysis of our GWAS results and those from an independent European SLE GWAS
comprising 1,165 cases and 2,107 controls (the Hom et a/* study). Each of the 25 loci
mapped in the original GWAS had genome-wide significant p-values in this meta-analysis
(Supplementary Table 1), and are therefore considered to be associated with SLE. We then
designed a replication study, with inclusion based on the meta-analysis of the two GWA
studies. At loci with no published association in SLE, we adopted a threshold for inclusion
of P< 2.5 x 10795, while for loci with previously reported associations the threshold was set
at P< 1 x 10794 (see Online Methods for rationale). The 33 SNPs with P-values meeting
these criteria were genotyped in our replication study (Supplementary Table 2), using a
custom panel that also included 53 ancestry informative markers (see Online Methods).
After applying QC measures, the replication data comprised 2,018 cases and 6,925 controls,
none of which had been included in either GWAS (see Online Methods).

Finally, we carried out a post-replication meta-analysis of the results of our GWAS, the Hom
et al. study and the replication study for those 33 SNPs, again applying the standard measure
of genome-wide significance. The 18 SNPs (over and above the 25 already mapped) with ~-
values < 5 x 10708 in this meta-analysis were also considered to be associated with SLE
(Table 1 and Supplementary Fig. 2b). In addition to the three novel loci mapped in the
GWAS, seven further variants, at loci hitherto not showing genome-wide significant
association in SLE, were mapped in the overall meta-analysis: rs564799 (3925.33),
rs3794060 (11913.4), rs10774625 (12q14.1), rs4902562 (14¢24.1), rs9652601 (7g32.1),
rs2286672 (17p13.2) and rs887369 (Xp21.2). The heritability explained by these 43
validated susceptibility alleles is 19.3% [95% C.I. 14.1-25.5%], where the total heritability
of lupus is estimated to be 66%16. This is a large increase on the 8.7% [5.33-12.96%]
reported by So et a/1’ in 2011 using the same measure.

We imputed both the main GWAS and Hom et a/. data to the density of the 1000 Genomes
(1KG) study!8 and re-analyzed the data (see Online Methods). While no additional loci were
identified, we did obtain stronger evidence in support of some loci, for example the signal at
the SPREDZ2locus, at which the most associated 1KG variant, rs268134, was strongly
replicated. In addition, the imputation enabled us to fine map associated loci and to
determine whether multiple signals were present (Supplementary Tables 3a and 3b). We
identified multiple independent association signals at the 7TANFSF4, STAT4 and /RF5 loci, as
well as five independently associated SNPs at the MHC (see below).

Given that the SNP with the smallest P-value is not necessarily the true causal variant, we
considered SNPs from the most associated to a defined cut-off as potentially causal in our
subsequent analyses. Specifically, guided by previous work on functional annotation? (see
Online Methods), the cut-off was defined as a Bayes Factor against the most significantly
associated SNP equal to 0.34. Any SNPs in this set that were missense variants were
considered more likely candidates than the most associated SNP. The results are summarized
in Supplementary Tables 3c and 4, listing candidate causal missense variants in PTPNZ22,
FCGRZ2A, NCF2, TNFAIP3, WDFY4, IRF7, ITGAMand TYK?Z.
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MHC polymorphisms, including SNPs and classical human leukocyte antigen (HLA) alleles,
have consistently been observed to be associated with SLE20. We imputed HLA alleles?! in
both the main GWAS and Hom ef a/. data, and incorporated them into our analysis of 1KG
imputed data across the MHC (see Online Methods). Of the five MHC SNPs we find to be
independently associated with SLE (Supplementary Tables 3a and 3b), the class 11 SNP in
SL.C44A4 (rs74290525) is the only association signal that is clearly independent of any
HLA alleles. We find that rs74290525 is significantly associated not only when conditioning
on each of the HLA genes separately, but even when conditioning on all 199 HLA alleles
(see Supplementary Tables 5a—¢), and is not in linkage disequilibrium (LD) with any HLA
alleles (R? < 0.1 with each HLA allele). We find that the best model for association includes
the HLA class | alleles B*08:01, B*18:01, the class Il alleles DQB1*02.:01, DRB3*02:00
and DQA*01.:02, and the class 111 SNP rs74290525, consistent with previous findings
suggesting multiple SLE associations at the MHC20 (Supplementary Tables 6a and 6b). LD
between the five MHC SNPs and HLA alleles on known SLE risk haplotypes can be seen in
Supplementary Table 6c.

In order to highlight potential causal genes at the susceptibility loci, the associated SNPs at
each of the loci were tested for correlation with ¢is-acting gene expression in ex vivo naive
CD4+ T cells, B cells, natural killer (NK) cells, and stimulated and resting monocytes22-24,
Figure 1 displays a heat map across cell types, showing genes exhibiting significant
differential expression in relation to the SLE associated alleles. We calculated Regulatory
Trait Concordance (RTC) scores?® (see Supplementary Figs. 3a and b) to test the
relationship between eQTLs driven by disease-associated alleles, and other, potentially
stronger eQTLs, which we identified at each locus. The ¢iseQTLs were distributed across
all cell types tested, some being common to all cell types, such as UBEZL3and UHRF1BP1,
while others are more cell specific: BLK in B cells and JAZFZin T cells. In general
directionality was consistent, although not in all cases: for example ABHD6 showed reduced
expression in monocytes and elevated expression in lymphocytes.

We note that some caution must be used when inferring causality, as the RTC score has a
uniform distribution and so setting an RTC score threshold of 0.9 for example, sets the type |
error rate to be 0.1. Furthermore, some low RTC scores were found in genes (e.g. UBEZL3)
where the associated allele resides in a region with strong LD, and the haplotype bearing the
associated allele shows robust evidence of functional effects on gene expression25. We
suggest that the gene expression analyses provide some support for likely causal genes, but
we note that proof of true causality through altered gene expression will only be elucidated
by additional experimentation.

We then integrated the results of these eQTL analyses and the coding variant analysis with
an /n silico survey of murine phenotype data resulting from targeting gene knockouts of
genes within the associated SLE loci (Table 2). At some loci, these lines of evidence point to
one likely causal gene: examples include /F/H1, LYST, WDFY4and BANKI. In other
instances, we found evidence that supports the role of multiple genes as candidates at a
given locus; for example, ABHD6 (an enzyme involved in the endocannabinoid pathway)
and PXK (a lymphocyte protein kinase)3 both exhibit correlation of their expression with the
associated SNP. Similarly, 7CF7 (coding a T cell transcription factor), implicated by the
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rs7726414 association, has been associated with type 1 diabetes?’; however, we show that
SKP1 (which encodes a protein involved in the regulation of ubiquitination), within the same
LD block exhibits a strong ¢/seQTL in monocytes and NK cells. rs9652601 resides within
CLECI16A, a gene previously reported in association studies in other autoimmune
diseases?8; we present evidence suggesting that SOCSI (Suppressor of Cytokine Signaling
1) is a causal gene at this locus in SLE rather than CLEC16A. Our analyses have the
advantage of including ciseQTLs based on ex vivo cells, rather than cell line data alone.
Nevertheless, we acknowledge the restricted range and activation states of immune cell types
available for eQTL analyses and the limited number of murine and other functional studies
performed on genes at the loci.

The 10 previously unmapped SLE loci (shown in bold type in Table 1 and Supplementary
Table 3a) encompass genes of diverse function. Those of note include /KZF2 (Helios),
which represents the third member of the Ikaros transcription factor family to be associated
with SLE (in addition to /KZF1 and /KZF3). The association signal in the phospholipase D2
(PLDZ2) is a missense variant (R172C), which may alter the function of the enzyme that
plays a role in leukocyte migration and apoptosis. The importance of I1L12, a cytokine that
plays a critical role in the generation of y-interferon from Th1 T cells and NK cells, is
highlighted by the association with /L12A (Table 1), and the suggestive associations at

/L. 12B and the locus encoding the IL12 receptor, /L 12RB2 (Supplementary Table 2).

In view of the sexual dimorphism of SLE, the novel X chromosome association revealed by
rs887369 is of note. We suggest that the gene CXorf21 is likely to be etiological. While the
function of this gene is unknown, it is among a limited set of genes that largely escape X-
inactivationZ. Sex chromosome dosage has been implicated in the genetic risk of SLE3C, We
observed an elevated prevalence of Klinefelter’s syndrome3! in male cases in our GWAS
compared with the general population (see Online Methods) strengthening the sex
chromosome dosage hypothesis. The only other gene close to rs887369 (Table 2) is GK
(glycerol kinase) which does not escape X-inactivation, supporting CXorf21 as a candidate
gene.

Five other genes (TN/IP1, IKZF1, ETS1, WDFY4and ARID5B) that we mapped are novel
in European SLE, but had been previously shown to be associated with SLE in Chinese
subjects®8. SLE is more prevalent in non-European populations — our data suggest that locus
heterogeneity among common genetic variants is unlikely to explain this differential
prevalence.

We present all of our principal findings in Fig. 2. This figure indicates ten likely missense
coding variants that contribute to SLE risk; these occur largely in genes encoding kinases
and other enzymes. It was noted that 16 of the genes shown are transcription factors, an
enrichment above the nine expected (P= 2.3 x 10795, 2 test). We studied the distribution of
the expression of these transcription factors in the ex vivoimmune cell types examined for
eQTLs; we found no evidence of skewed expression in any cell type. Our results suggest that
an important facet in future exploration of SLE pathogenesis will be detailed scrutiny of
trans eQTLs and regulatory expression networks in multiple immune cells.
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ONLINE METHODS

Data: genome-wide association study (GWAS)

We genotyped 4,946 SLE cases and 1,286 healthy controls using the Illumina
HumanOmnil-Quad BeadChip (1,140,419 markers). The genotyped controls were mostly
from southern Europe, matching our Spanish, Italian and Turkish cases with controls from
the same countries. We also used data for 5,727 previously genotyped controls taken from
the University of Michigan Health and Retirement Study (HRS). These subjects were
genotyped using the Illumina Human2.5M Beadchip (2,443,179 markers).

The clinical features of our GWAS cohort were documented on the basis of standard ACR
classification criteria. The experiment was designed to avoid batch effects to the greatest
extent possible. All DNA samples were sent to the laboratory at King’s College London,
UK, where the integrity of the DNA was checked. The GWAS samples were then genotyped
at a single laboratory. All data analysis was carried out in the laboratory at King’s College.

Genotyping for the GWAS was carried out using 82 plates, processed in 13 batches.
Duplicate samples taken from HapMap Phase 3 were added to each plate to check
genotyping quality. Case-control status and country of recruitment were randomized across
plates as far as possible, in order to avoid artifactual differences in genotyping between
plates affecting association statistics.

Our final dataset comprised genotyping of 644,674 SNPs for 4,036 SLE cases and 6,959
controls (1,260 controls of mainly southern European ancestry and 5,699 from the HRS).

Data: Hom et al. study

We analyzed data from a previous genome-wide association study of SLE (the Hom et al.
study), which comprised 1,165 cases following our QC analysis (see Supplementary Text).
We used a further 2,107 previously genotyped controls from the NIH CGEMS study, which
were genotyped using the lllumina HumanHap550 chip. Owing to the lower density of
genotyping, in some cases data imputed to the density of the 1000 Genomes (1KG) study
were used in the analysis of the Hom ef a/. study and the subsequent meta-analysis. Imputed
data are identified in tables.

Data: replication study

A cohort of 2,310 cases not included in any previous genetic study of SLE was genotyped
using a custom array. The largest group of samples was from the UK, followed by cohorts
from France, the USA, Germany and Canada.

The control data for the replication study comprised 3,672 subjects from the HRS cohort
(independent of those used in the GWAS), 3,102 subjects from a study of melanoma and
1,202 subjects from a study of blood clotting. These control data were genotyped using the
Illumina 2.5M chip. Following QC procedures (Supplementary Text), the final control
dataset comprised 6,925 individuals: 3,668 from the HRS, 2,889 from the melanoma study
and 368 from the blood clotting study. The final case dataset consisted of 2,018 samples.
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In some cases, SNPs identified by our GWAS as genome-wide significant were not present
in the replication control data (owing to absent genotyping in one of the three control sets
following QC), and so genotypes for those SNPs were imputed (see below). Again, we
identify these SNPs in our results tables.

Ethical approval

The UK subjects with SLE in the study were recruited with the study having obtained ethical
approval from the London Ethics Committee (MREC/98/2/06 and 06/MRE02/9). Individuals
were invited into the study and given information sheets as well as verbal explanations of
what the research entailed. For those individuals willing to participate informed written
consent was obtained. The recruitment in continental Europe and Canada were subject to
local review and ethical approval. Copies of the relevant supporting documentation were
sent to the investigators at King’s College at the commencement of the study.

Quiality control

Initial QC analysis of the genotype data was carried out in accordance with Illumina’s
Technical Note on Infinium Genotyping Data. /n sifico QC checks were carried out of:

. Individual missingness (3% threshold)

. SNP missingness (3% threshold)

. Identity-by-descent (IBD, 0.125 threshold)

. Population structure

. Minor allele frequency (MAF, 0.002 threshold)
. Autosomal heterozygosity

. X chromosome heterozygosity

. Y chromosome calling and homozygosity

. Hardy-Weinberg equilibrium (control data only)

IBD analysis included checks both within and across cohorts; no subject in the main GWAS
or Hom et al. study is related to any other subject in either cohort. We calculated principal
components for the GWAS data using the EIGENSTRAT algorithm'2, and derived the
empirical genomic inflation factor!3:69 for these data. As noted by Price and colleagues4,
the definition of genomic control means that Agc is proportional to sample size. We
therefore report Aqgqg, the inflation factor for an equivalent study of 1000 cases and 1000
controls!®70, in the main text, as well as Agc.

For the replication cohort, population structure was estimated using 46 ancestry informative
markers (following QC measures on these SNPs). As described in Supplementary Text, we
merged these data with HapMap data to help identify non-European samples. Again,
principal components were calculated using the EIGENSTRAT algorithm. 120 subjects that
clustered with the non-European HapMap populations were removed from the analysis.
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Klinefelter's syndrome

During QC analysis, we identified subjects in our GWAS cohort with abnormal karyotypes,
consistent with Klinefelter’s syndrome (47, XXY). Three of the 365 male cases in our main
GWAS have clinical and genetic data that confirm their status as Klinefelter’s sufferers
(Supplementary Text). Given that the prevalence of Klinefelter’s syndrome in the general
population is estimated to be 0.1 — 0.2%31, this estimate suggests an approximately four- to
eight-fold increase in prevalence compared with 46, XY males, consistent with Klinefelter’s
males and 46, XX females having a similar risk of developing SLE.

Analysis: association

All case-control analysis was carried out using the SNPTEST?1.72 algorithm; we use a
standard threshold of 2= 5 x 1078 for reporting genome-wide significance throughout. The
inverse variance method was used for meta-analysis. All markers were fully genotyped in
the main GWAS (i.e, no imputation was carried out). The imputation carried out for the Hom
et al. and replication studies, and fine mapping imputation, are described below.

For all SNPs at which we report a novel association with SLE, we compared allele
frequencies in the main GWAS controls with those in publically available control cohorts
(1KG European samples8, Wellcome Trust Case Control Consortium (WTCCC)
genotypes’3, TwinsUK samples, HapMap CEU population data, and sample genotypes from
the Knight laboratory expression data23). We tested for a statistically significant (. = 0.01)
difference in allele frequency between our GWAS and the public controls, using a 1 degree
of freedom x? test of allele frequencies. One SNP failed this test (rs1439112, MGATS5) and
was removed from further analysis. In three further cases, the difference in allele frequency
strengthened our observed association. These data are presented in Supplementary Table 7.

Annotation of results

Gene names listed in results tables were identified by overlaying GWAS results onto the
UCSC Genome Browser. We adopted a threshold based on linkage disequilibrium: for each
SNP, we noted the set of markers with R2 > 0.75 with respect to the SNP of interest (Table
2).

Post hoc QC

Checks carried out following case-control analysis included examination of plots of raw
genotype intensity; this was of particular relevance given the increase in the numbers of
relatively rare variants due to the higher density of genotyping (as with imputation, genotype
calling is by definition more difficult for rarer variants). We checked that the intensity plots
showed clusters of genotypes (i.e., homozygotes or heterozygotes) that were compact and
well discriminated. This check was also carried out with stratification by QC group. Plots of
intensity were examined for each associated SNP, and for all of the SNPs in the replication
study.
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Analysis: replication study chip design

We selected SNPs for the replication study based on the results of the meta-analysis of the
two GWA studies. At loci with no known association in SLE, we adopted a threshold of P=
2.5 x 10795, while for loci with previously reported associations the threshold was set at 2=
1 x 10794, This followed the methodology used in Box 1 of the WTCCC study of seven
common diseases’3. This declared SNPs as associated if the posterior odds of association
were greater than 10. In that study, the assumption was made that 10 detectable genes were
present, so the prior odds of a true association would be in the order of 100,000:1, assuming
1,000,000 independent regions in the genome. Based on the autoimmune genetics literature,
we have assumed that there are likely to be as many as 500 genes associated with SLE. We
have required posterior odds in favour of a SNP being associated to be >1 (as opposed to
>10, which would be advisable if declaring an association rather than choosing SNPs for
replication). This gives a P-value threshold of 2.5 x 10795, For SNPs at loci with previously
published SLE associations, we have reduced our threshold for inclusion in the replication
study to £=1 x 10794, This is because a prioriwe believe these SNPs are more likely to be
at susceptibility loci than those with no evidence of association, increasing the prior odds by
at least a factor of 4.

Analysis: 1000 Genomes (1KG) imputation

For imputation, both the main GWAS and the Hom et a/. data were pre-phased using the
SHAPEIT algorithm”, and then imputed to the density of the 1KG study using
IMPUTE"172 y2.2.3. Only markers with an IMPUTE INFO score > 0.7 were used in
analysis. For SNPs identified in our GWAS as genome-wide significant at which data were
absent in the replication study controls, we imputed over a +/— 1Mb region around the SNP
of interest.

1KG data were used both to fine map loci and to determine whether multiple signals were
present. For this analysis, we carried out a meta-analysis of 1KG imputed GWAS and Hom
et al. data. Association testing was performed on the 1KG data within a 1 Mb window of the
reported SNP. For the MHC, we included the complete 8 Mb region (26-34 Mb) in our
analysis. To scan for further independent signals, association tests were performed including
the genotype data for the most highly associated SNP as a covariate. If secondary signals
were found to be associated by this analysis (with a ~-value threshold of 5 x 10708) and odds
ratios were consistent across the single marker and conditional analyses, the secondary
signals were reported as independent associations.

In order to address the problem that the most associated (lead SNP, marker with the lowest
p-value) variant is not necessarily the best candidate as the true causal variant, we
considered markers from the most associated down to a defined cut-off. The cut-off was
defined as a Bayes Factor (BF) against the most associated SNP equal to 0.34. This was
derived from assuming a prior odds of causality for a non-synonymous SNP equal to 3,
taken from an empirical analysis of GWAS annotation1®75. Any SNPs above this BF cut-off
that were missense variants were declared as more likely candidates than the most associated
SNP: assuming that the prior odds of a missense SNP (being causal) against a non-missense
SNP to be equal to 3, any missense SNP with a BF > 0.34 will have a posterior odds > 1 and
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will therefore have a higher posterior probability than the most associated marker (if the
most associated marker is non-missense). Therefore we searched for functional variants
within a set of markers where inclusion in this set required a maximum Bayes factor (BF) >
0.34 between the marker and the most associated SNP in the 1KG imputed data. We
considered any marker that had a BF > 0.34 with respect to the most associated marker, and
noted whether any had functional effects. We calculated an approximate BF following
Wakefield’®, using a prior distribution on effect size (odds ratio) that was proportional to
MAF (as rare variants are believed to have large effects, while common variants are believed
to exert small effects). The BF threshold implies that we believe associations with functional
variants, such as missense variants, three times more (say) than intergenic variants that do
not correlate with gene expression. We then calculated posterior model probabilities
following Maller et al.”?, but with prior odds of 3 between missense SNPs and non-missense
SNPs; Maller et al. use a uniform prior on all model probabilities (all SNPs are considered to
have equal weights a priori, and therefore the prior odds are 1). We present these results in
Supplementary Table 4 where we also, separately, display SNPs with a BF > 0.1 (as a strict
threshold of 0.34 does not reflect the uncertainty in prior odds of causality and BF
estimates). We also calculated the BF between SNPs presented in Table 1 and the SNPs
listed in Supplementary Table 3a and declared that the marker for association had changed if
the BF was greater than 10 (equal to “strong” evidence on the Jeffreys’ scale’8). These SNPs
are annotated in Supplementary Table 3a.

Analysis: the MHC and HLA alleles

We included imputed HLA alleles in analysis of the MHC, allowing us to determine the
most likely model of association within this region. HLA imputation was performed using
HLA*IMP V221 using genotyped SNP data. To determine the best model for association
within the HLA alleles alone we ran forward stepwise regression. We then tested the five
SNPs listed in Supplementary Tables 6a—c for association, conditional on the HLA alleles.
To test whether each of the five SNPs was independent of the HLA alleles (rather than just
the alleles in the best HLA model), we carried out a test conditional on all alleles (i.e., the
HLA alleles were used as covariates) in each HLA gene, and for all HLA alleles over all
genes. We used a significance threshold at each stage of the stepwise regression of P=5 x
10795, which is a Bonferroni adjustment for 204 tests (199 HLA alleles and 5 SNPs), with a
familywise Type | error rate of 0.01.

Analysis: gene expression data

Gene expression data were obtained from three sources: firstly, we obtained data from
Fairfax et a/2223 and unpublished data from Fairfax and Knight for NK cells, naive
monocytes, monocytes stimulated by LPS (harvested after 2 hours and 24 hours), IFN and B
cells. Secondly, we interrogated the Genevar database for LCL eQTL results, taking results
from the MUTHER resource’®. The CD4 (CD4 T cells) and CD14 (CD14/16 Monocytes)
data were obtained from a previous study of gene expression in immune related cells?. An
adjustment was made for multiple testing using a Bonferroni correction, by counting the
number of tests across all loci for genes within +/~1MB of the SLE associated SNP. With a
familywise test size of 0.01, the P-value threshold was 1.41 x 10795,
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To test whether observed associations between SNPs and expression levels of cis-acting
genes were purely due to chance, we calculated the RTC score?® for all SNP-gene eQTL
results displayed in the heat map (Figure 1). This tests the null hypothesis that the GWAS
associated SNP and the best eQTL (within a recombination hotspot) are tagging two
separate effects, and the observed eQTL is purely due to the LD between the GWAS
associated SNP and the “true” eQTL SNP. For our data, we were interested in the
distribution of RTC scores, given that eQTL results were generated in multiple cell types.
Not all eQTLs were consistently present across all these cells. We therefore plotted the RTC
scores against the —logg P-values supporting each ciseQTL in all cell types (Supplementary
Figures 3a and 3b). Supplementary Figures 3a and 3b show that three genes were outlying:
ITGAM in two cell types, and UBEZL3and PLDZ2in CD4 cells. However, we have strong a
priori evidence of a true causal effect on expression by polymorphisms around UBEZ2L 38
For /TGAM, we note the low RTC scores in Figure 1, which includes all eQTL data for
ITGAM given that the results are convincing for the eQTL in LPS stimulated monocytes (P
=2.67 x 10719 and RTC = 0.85). We have removed the declaration of an eQTL for PLD2.
Supplementary Figure 4 displays a heat map for these data using a #statistic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Hgat map for c/s-acting gene expression RTC scores from ex vivo cells. The heat map
includes all genes with evidence of cis-regulatory (+/— 1Mb) action by SLE associated SNPs
in at least one cell type. The color represents a signed-RTC-score: a positive score indicates
that the associated allele in the GWAS is positively correlated with gene expression; a
negative score indicates that the associated allele in the GWAS is negatively correlated with
gene expression. We set the RTC score to zero if the P-value for association was > 0.001.
Colors represent the RTC-scores as follows: blue, RTC < -0.9 (GWAS risk allele reduces
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expression); green, RTC < —0.5 (GWAS risk allele reduces expression); yellow —0.5 < RTC
< 0.5; orange, RTC > 0.5 (GWAS risk allele increases expression); red, RTC > 0.9 (GWAS
risk allele increases expression). A white block indicates that data were not available for this
cell type (see Supplementary Figure 4 for results on lymphoblastoid cell lines), either
because the probe data failed QC or the probe was not present in the experiment platform.
Clustering was performed on cell types, including only genes with data observed for all cell
types (i.e., missing data did not inform cell clustering). Genes were clustered using all
available data across cells (missing data were not included when determining distance
between pairs of genes if eQTL results were not observed for one of the pairs).
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FLIL

Summary of functional role of likely causal genes in SLE and other autoimmune diseases.
The concentric rings in the figure show several layers of evidence to support the functional
annotation of likely causal genes for SLE listed in Table 2. The genes are illustrated
clockwise in chromosomal order with the grey arcs delineating those loci for which several
genes are implicated. Inner Ring 1 - the gene’s functional category, taken from Ingenuity
Pathway Analysis; Middle Ring 2 - the presence of a cis-acting eQTL (Figure 1) and/or
coding variant and Innermost Ring 3 - the number of autoimmune diseases (excluding
SLE) in Immunaobase - Type 1 diabetes (T1D), Celiac disease (CEL), Multiple Sclerosis
(MS), Crohn’s Disease (CRO), Primary Billiary Cirrhosis (PBC), Psoriasis (PSO),
Rheumatoid Arthritis (RA), Ulcerative Colitis (UC), Ankylosing Spondylitis (AS),
Autoimmune Thyroid Disease (ATD), Juvenile Idiopathic Arthritis (JIA), Alopecia Areata
(AA), Inflammatory Bowel Disease (IBD), Narcolepsy (NAR), Primary Sclerosing
Cholangitis (PSC), Sjogren's Syndrome (SJO), Systemic Scleroderma (SSc), Vitiligo (VIT) -
previously reported to be associated with the gene.
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