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ABSTRACT: The exponentially increasing number of protein and nucleic acid
sequences provides opportunities to discover novel enzymes, metabolic
pathways, and metabolites/natural products, thereby adding to our knowledge
of biochemistry and biology. The challenge has evolved from generating
sequence information to mining the databases to integrating and leveraging the
available information, i.e., the availability of “genomic enzymology” web tools.
Web tools that allow identification of biosynthetic gene clusters are widely used
by the natural products/synthetic biology community, thereby facilitating the
discovery of novel natural products and the enzymes responsible for their
biosynthesis. However, many novel enzymes with interesting mechanisms
participate in uncharacterized small-molecule metabolic pathways; their
discovery and functional characterization also can be accomplished by leveraging
information in protein and nucleic acid databases. This Perspective focuses on
two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme
Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence−function space in
protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome
neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been
adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural
products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow
the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.

In 2001 Patricia Babbitt and I discussed nature’s strategies for
divergent evolution of new enzymatic functions from a

common progenitor to yield mechanistically diverse enzyme
superfamilies (conserved active site architectures that catalyze
reactions with shared partial reactions, intermediates, or
transition states) and functionally diverse suprafamilies (con-
served active site architectures that catalyze mechanistically
distinct reactions).1 When our review was published, only a few
superfamilies/suprafamilies had been recognized, including the
enolase, amidohydrolase, thiyl radical, enoyl-CoA hydratase
(crotonase), vicinal-oxygen-chelate superfamilies, and the
orotidine 5′-monophosphate (OMP) decarboxylase suprafamily,
not surprising because the UniProt database then contained only
571 804 protein sequences (July 2001) (http://www.uniprot.
org/; see Table 1 for a summary of abbreviations). Despite, in
retrospect, a meager number of sequences, we concluded that
enzymologists were positioned to expand their interests beyond
studies of single enzymes to encompass entire enzyme families.
We proposed that sequenced genomes (1) provided a rapidly
expanding source of new proteins for investigation and (2)
allowed genomic context to be used to infer novel enzymatic
functions and, therefore, better understand the evolution of
functional diversity in enzyme superfamilies. We suggested the
term genomic enzymology to describe the expansive strategy of

using protein families and genome context to focus studies of
enzyme mechanisms, discover new functions, and more
accurately describe the evolution of enzyme function in
molecular terms (sequence and structure). However, we did
not propose how the protein and genome sequence databases
could be leveraged and used by the experimental community.
Sixteen years later, the UniProt database contains 88 588 026

nonredundant sequences (Figure 1; Release 2017_07); the
number of sequences is increasing at the rate of 2.4% per month
(doubling time 2.5 years), largely the result of microbial genome
projects. The challenge is to devise “user friendly” methods to
interrogate the massive amount of data so that hypotheses can be
generated that direct experimental determination of in vitro
activities and in vivo metabolic functions of uncharacterized
enzymes. For example, 379 mechanistically diverse superfamilies
and functionally diverse suprafamilies have been described;2

additional superfamilies and suprafamilies must be present in (1)
genomic “dark matter” that has not been curated by databases
such as Pfam and (2) the genomes of phylogenetically diverse
bacterial species that have not yet been systematically
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sequenced.3 This large, and growing for the foreseeable future,
set of superfamilies includes members that catalyze novel
reactions in novel pathways, a boon to enzymologists.

Approximately 50% of the proteins in the databases have
incorrect, uncertain, or unknown functional annotations.4 The
UniProt Knowledgebase (UniProtKB) is composed of two
sections, UniProtKB/SwissProt and UniProtKB/TrEMBL. The
annotations in UniProtKB/SwissProt are manually curated; the
functional annotations in UniProtKB/TrEMBL are computa-
tionally assigned based on the function of the “closest”
homologue. In the most recent UniProt release (2017_07),
only 0.63% of the sequences are in the UniProtKB/SwissProt
section (Figure 1); this fraction continues to decrease because
the total number of sequences added in each release greatly
exceeds the number of new sequences with SwissProt-curated,
experimentally verified annotations. In principle, curated
annotations might be extended to orthologues; however, the
sequence boundaries between functions are unknown, so
homology-based approaches for functional assignment are
risky. Therefore, incorrect, uncertain, or unknown annotations
will continue to propagate, compromising their utility to allow
the discovery of new enzymatic functions, metabolic pathways,
metabolites, and biology.
Khosla recently summarized this challenge:5 “Although

enzymology will remain a predominantly experimental science
for the foreseeable future, one cannot avoid a sense of
helplessness when one considers the huge (and growing) deficit
in functionally annotated sequences. By now, there are
approximately 100 million nonredundant protein sequence
entries in GenBank, but a reliably curated protein database
such as SwissProt contains fewer than 1 million entries. This is a
quintessential ‘big data’ problem, where the rate at which data is
generated continues to outpace the rate at which it is curated. It is
unlikely that more resource-intensive curation alone can solve
the problem. As the proverb says, this may be a situation where
the most desirable approach will involve user-friendly tools that
teach a novice how to fish instead of serving fish. Such tools could
ideally capture the essence of an enzymologist’s judgment in
layers of increasing sophistication, depending on the user’s actual
needs.”
This Perspective describes “genomic enzymology” web tools

that initially were developed by the Enzyme Function Initiative
(EFI)6 and provides examples of their applications.

Web Tools for Natural Product Discovery. In parallel
with the development of genomic enzymology, the natural
products community discovered that genes encoding biosyn-
thetic pathways for natural products often are organized in
“biosynthetic gene clusters” (BGCs).7−9 Given the structural
complexity of natural products and the need to identify the
enzymes that assemble their backbones, e.g., terpene synthases,
nonribosomal peptide synthases (NRPSs), and polyketide
synthases (PKSs), as well as the enzymes that catalyze “tailoring”
reactions, e.g., glycosylases, methylases, and redox enzymes, the
genomic colocalization of the biosynthetic genes facilitates
pathway discovery and experimental characterization. Although
the type of scaffold may be apparent from the annotations in the
BGCs, the structure of the natural product is not trivial to predict.
Indeed, many enzymes (backbone-forming and tailoring) are
novel members of diverse enzyme superfamilies. Nonetheless,
the discovery of a BGC facilitates enzyme identification so that
they can be experimentally tested for sequential activities in the
biosynthetic pathway.
The number of natural products is estimated to be extremely

large;10,11 therefore, identification of BGCs is an attractive
strategy for their discovery. In the past several years,
bioinformatic tools have been developed for discovering BGCs

Table 1. List of Abbreviations

ABC ATP-binding cassette

AGeNNT Automatically Generates refined Neighborhood NeTworks
antiSMASH Antibiotics & Secondary Metabolite Analysis SHell
BGC biosynthetic gene cluster
BLAST Basic Local Alignment Search Tool
DSF differential scanning fluorimetry
DUF domain of unknown function
EFI Enzyme Function Initiative
EFI-EST EFI-Enzyme Similarity Tool
EFI-GNT EFI-Genome Neighborhood Tool
ENA European Nucleotide Archive
GNN Genome Neighborhood Network
GRE glycyl radical enzyme
InterPro Integrated Protein Database
JGI-IMG/M Joint Genome Institute-Integrated Microbial Genomes/

Metagenomes
MSA multiple sequence alignment
NCBI National Center for Bioinformatics Information
NRPS nonribosomal peptide synthase
OMP orotidine 5′-monophosphate
orf open reading frame
P5C Δ1-pyrroline-5-carboxylate
Pfam Protein Family Database
PKS polyketide synthase
PN proteome network
PRISM PRediction Informatics for Secondary Metabolomes
RLP RuBisCO-like protein
RODEO rapid ORF description and evaluation online
RuBisCO ribulose bisphosphate carboxylase/oxygenase
SBP solute binding protein
SFLD Structure−Function Linkage Database
ShortBRED “Short, Better Representative Extract Data Set”
SSN Sequence Similarity Network
TCT tricarboxylate transport
TRAP tripartite ATP-independent periplasmic transporter
TRN Taxonomic Rank Network
UniProt Universal Protein Resource
UniProtKB UniProt Knowledgebase

Figure 1. Growth of the UniProt protein sequence database (Release
2017_07). The blue line represents the EMBL/TrEMBL sequences
with automated annotations; the red line represents the EMBL/
SwissProt with manually curated annotations. Currently, the doubling
time is ∼2.5 years. The number of sequences decreased by ∼50% in
April 2015 when UniProt identified reference proteomes for closely
related species and archived the redundant proteomes.
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in sequenced genomes,12,13 including antiSMASH (Antibiotics
& Secondary Metabolite Analysis SHell14), PRISM (PRediction
Informatics for Secondary Metabolomes15), and RODEO
(Rapid ORF Description and Evaluation Online16). These
tools are widely used by the natural products/synthetic biology
community, e.g., more than 300 000 jobs have been processed by
t h e a n t i SMA SH s e r v e r ( h t t p s : / / a n t i s m a s h .
secondarymetabolites.org/). Although these tools enable the
discovery of BGCs, the annotations of the uncharacterized
enzymes in the BGCs are limited to their membership in protein
families, an overview that often is insufficient to restrict substrate
specificities and/or reaction identities/mechanisms. Therefore,
many of the challenges in BGC characterization are the same as
those encountered by enzymologists focused on small-molecule
metabolic pathways (vide inf ra).
What Should Genomic Enzymology Tools Provide?

Genomic enzymology focuses on the discovery of function in the
context of entire enzyme families: this approach allows
recognition of sequence and structure attributes that are
conserved for specific functions. Babbitt developed the
Structure−Function Linkage Database (SFLD; http://sfld.rbvi.
ucsf.edu/) to generate and disseminate sequence−structure
relationships that associate specific functional properties with
specific sequence and structure motifs in functionally diverse
enzyme superfamilies.17 As an early example of the use of
genomic enzymology to obtain mechanistic insights, the
recognition that (1) the reactions catalyzed by mandelate
racemase and muconate lactonizing enzyme in the enolase
superfamily require stabilization of an enolate anion intermediate
and (2) their sequences have conserved motifs for binding an
active site Mg2+ defined the catalytic strategy for the super-
family.1,18,19 The functional diversity in the superfamily,
including dehydration, deamination, cycloisomerization, race-
mization, and epimerization of carboxylate-anion substrates,
could be explained by divergent evolution selecting (1) acid/base
catalysts for both generating the enolate anion intermediate and
directing it to products and (2) specificity determinants for
binding different substrates in productive geometries relative to
the acid/base catalysts.20,21 This same strategy for evolution of
new enzymatic functions applies to many mechanistically diverse
superfamilies.2

The challenges for genomic enzymology are developing and
applying large-scale methods for (1) grouping members of
mechanistically diverse superfamilies and functionally diverse
suprafamilies in isofunctional families, e.g., identifying acid/base
catalysts and placing restrictions on reaction mechanisms and
substrate specificities and (2) analyzing the genome contexts for
the members of isofunctional families so that their roles in
metabolic pathways can be deduced. e.g., predicting substrates,
intermediates, and products.
Sequence Similarity Networks (SSNs). Evolutionary

biologists typically use phylogenetics-based approaches to
distinguish orthologues from paralogues.22,23 Phylogenetic
trees are constructed from multiple sequence alignments
(MSAs); however, MSAs are difficult to generate for large
protein families.23 Many superfamilies and suprafamilies are
large: >15 K sequences in the glycyl-radical enzyme superfamily,
>22 K sequences in the OMP decarboxylase suprafamily, >44 K
sequences in the enolase superfamily, >122 K sequences in the
enoyl-CoA hydratase (crotonase) superfamily, and >250 K
sequences in the radical SAM superfamily. In addition to being
difficult to construct, trees for large families also are difficult to
interpret because of their complexity.24 Trees do not provide

immediate access to all sequences in a familyrepresentative
sequences usually are selected in the construction of the tree.
Instead, what is needed is a large-scale approach that allows easy
visualization and analyses for all sequences in a family,
recognizing that it must be “user friendly”, i.e., intuitive and fast.
Atkinson and Babbitt introduced sequence similarity networks

(SSNs) to enable large-scale analyses of sequence−function
relationships in protein families.25 An SSN displays pairwise
relationships obtained from an all-by-all sequence comparison,
e.g., BLAST. Although the use of BLAST can be criticized
because it provides a measure of overall sequence similarity and,
therefore, may be insensitive to different domain architectures
important in determining molecular function, it is (1) fast, a
requirement for routine all-by-all comparisons of the sequences
of members of increasingly large protein families (each sequence
must be compared with every other sequence so the time
required increases with the square of the number of sequences),
and (2) familiar to experimentalists. An SSN contains “nodes” for
sequences; “edges” that quantitate sequence similarity (pairwise
sequence identity) connect nodes that share sequence similarity
that exceeds a user-specified level (Figure 2). As the sequence

similarity required to connect nodes with edges is increased, the
nodes segregate into clusters; the goal is to select a level of
sequence similarity that segregates the nodes/members of the
family into isofunctional clusters (Figure 3).
SSNs contain “node attributes”, including functional and

phylogenetic information associated with each sequence/node,
that assist the user in analyzing sequence−function relationships,
including choosing sequence similarity thresholds for drawing
edges and segregating the families into isofunctional clusters.
Atkinson and Babbitt compared SSNs with phylogenetic trees
and concluded “the most valuable feature of SSNs is not the
optimal or most accurate display of sequence similarity, but
rather the flexible visualization of many alternate protein
attributes for all or nearly all sequences in a superfamily”.25

Figure 2. A sequence similarity network (SSN) showing the protein
sequence nodes and pairwise sequence similarity edges.
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SSNs are viewed using Cytoscape (http://cytoscape.org/),
“an open source platform for visualizing complex networks and
integrating these with attribute data”.26 Although Cytoscape has
a steep “learning curve”, it provides Control Panels to select
nodes based on the node attributes and to filter and color the
networks to enable visual analyses. With node attributes and the
Control Panels, SSNs viewed with Cytoscape satisfy Khosla’s
vision that genomic enzymology tools “could ideally capture the
essence of an enzymologist’s judgment in layers of increasing
sophistication, depending on the user’s actual needs”.5

The SFLD provides SSNs for a several functionally diverse
superfamilies with manually curated (labor intensive and
expensive) annotations/node attributes;17 these SSNs serve as
“gold standards” for functional annotation in both the
bioinformatics and enzymology communities.27 However, with
the large number of superfamilies/suprafamilies (vide inf ra) and
families that provide additional metabolic enzymes, e.g.,
dehydrogenases, kinases, and aldolases, community-initiated
generation of SSNs is necessary. The SFLD does not provide this
capability; Pythoscape was developed by the SFLD for
generating large SSNs, but it is not “user friendly” for most
experimentalists because it requires access to a computer cluster
and programming expertise.28

In principle, the construction of SSNs is “simple”, i.e.,
connecting sequences with edges that quantitate similarity.
However, most experimentalists would be hard-pressed to
develop their own programs for generating SSNs. And, other
web tools that construct SSNs, e.g., Pclust29 and CLANS,30 use a
limited number of sequences and/or node attributes.
The EFI developed a web tool, the Enzyme Function

Initiative-Enzyme Similarity Tool (EFI-EST; http://efi.igb.
illinois.edu/efi-est/),31 to generate SSNs for large protein
families. To date, >1600 unique users have submitted jobs to
EFI-EST, and >50 publications have appeared that reference the
use of EFI-EST.13,14,32−78 EFI-EST uses sequences and node
attribute information from UniProt: in contrast to the NCBI
database, annotations in the UniProt database can be changed

with data provided by any member of the community, allowing
important corrections and additions that diminish propagation of
annotation errors.
EFI-EST now provides four options for selecting sequences to

be included in the SSN: Option A, a single user-supplied
sequence is used to collect homologues with BLAST from the
UniProt database (maximum 10 000 sequences); Option B, the
user specifies one or more UniProt and/or InterPro families
[currently limited to ≤255,000 sequences to allow the SSN for
the radical SAM superfamily (Pfam family PF04055) to be
generated]; Option C (enhanced in the most recent update), the
user provides a FASTA file of sequences and selects whether
accession IDs in the headers are used to retrieve node attributes
from UniProt; and Option D (new in the most recent update),
the user provides a list of UniProt and/or NCBI accession IDs.
After the all-by-all comparison using BLAST, the user selects an
“alignment score” based on pairwise percent identity to filter the
edges (the threshold for drawing edges to connect nodes). The
user then downloads the SSN for analysis with Cytoscape.
EFI-EST now provides a “Color SSN Utility” to facilitate

analyses of SSNs by (1) coloring each cluster in an input SSN
with a unique color, (2) providing a file with color information
that allows the user to color SSNs of the same sequences
generated with lower similarity (pairwise identity) to track
segregation of clusters (e.g., Figure 3), and (3) FASTA files for
the sequences in each cluster to facilitate the generation ofMSAs.

Applications of SSNs. The EFI used SSNs from the SFLD
to characterize sequence−function space in targeted functionally
diverse superfamilies (amidohydrolase,79−85 enolase,19,86−92

glutathione S-transferase,93 haloalkanoate dehalogenase,94 and
isoprenoid synthase95,96) and select targets for functional
discovery. Then, when EFI-EST became available, both the
EFI and community began to use SSNs to characterize
sequence−function space in a wide range of proteins families.
SSNs generated by the community using EFI-EST13,14,32−78

have been used to identify and describe potential isofunctional
families within enzyme families, e.g., clusters with different (but

Figure 3. SSNs for sequences from the proline racemase family (Pfam family PF05544). (A) Alignment score ≥15, ≥22% pairwise sequence identity.
(B) Alignment score ≥20, ≥25% pairwise sequence identity. (C) Alignment score ≥50, ≥35% sequence identity. (D) Alignment score ≥70, ≥40%
sequence identity. (E) Alignment score ≥90, ≥48% sequence identity. (F) Alignment score ≥110, ≥58% sequence identity. The colors in panel F are
used to color the nodes in panels A−E.
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unknown) substrate specificities, thereby providing an overview
of sequence−function space in specificity diverse superfamilies
(different substrates but same type of overall reaction) and
functionally diverse superfamilies (different substrates and
different reaction mechanisms, although a partial reaction may
be conserved). SSNs also provide the ability to survey the
members of a protein family for different domain architectures
that may suggest different functional contexts, i.e., fusion
proteins in different pathways. And, the pathway for cluster
segregation as sequence similarity increases (Figure 3) may
suggest functional linkages between clusters. Several community-
generated SSNs from the recent literature that illustrate their use
are shown in Figure 4; readers are referred to the publications for
detailed descriptions.13,14,32−78

Genome Neighborhood Networks (GNNs). With the
potential to segregate protein families into isofunctional clusters
using SSNs, the second genomic enzymology challenge is to
place these clusters in a functional context, e.g., identify the small-
molecule metabolic pathways in which uncharacterized enzymes
participate. In eubacteria, archaea, and fungi, the enzymes in a
metabolic pathway often are encoded by a gene cluster or operon
(just as the biosynthetic pathways for natural products are
encoded by BGCs). Therefore, the proteins encoded by the
genes proximal to those that encode members of an isofunctional
cluster (orthologues) may allow the number and types of

reactions in the metabolic pathway to be determined if these are
conserved by the members of the cluster.
Genome neighborhoods for homologues can be examined

using web resources such as JGI-IMG/M (https://img.jgi.doe.
gov/cgi-bin/m/main.cgi); however, complete pathways are not
always encoded by a single genome neighborhood. Large-scale
mining of genome neighborhoods for all orthologues in an SSN
cluster has the advantage that operon/gene cluster organization
may not be preserved across phylogenetic species; i.e., the
sequences in an isofunctional SSN cluster may have diverse
genome neighborhoods and pathway neighbors, but the ability to
survey all of the neighborhoods provides the potential to identify
all of the functionally linked genes/enzymes that can be
assembled into a metabolic pathway.
In 2014, the EFI described a genome neighborhood analysis

that was applied to the proline racemase family (Pfam family
PF05544) using an all-by-all comparison (with BLAST) of the
neighbors to generate a network (the genome neighborhood
network, GNN);97 the neighbors were segregated into protein
families using an e-value >20 for the edges in the SSN. By
assigning unique colors to the clusters in the SSN (Figure 5A)
and coloring the neighbors in the GNN with the same color, the
neighbors for the sequences in each cluster were identified
(Figure 5B). Then, candidates for functionally linked enzymes
were recognized and potential pathways were predicted. This
analysis allowed in vitro enzymatic activities and in vivometabolic

Figure 4. Examples of SSNs generated with EFI-EST that were included in recent publications. (A) SSN for isopeptidases involved in lasso peptide
synthesis.43 (B) SSN of precursor peptides for microviridin synthesis.60 (C) SSN of LanMs in lantibiotic synthesis.76 (D) SSN for ferredoxins compared
with a phylogenetic tree.40 (E) SSN for IspH in isoprenoid biosynthesis.56 (F) SSNs for members of the DRE-TIM metallolyase superfamily.52 Figures
reproduced with permission from refs 40, 43, 52, 56, 60, and 76.
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functions (the three pathways shown in Figure 5C) to be
assigned to 85% of the sequences in the family [2333 sequences
in InterPro Release 43.0 (July 2013)].
The EFI subsequently developed the Enzyme Function

Initiative-Genome Neighborhood Tool (EFI-GNT; http://efi.
igb.illinois.edu/efi-gnt/) to provide a “user friendly” interface for
generating GNNs to facilitate the identification of pathway/
metabolic context for isofunctional clusters in SSNs. Although
EFI-GNT has not yet been “officially” announced with a detailed
publication (a manuscript describing the updated version of EFI-
EST and EFI-GNT is in preparation for publication later this
year), >250 unique users have accessed the web tool that is
available for community use.
An SSN generated by EFI-EST is the input for EFI-GNT

[Figure 6A; 6419 sequences in the proline racemase family in
InterPro Release 63.0 (May 2017)]. EFI-GNT assigns a unique
color (from a palette of 1513 colors) to each cluster (Figure 6B).
It then interrogates the European Nucleotide Archive (ENA;
http://www.ebi.ac.uk/ena) database for the neighbors of each
sequence in each cluster in the input SSN (for eubacteria,
archaea, and fungi), and the neighbors are associated with their
Pfam families. The co-occurrence frequencies of the queries in
the SSN cluster with the neighbors as well as the absolute values
of the distances in open reading frames (orfs) between the

queries and neighbors are calculated. Functionally linked genes
encoding a pathway are expected to have (1) large query-
neighbor co-occurrence frequencies (diminished if operon/gene
cluster organization is phylogenetically diverse) and (2) short
distances between the queries and neighbors.
EFI-GNT provides GNNs in two formats. In one format

(Figure 6C,D), a cluster is present for each SSN cluster: the hub-
node represents the sequences in the SSN cluster (colored with a
unique color so that it can be easily identified in a colored version
of the input SSN that is generated), and the spoke-nodes
represent the neighbor Pfam families; this format allows the user
to identify the pathway enzymes. In the second format, a cluster
is present for each neighbor Pfam family: the hub-node
represents the Pfam family, and the spoke nodes represent the
SNN clusters that identified the neighbors (Figure 6E,F); this
format allows the user to assess whether the similarity (edge)
threshold used to generate the input SSN was too large (pairwise
identity too large) so that orthologues are segregated in multiple
clusters, with these identifying the same Pfam family neighbors
and pathway.
In both GNN formats, the co-occurrence frequencies of the

SSN queries and neighbors are the values of the edges between
the hub- and spoke-nodes: if the co-occurrence frequency
exceeds a user-specified threshold, the edge and spoke-node are

Figure 5. (A) A colored SSN for the proline racemase family (PF05544; InterPro Release 43.0). (B) The GNN generated by an all-by-all BLAST of the
genome neighbors. (C) Three pathways catalyzed by members of the proline racemase family. The nodes in the GNN (panel B) are colored using the
color clusters in the SSN (Panel A). Figures reproduced with permission from ref 97.
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present. From the co-occurrence frequencies, the user can

identify neighbors that “always” occur with the query (the same

conserved operon/gene cluster) as well as those that are less

frequently associated (operon/gene cluster in some species;

dispersed genes in other species).

EFI-GNT also provides files with the UniProt IDs for the
sequences in each neighbor Pfam family that can be used to
identify the neighbors in the SSNs for their families. This
mapping (1) assists the selection of alignment score thresholds
for segregating the neighbor SSNs into isofunctional clusters/
families and (2) provides useful context about possible functional

Figure 6. (A) SSN for the proline racemase family (PF05544, InterPro Release 63.0) segregated with an alignment score of ≥110 (≥58% pairwise
sequence identity). (B) Colored SSN generated by the EFI-GNT web tool. (C, D) GNNwith SSN cluster hub-nodes and Pfam family spoke-nodes. (E,
F) GNN with Pfam family hub-nodes and SSN cluster spoke-nodes. The GNNs were generated with a ±10 orf genome neighborhood window and a
query-neighbor co-occurrence threshold of 20%.
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(substrate specificity and reaction mechanism) relationships that
may be useful in deducing in vitro activities and in vivometabolic
functions.
Integrated Use of SSNs and GNNs To Discover

Metabolic Pathways. The synergistic “power” of the EFI-
EST and EFI-GNT web tools for functional annotation of
bacterial and fungal enzymes is the ability to (1) segregate

protein families into isofunctional clusters in an SSN using EFI-

EST (the sequences in a cluster have the same genome context)

and (2) use the SSN as the input for EFI-GNT to interrogate and

visualize genome neighborhood context for the isofunctional

clusters in the GNN. To the best of our knowledge, no other web

tools provide this integrated capability.

Figure 7.GNN for SSN cluster 16 presented at different query-neighbor co-occurrence frequencies. (A) 3%. (B) 5%. (C) 10%. (D) 12%. (E) 15%. (F)
20%.
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The GNN format in which the hub-node represents the SSN
cluster and the spoke-nodes represent the Pfam families (Figure
6C,D) can be used to identify the enzymes, transcriptional
regulators, and transporters in a metabolic pathway. For example,
continuing with the proline racemase family (PF05544; SSN in
Figure 6A,B), the enzymes in a catabolic pathway for the
conversion of trans-4-hydroxyproline to α-ketoglutarate (middle
pathway in Figure 5C) can be identified for cluster 16 in the input
SSN (Figure 6D, 792 sequences with genome neighborhoods in
the ENA files). In addition to 4-hydroxyproline epimerase (the
queries in cluster 16 and the SSN hub-node in the GNN cluster
in Figure 6D), the Pfam family spoke-nodes of the GNN cluster
identify the three remaining enzymes in the pathway: (1) cis-4-
hydroxyproline oxidase, a member of the D-amino acid oxidase
family (“DAO” in Figure 6D; PF01266, co-occurrence
frequency, 0.91, median distance 1.0 orfs); (2) cis-4-hydroxypro-
line imino acid dehydratase/deaminase, a member of the
dihydrodipicolinate synthase family (“DHDPS”; PF00701, co-
occurrence frequency, 0.82, median distance 2.0 orfs); and (3) α-
ketoglutarate semialdehyde dehydrogenase, a member of the
aldehyde dehydrogenase family (“Aldedh”; PF00171, co-
occurrence frequency, 0.66, median distance 2.0 orfs). The
curations provided by Pfam provide essential clues for deducing
the identities of the reactions catalyzed by the various
neighboring enzymes (conserved reaction mechanisms).

The GNN in Figure 6D also includes (1) the ATP-bonding
component of an ABC transport system (“ABC_trans”,
PF00005, co-occurrence frequency, 0.35, median distance 4.0
orfs), (2) an additional membrane component of the ABC
transport system (“BPD_transp_1”, PF00528, co-occurrence
frequency, 0.31, median distance 3.0 orfs), and (3) a bidomain
transcriptional regulator (“GntR-FCD”, PF00392 and PF07729,
co-occurrence frequency, 0.67, median distance 3.0 orfs).
The GNN analysis also recognizes genome neighbors that are

not associated with any Pfam family (“none” in Figure 6D;∼15%
of the proteins in UniProt are not associated with a Pfam family).
These sequences can contain protein families currently not
curated by Pfam; these families can be defined by generating
SSNs for these sequences using Option D of EFI-EST.
The GNN in Figure 6D was generated with a minimum co-

occurrence frequency of 0.30. At lower co-occurrence
frequencies (Figure 7), members of four families of solute
binding proteins [SBPs; Peripla_BP_6 (PF13458), SBP_bac_3
(PF00497), Peripl_BP_8 (PF13416), and SBP_bac_5
(PF00496)] for ABC transport systems also are genome
proximal to the SSN queries with co-occurrence frequencies of
0.16, 0.11, 0.07, and 0.03, respectively, and median distances of
6.0, 5.0, 2.0, and 6.0 orfs, respectively. Also members of the major
facilitator superfamily (MFS_1, PF07690) and an amino acid
permease family (AA_permease_2 family, PF13520) are

Figure 8. (A) Strategy for discovering catabolic pathways for D-threitol, L-threitol, and erythritol inM. smegmatis using differential scanning fluorimetry
(DSF) to screen the ligand specificities of SBPs and the integrated used of SSNs andGNNs to discover the pathway enzymes. (B) Catabolic pathways for
D-threitol, L-threitol, and erythritol. (C) Catabolic pathways for D-threonate, L-threonate, and D-erythronate in R. eutrophaH16.59 Figures in Panel A and
B reproduced with permission from ref 34; figure in Panel C reproduced with permission from ref 59.
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genome proximal to the SSN queries with co-occurrence
frequencies of 0.15 and 0.11, respectively, and median distances
of 9.0 and 2.0 orfs, respectively. The enzymes in metabolic
pathways usually are conserved (orthologues instead of
analogues; vide inf ra), but transport systems and transcriptional
regulators often are not conserved, so members of multiple
families of transporters and regulators may be genome proximal
to the queries in the SSN cluster.
Figure 7 illustrates the ability of GNNs to analyze genome

neighborhoods as a function of co-occurrence frequency, thereby
allowing the identification of pathways that may be encoded by
single genome neighborhoods in some species and multiple
genome neighborhoods in other species. An example of the
utility of this capability is described in the next section.34

Use of Transport System SBPs To Anchor Pathway
Prediction Using SSNs and GNNs. For uncharacterized
pathways, pathway prediction is facilitated by independent
information about the substrate for the first enzyme in the
pathway. For microbial enzymes in catabolic pathways, such
information can be obtained from the identity of the solute for
the transporter (or the ligand for a transcriptional regulator). For
ABC, TRAP, and TCT transport systems, the solute is conveyed
to the membrane components with a soluble extracellular
(Gram-positive)/periplasmic (Gram-negative) solute binding
protein (SBP); SBPs can be purified on large scale and subjected
to ligand screening with differential scanning fluorimetry (DSF)/
ThermoFluor using a physical library of small molecules.98 These
ligand specificities anchor the pathway by identifying the
substrate for the first enzyme; the Pfam families of the neighbors
allow the reactions to be predicted. Experiments, both in vitro and
in vivo, are required to validate the pathway.
Using this strategy, experimentally determined ligands for

SBPs and synergistic use of SSNs and GNNs to identify pathway
components, the EFI identified several novel catabolic pathways.
A particularly informative example is the discovery of catabolic
pathways for the three tetritols, D-threitol, L-threitol, and
erythritol, in Mycobacterium smegmatis.34 Ligand screening
identified one SBP for an ABC transporter that bound D-
threitol; a genome-proximal dehydrogenase catalyzed its
oxidation; however, other catabolic enzymes were encoded
elsewhere in the genome (Figure 8A). These “missing” enzymes
were discovered by first constructing the SSN for the D-threitol
dehydrogenase and then the GNN for the cluster containing the
dehydrogenasethis identified a D-erythrulose kinase that was
encoded by a gene cluster distal to the one containing the SBP
and D-threitol dehydrogenase in M. smegmatis (but not other
species that encode the pathway). The SSN for the kinase family
was then constructed, and the cluster containing the D-
erythrulose kinase was used to construct the GNN; this identified
a second gene cluster distal to both the one containing the SBP
and D-threitol dehydrogenase and the one containing the D-
erythrulose kinase that contained isomerases to complete the D-
threitol pathway. Investigation of other genes in both distal
clusters allowed identification of the remaining enzymes in the
pathway for D-threitol catabolism as well as the enzymes in the
pathways for L-threitol and erythritol catabolism (Figure 8B).
The ligand specificity of a single SBP was sufficient to identify
enzymes for three catabolic pathways encoded by three distal
gene clusters.
The EFI also used this strategy to assign functions to members

of Domain of Unknown Function 1537 (DUF 1537;
approximately 20% of the 16 712 Pfam families in Release 31.0
are families of DUFs or proteins of unknown function).59 Using

the specificities for four SBPs for TRAP transport systems for
four-carbon acid sugars, including D-erythronate and L-
erythronate, SSNs and GNNs were used to identify two genome
neighborhoods in Ralstonia eutropha H16 that encode enzymes
in catabolic pathways for D-threonate, L-threonate, and D-
erythronate (Figure 8C). Members of the DUF1537 family
(Pfam families PF07005 and PF17402) were determined to be
kinases for four-carbon acid sugars, identifying a previously
uncharacterized family of kinases. In addition, members of the
PdxA2 family (PF04166) were determined to be oxidative
decarboxylases that generate dihydroxyacetone phosphate
(DHAP) and CO2.
In unpublished work, the specificities of three ABC SBPs for D-

apiose, a branched chain pentose found in plant cell walls, and the
iterative use of SSNs and GNNs have been used to discover five
catabolic pathways for D-apiose, a branched aldose, two of which
are found in species in the human gut microbiome (humans
ingest plant cell walls; species of Bacteroides can degrade the
rhamnogalacturonan-II component that contains D-apiose to
release D-apiose that can be catabolized99). Two pathways
include novel RuBisCO-like proteins (RLPs) from the RuBisCO
superfamily, one catalyzes a β-ketoacid decarboxylation and the
second catalyzes a “transcarboxylation” in which the substrate is
decarboxylated (β-ketoacid decarboxylation), with the seques-
tered CO2 used to carboxylate the enediolate intermediate on the
adjacent carbon, and the resulting isomeric β-ketoacid undergoes
hydrolysis as in the canonical RuBisCO reaction. The
experimentally determined specificity of three SBPs anchored
discovery of five pathways by identifying the substrates; the
iterative use of SSNs and GNNs identified the enzymes.

Comments. The success of the integrated application of
SSNs andGNNs to discover metabolic pathways is limited by the
proximities of the genes encoding the pathway components, so
this analysis may not be successful for all functional assignment
problems. However, the large-scale nature of the analyses
provides the potential to determine whether colocalization of
genes is due to limited genetic drift among similar genomes or
pathway conservation among phylogenetically diverse genomes;
it also allows identification of low co-occurrence frequency but
significant clustering of the genes encoding multiple pathway
components that would be tedious to discover by examination of
large numbers of individual genome neighborhoods.34

Also, SSNs provide the ability to segregate members of
mechanistically diverse superfamilies and functionally diverse
suprafamilies into isofunctional clusters (families). For enzymes
an important test of isofunctionality is that the GNN generated
for an SSN cluster identifies the components of a single pathway.
The iterative use of SSNs and GNNs not only provides a test of
isofunctionality but also a method for determining the minimum
SSN alignment score required to achieve isofunctionality. If the
GNN for an SSN cluster identifies “too many” components for a
single pathway, further segregation of the cluster with a larger
alignment score into “daughter” clusters may allow the resolution
of the pathways. The reader should recognize that achieving
isofunctional clusters in an SSN may not be straightforward, e.g.,
even within the same superfamily different alignment scores may
be required to achieve isofunctional clusters. However, the
integration of SSNs and GNNs using EFI-EST and EFI-GNT
provides a powerful strategy for assessing and achieving
isofunctional clusters.

Chemically Guided Functional Profiling: Building on
EFI-EST. With ∼50% of the proteins in the sequence databases
having incorrect, uncertain, or unknown functions, devising a
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target selection strategy is a major challenge for functional
assignment. The SSNs for functionally diverse enzyme families
often have many uncharacterized clustersthe problem is
deciding which are worth experimental characterization. One
approach is to select those that are most biologically relevant, but
how is that achieved in the absence of knowledge of their
functions?
Balskus and Huttenhower recently described a strategy for

choosing biologically relevant targets termed “chemically guided
functional profiling”.72 This strategy involves (1) construction of
the SSN for a targeted protein family segregated into
isofunctional families and (2) mapping the abundance of
metagenome reads to the clusters in the SSN, with
uncharacterized clusters having the largest number of
metagenome markers the highest priority for functional
characterization (Figure 9A). ShortBRED100 provides a fast
and accurate method to profile metagenome samples and uses
sequence fragments from the clusters in the SSN (“markers’) to
identify homologous sequences in the metagenome reads; their
abundance is then mapped to the SSN clusters to accomplish
target selection.
The utility of chemically guided functional profiling was

demonstrated using the glycyl radical enzyme (GRE) super-

family; the reactions are initiated by abstraction of a hydrogen
atom from the substrate by a glycine-centered backbone radical
(generated by an activase from the S-adenosyl methionine
superfamily). The metagenome samples used for target selection
were from the human gut microbiome, so uncharacterized
members of the GRE superfamily are likely involved in reactions
that allow the microbiome to utilize small molecules in the gut.
Balskus previously had identified choline trimethylamine-lyase
(CutC) in human gut microbiome species; CutC catalyzes the
cleavage of choline to acetaldehyde and trimethylamine, the
latter involved in the production of methane as well as implicated
in human diseases via its N-oxide.101,102

The SSN for the GRE family is shown in Figure 9B. The
functionally assigned clusters are colored, as are two clusters (15
and 16) that were identified as abundant in the human gut
microbiome. Both of the latter clusters were hypothesized to be
dehydratases based on conserved active site residues associated
with known dehydratase reactions. Cluster 15 was characterized
as a 4-hydroxyproline dehydratase; again, genome context was
used to predict the substrate because of its proximity to Δ1-
pyrroline-5-carboxylate (P5C) reductase that reduces P5C that
would be derived from dehydration of 4-hydroxyproline to
proline. Cluster 16 was characterized as a novel (S)-1,2-

Figure 9. (A) Strategy for chemically guided functional profiling. (B) SSN for the glycyl radical enzyme superfamily showing clusters with previously
assigned functions as well as clusters (15 and 16) for which chemically guided functional profiling was used to leverage experimental functional
assignment. Figures reproduced with permission from ref 72.
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propanediol dehydratase (a previously characterized analogue is
an adenosylcobalamin-dependent enzyme); the identity of the
substrate was suggested from genome analysis because the
enzyme is found in Roseburia inulinivorans that catabolizes L-
fucose but lacks the adenosylcobalamin-dependent dehydratase.
A “user friendly” web tool is not yet available to allow the

community to use “chemically guided functional profiling” with
their favorite families. But, the development of a web tool is a
high priority goal given its ability to identify important targets for
functional characterization.
AGeNNT and Refined GNNs: Building on EFI-GNT. EFI-

GNT provides GNNs in two formats that summarize (1) the
Pfam families identified by each SSN cluster (edges between SSN
cluster hub-nodes and Pfam family spoke-nodes), providing
information about the reactions in metabolic pathways, and (2)
the SSN clusters that identify each Pfam family (edges between
Pfam family hub-nodes and SSN cluster spoke-nodes), providing
information about whether multiple clusters may contain
orthologues.
Merkl and co-workers recently described AGeNNT (Auto-

matically Generates refined Neighborhood NeTworks), a Java
application that uses the GNNs provided by EFI-GNT to

generate a third format (“refined GNN”) in which all of the SSN
cluster and Pfam family nodes are connected by edges.71 Clusters
that contain orthologues, identified when they share the same
genome neighbors, can be distinguished from clusters that have
different genome contexts. An SSN is submitted to the EFI-GNT
web tool. AGeNNT then generates the refined GNN. Several
options are provided, including (1) eliminating overrepresented
phylogenetically related subspecies from the input SSN to reduce
redundancy in the GNN and (2) using a user-defined “whitelist”
of Pfam families to include in the refined GNN. For example,
only Pfam families for enzymes can be included in the refined
GNN so Pfam cluster connections between SSN clusters that
involve transporters and transcriptional regulators are eliminated
(in contrast to pathway enzymes, transporters and transcrip-
tional regulators are not conserved).
Continuing again with the proline racemase family (PF05544)

to provide an example, several major clusters from the SSN were
selected for generation of GNNs using EFI-GNT and the refined
GNN using AGeNNT (Figure 10). The colored SSN is shown in
Figure 10A, the SSN cluster hub-node GNN format is shown in
Figure 10B, the Pfam family hub-node GNN format is shown in
Figure 10C, and the refined GNN is shown in Figure 10D (Pfam

Figure 10. (A) Colored SSN generated by EFI-GNT for selected clusters in the proline racemase family (PF05544). (B) GNN with SSN cluster hub-
nodes and Pfam family spoke-nodes. (C) GNNwith Pfam family hub-nodes and SSN cluster spoke-nodes. (D) Refined GNN showing identification of
three different functions as deduced by connections (or lack thereof) between SSN cluster and Pfam family nodes.
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families for transport systems and transcriptional regulators are
deleted in the GNNs; because these families are not conserved in
pathways (vide supra), their inclusion in the refined GNN can
complicate the analysis). Comparison of the refined GNN with
the GNNs establishes the utility of the refined GNN in
identifying orthologous SSN clusters: clusters 2, 4, 5, and 6 are
orthologous 4-hydroxyproline epimerases; clusters 1 and 3 are
orthologous trans-3-hydroxylproline dehydratases; and cluster 7
is proline racemase (using functional assignments based on
experimental verification97). Building on EFI-EST and EFI-
GNT, AGeNNT links SSN clusters that share pathway context,
potentially identifying interrelations of subfamilies within a
protein family.
Future Directions. EFI-EST and EFI-GNT provide

experimentalists with otherwise inaccessible but essential
perspectives on sequence−function space in protein families
and genome context that facilitate the assignment of functions to
uncharacterized enzymes. Other web tools are available for
smaller scale analysis of protein families, but genomic
enzymology “requires” large-scale analyses to provide the
maximum amount of context.
Other large-scale web tools can be imagined. For example, the

proteome of an organism (or of a community) determines its
metabolic capabilities; therefore, an easy-to-construct overview
of the metabolic potential would be useful and could be provided
by a “proteome network” (PN) tool. A PN would include a node
for each protein encoded by a genome (or community) and
collected into Pfam family clusters (Pfam family hub-node and
protein spoke nodes). The PN would identify the catalytic
capabilities via the identities of the Pfam families and, also, the
locations of the proteins (spoke nodes) in the SSNs for their
families. For a community PN, identification of species-specific
Pfam families could provide the potential to identify syntrophic
metabolic pathways, e.g., different organisms contribute different
metabolic capabilities to synthesize a natural product or degrade
an energy source. In analogy with chemically guided functional
profiling, mapping transcriptome abundance to the PN would
provide a visually powerful approach for identifying enzymes in
novel pathways.
Also, the Pfam families that contribute enzymes to a pathway

often are conserved in phylogenetically diverse organisms;
however, we have observed that one or more reactions in a
metabolic pathway can be catalyzed by analogues (non-
orthologous gene replacements) in different taxonomic ranks,
e.g., phyla, class, order, or family. The ability to discover
analogues may be enhanced by clustering members of a protein
family by taxonomic rank instead of pairwise sequence identity
(SSNs). Because the node attributes that are provided by EFI-
EST for sequences include taxonomic ranking, a taxonomic rank
network (“TRN”) would be easy to construct. Subsequent
generation of sequence similarity-based SSNs for individual
clusters in the TRN would be accomplished with Option D of
EFI-EST, thereby providing the ability to further segregate and
analyze the clusters by sequence homology.
Finally, although the generation of an SSN is straightforward,

Release 31.0 of the Pfam database (Release 31.0) defines 16 712
families. Immediate access to a library of precomputed SSNs for
all Pfam families would provide the biological and biomedical
communities, including users of web tools that identify BGCs
(vide supra), with the ability to quickly place their favorite
enzymes in the context sequence−function relationships for their
protein families. This library of SSNs should be regularly updated
to provide current information (perhaps in parallel with releases

of the InterPro database), but its construction requires
considerable computational resources. We have demonstrated
that the calculation of this database is feasible, although we have
not yet been able to initiate the production phase of this effort.
I encourage the readers to (1) try the EFI-EST and EFI-GNT

web tools, (2) imagine new applications for SSNs and GNNs,
and (3) identify additional large-scale data visualization and
analysis challenges that would be amenable to solution by
community-accessible web tools. Like the natural products
community, the enzymology community needs to recognize the
essential role of web tools that allow the protein and genome
sequence databases to be leveraged for the solution of biological
problems.
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