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ABSTRACT

Purpose: Promoter DNA methylation of various genes has been associated with 
metachronous gastric cancer (MGC). The cancer-specific methylation gene, cysteine 
dioxygenase type 1 (CDO1), has been implicated in the occurrence of residual gastric cancer. We 
evaluated whether DNA methylation of CDO1 could be a predictive biomarker of MGC using 
specimens of MGC developing on scars after endoscopic submucosal dissection (ESD).
Materials and Methods: CDO1 methylation values (TaqMeth values) were compared between 
33 patients with early gastric cancer (EGC) with no confirmed metachronous lesions at >3 
years after ESD (non-MGC: nMGC group) and 11 patients with MGC developing on scars 
after ESD (MGCSE groups: EGC at the first ESD [MGCSE-1 group], EGC at the second ESD 
for treating MGC developing on scars after ESD [MGCSE-2 group]). Each EGC specimen 
was measured at five locations (at tumor [T] and the 4-point tumor-adjacent noncancerous 
mucosa [TAM]).
Results: In the nMGC group, the TaqMeth values for T were significantly higher than that 
for TAM (P=0.0006). In the MGCSE groups, TAM (MGCSE-1) exhibited significantly higher 
TaqMeth values than TAM (nMGC) (P<0.0001) and TAM (MGCSE-2) (P=0.0041), suggesting 
that TAM (MGCSE-1) exhibited CDO1 hypermethylation similar to T (P=0.3638). The area 
under the curve for discriminating the highest TaqMeth value of TAM (MGCSE-1) from that of 
TAM (nMGC) was 0.81, and using the cut-off value of 43.4, CDO1 hypermethylation effectively 
enriched the MGCSE groups (P<0.0001).
Conclusions: CDO1 hypermethylation has been implicated in the occurrence of MGC, 
suggesting its potential as a promising MGC predictor.
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INTRODUCTION

Presently, gastric cancer ranks as the sixth most common type of malignant tumor and is 
the third leading cause of mortality in men worldwide [1]. Due to the eradication efforts 
for Helicobacter pylori, the incidence of gastric cancer has decreased in recent years in Japan; 
however, it remains the third leading cause of mortality among malignant tumors [2]. With 
the development and increasingly common use of endoscopic submucosal dissection (ESD), 
ESD has become the established standard treatment for early gastric cancer (EGC) [3]. With 
the widespread treatment of EGC by ESD, it has become well known that metachronous 
gastric cancer (MGC) can develop after ESD, and surveillance endoscopy for MGC is 
recommended after ESD in these patients [4]. There are certain cases in which MGC develops 
on scars after curative ESD. The incidence of MGC after ESD has been reported to range from 
4.0% to 13.0% [5-7].

Various genetic abnormalities such as genomic gain, genomic loss, and genomic mutations 
are involved in gastric cancer development [8]. Furthermore, epigenetic abnormalities, 
including DNA methylation, are more dominant during gastric carcinogenesis [9] and are 
affected by epigenetic field cancerization in the tumor-adjacent noncancerous mucosa 
(TAM), where DNA methylation abnormalities in various genes increase because of chronic 
inflammation due to H. pylori infection in the gastric mucosa [10-12].

Promoter DNA methylation, which is associated with gastric carcinogenesis, has recently 
attracted attention as a cancer-specific biomarker [13]. Among them, cysteine dioxygenase 
type 1 (CDO1) has been recognized as a novel tumor suppressor gene candidate in human 
cancers [14,15]. Previous reports have described the excellent diagnostic performance and 
prognostic relevance of CDO1 promoter hypermethylation in various gastrointestinal cancers, 
including gastric cancer [16–21]. However, there have been no reports on CDO1 promoter 
hypermethylation as a predictor of MGC after ESD. Therefore, we investigated the association 
between the subsequent development of MGC after ESD and epigenetic abnormalities using 
specimens of MGC developing on scars after curative ESD.

MATERIALS AND METHODS

Patients and materials
A total of 2,055 patients underwent ESD for EGC at Kitasato University Hospital and Kitasato 
University East Hospital between September 2002 and December 2016 (Fig. 1). A total of 
33 patients with the latest consecutive EGC with no confirmed evidence of metachronous 
lesions at >3 years after curative ESD were selected as controls from 1,896 patients with 
no metachronous lesions (non-MGC: nMGC group). All 33 patients tested positive for H. 
pylori infection (current infection or after eradication). Among the 2,055 patients, 11 (0.5%) 
exhibited the development of MGC on scars after curative ESD (MGCSE groups) (Fig. 2), 
all 11 tested positive for H. pylori (current infection or after eradication). All patients were 
investigated for H. pylori status at the time of the initial medical examination. Among the 
MGCSE groups, we also examined patients who underwent the first ESD for EGC (MGCSE-1 
group) and those who underwent a second ESD to treat MGC developing on scars after 
curative ESD (MGCSE-2 group). Both groups (MGCSE-1 and MGCSE-2) were investigated in 
the same patients. Furthermore, in the MGCSE-2 group, no cases of new MGCSE occurred 
during the observation period after the second ESD.
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Patients with EGC treated by ESD between 2002 and 2016
(n=2,055)

Patients with MGC after ESD
(n=159)

Patients with MGC developing on scars after ESD 
(MGCSE groups; n=11)

Patients with no MGC after ESD
(n=1,896)

H. pylori infection (+)

Patients with MGC not developing on scars after ESD
(n=148)

Patients with the latest consecutive EGC with
no confirmed metachronous lesions for over 3 years

(nMGC group; n=33)

Fig. 1. Flowchart of study participants treated for early gastric cancer by endoscopic submucosal dissection. 
EGC = early gastric cancer; ESD = endoscopic submucosal dissection; MGC = metachronous gastric cancer.

After 3 years

Fig. 2. Representative cases in the MGCSE groups. Representative case from MGCSE group. Three years after 
the first ESD (the upper left panel shows the lesion (yellow arrowhead) before ESD (MGCSE-1) and the upper 
right panel shows after ESD), we diagnosed a new lesion (lower left panel) categorized as MGCSE-2 (yellow 
arrowhead). The lower-right panel shows the lesion after the second ESD. While performing the first ESD, we 
could recognize the submucosal layer with a blue area (indigo carmine) (upper middle panel). On the second 
ESD, it was difficult to recognize the border between the submucosal and muscular layers due to fibrosis (white 
area), and it was difficult to treat (lower middle panel). 
MGCSE = metachronous gastric cancer developing on scars after curative ESD; ESD = endoscopic submucosal 
dissection; MGCSE-1 = early gastric cancer at the first ESD; MGCSE-2 = EGC at the second ESD performed for 
treating MGC developing on scars after curative ESD.



This study was conducted in accordance with the ethical guidelines outlined in the 
Declaration of Helsinki and was approved by the Kitasato University Hospital Ethics 
Committee (no. B18-036). All patients provided informed consent prior to enrollment.

Cell lines
The hepatocellular carcinoma cell line HepG2 and colorectal cancer cell line DLD1 were used 
as positive and negative controls for CDO1 methylation, respectively, as previously described 
[22]. The DLD1 cells were provided by the Cell Resource Center for Biomedical Research, 
Institute of Development, Aging and Cancer, Tohoku University (Sendai, Japan), whereas 
HepG2 cells were purchased from the RIKEN BioResource Research Center (Ibaraki, Japan). 
DLD1 cells were maintained in Roswell Park Memorial Institute-1640 medium (GIBCO, 
Carlsbad, CA, USA). HepG2 cells were maintained in Dulbecco’s modified Eagle’s medium 
(GIBCO) containing 10% fetal bovine serum and penicillin-streptomycin (GIBCO).

Genomic DNA extraction and bisulfite treatment
The locations of the tumor (T) and TAM were identified in EGC specimens pathologically 
diagnosed using hematoxylin-eosin staining after ESD. Formalin-fixed paraffin-embedded 
tissues of excised specimens of the T and TAM were cut into 20 10-μm-thick slices. After 
deparaffinization, genomic DNA was extracted from the T and the separated TAMs (four 
points: oral TAM, anal TAM, right TAM, and left TAM) tissues using a QIAamp® DNA Mini 
Kit (Qiagen, Hilden, Germany) (Fig. 3). TAMs were extracted from noncancerous mucosa 
at a distance of more than 2 mm from the T site to prevent contamination of the tumor 
components. The extracted genomic DNA (2 μg) was chemically converted by bisulfite 
treatment using the EZ DNA Methylation-Gold™ Kit (Zymo Research, Irvine, CA, USA). The 
bisulfite-treated DNA was subsequently amplified as a template via quantitative methylation-
specific polymerase chain reaction (Q-MSP).
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Fig. 3. Definition of sample locations for DNA extraction. Sample locations for DNA (left panel) and genomic DNA extraction from the T and separate TAMs (four 
points: oral TAM, anal TAM, right TAM, and left TAM) tissues. Corresponding pathological findings are shown in the right panels (hematoxylin and eosin staining, 
×20, ×40). TAMs were extracted from noncancerous mucosa at a distance of more than 2 mm from the T site to prevent contamination of the tumor components. 
T = tumor; TAM = tumor-adjacent noncancerous mucosa.



Q-MSP
Q-MSP for CDO1 was performed using a C1000 Touch™ thermal cycler with a CFX96 Real-
Time System (Bio-Rad, Hercules, CA, USA). Q-MSP was conducted at 95°C for 3 minutes, 
followed by 40 cycles at 95°C for 20 s, annealing temperature for 30 seconds, and 72°C for 30 
seconds, in a 25-μL reaction volume containing 1 μL of bisulfite-treated genomic DNA, 300 
nmol/L of each primer, 200 nmol/L of a fluorescent probe, and 12.5 μL of iQ Supermix (Bio-
Rad). PCR conditions and primer and probe sequences were designed as previously described 
[22]. All reactions were performed in triplicate. The CDO1 methylation value was defined as 
the ratio of the amplified signal value of methylated CDO1 to the value of β-actin, which was 
subsequently multiplied by 100. The CDO1 methylation value was designated as the TaqMeth 
value throughout the text.

Statistical analysis
Continuous and categorical variables were analyzed using the Student’s t-test and χ2 test, 
respectively. Univariate analyses of factors for the clinicopathological characteristics of EGC 
were performed using the log-rank method. The observation period was defined as the 
time from the first ESD to the day of the final upper gastrointestinal endoscopy (median, 
59 months; range, 37–179 months). The median observation period was 59 months (37–66 
months) in the nMGC group and 70 months (44–179 months) in the MGCSE group. The 
occurrence period for MGC was defined as the time from the day of the first ESD to the 
day of the second ESD (median, 22 months; range, 14–49 months). Statistical analyses 
were performed using the JMP 11 software (SAS Institute Inc., Cary, NC, USA). Statistical 
significance was set at P<0.05.

RESULTS

Clinicopathological characteristics
Table 1 summarizes the clinicopathological characteristics of the 44 patients with EGC 
(nMGC group, n=33; MGCSE-1 group, n=11). With respect to H. pylori status at the time of 
ESD treatment, all 44 patients had been infected (current infection, n=16; after eradication, 
n=28; P=1.0000). Atrophic gastric mucosa was defined according to the Kimura-Takemoto 
classification [23-25]; all 44 patients (nMGC and MGCSE-1 group) had atrophic gastric 
mucosa (closed type: n=4, open type: n=40) (P=1.0000). With regard to histological type, 
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Table 1. Clinicopathological characteristics of the 44 patients with early gastric cancer
Variables EGC (n=44) nMGC group (n=33) MGCSE-1 group (n=11) P-value
Age Median (range) 73 (58–85) 73 (58–85) 74 (65–84) 0.4319
Sex Male 32 (72.7%) 25 (75.8%) 7 (63.6%) 0.4569

Female 12 (27.3%) 8 (24.2%) 4 (36.4%)
H. pylori status (during ESD) Current infection 16 (36.4%) 12 (36.4%) 4 (36.4%) 1.0000

After eradication 28 (63.6%) 21 (63.6%) 7 (63.6%)
Atrophy Closed type 4 (9.1%) 3 (9.1%) 1 (9.1%) 1.0000

Open type 40 (90.9%) 30 (90.9%) 10 (90.9%)
Location Middle 26 (59.1%) 19 (57.6%) 7 (63.6%) 1.0000

Low 18 (40.9%) 14 (42.4%) 4 (36.4%)
Macroscopic type Flat and elevated 16 (36.4%) 10 (30.3%) 6 (54.4%) 0.1694

Flat and depressed 28 (63.6%) 23 (69.7%) 5 (45.6%)
Histological type Well-differentiated 39 (88.6%) 29 (87.9%) 10 (90.9%) 1.0000

Moderately differentiated 5 (11.4%) 4 (12.1%) 1 (9.1%)
EGC = early gastric cancer; nMGC = EGC with no confirmed evidence of metachronous lesions >3 years after curative ESD; MGC = metachronous gastric cancer; 
MGCSE = MGC developing on scars after curative ESD; MGCSE-1 = the EGC at the first ESD; ESD = endoscopic submucosal dissection.



39 lesions were well-differentiated adenocarcinomas, whereas five lesions were moderately 
differentiated adenocarcinomas; however, the histological types were not significantly 
different among all patients (P=1.0000). Furthermore, among the MGCSE groups, the 
histological type of the lesion in the MGCSE-1 and MGCSE-2 groups was the same in 9 of 11 
patients (Supplementary Table 1).

Quantification of CDO1 promoter DNA methylation in the nMGC group
In the nMGC group, the CDO1 TaqMeth values significantly differed between the T (n=33; 
median, 26.0; range, 3.1–81.2) and the TAM (n=33×4=132; median, 18.3; range, 0.0–65.8) 
tissues (P=0.0006; Fig. 4A). The CDO1 TaqMeth values for TAM were significantly lower 
than those for T. In addition, our recent study on CDO1 methylation status demonstrated 
that the methylation value was nearly zero (median, 0; range, 0.0–3.4) in 160 samples of 
the corresponding non-cancerous pancreas (non-CP) among patients with pancreatic 
ductal adenocarcinoma (PDAC) [26]. Therefore, considering the results of PDAC, the 
TaqMeth values for TAM in this study were surprisingly higher than expected. Thereafter, 
we quantified values in each of the TAMs separately (four points: oral TAM, anal TAM, right 
TAM, and left TAM) compared to the corresponding T value and found significant differences 
(P=0.0111, P=0.0451, P=0.0201, and P=0.0220, respectively; Fig. 4B).

Quantification of CDO1 promoter DNA methylation in the MGCSE-1 group
In the MGCSE-1 group, no significant difference in CDO1 TaqMeth values was identified 
between the tissue from the T (n=11; median, 40.1; range, 16.2–85.3) and TAM (n=11×4=44; 
median, 33.2; range, 7.1–100.6) (P=0.3914; Fig. 4C). Thereafter, we quantified the TAM 
values separately (four points: oral TAM, anal TAM, right TAM, and left TAM) in comparison 
with the corresponding T value, and found no significant differences (P=0.3606, P=0.9999, 
P=0.2535, and P=0.5242, respectively; Fig. 4D).

Quantification of CDO1 promoter DNA methylation in the MGCSE-2 group
In the MGCSE-2 group, no significant difference in CDO1 TaqMeth values was identified 
between the tissue from the T (n=11; median, 24.0; range, 8.6–47.2) and TAM (n=11×4=44; 
median, 24.1; range, 0.0–56.2) (P=0.5677; Fig. 4E). We subsequently quantified the TAM 
values separately (four points: oral TAM, anal TAM, right TAM, and left TAM) in comparison 
with the corresponding T value and found no significant differences (P=0.8779, P=0.3751, 
P=0.1948, and P=0.8386, respectively; Fig. 4F).

Unique characteristics of the TAM in the MGCSE-1 group
In all the groups (nMGC, MGCSE-1, and MGCSE-2 groups), we separately analyzed the values 
of T (Fig. 5A) and TAM samples (Fig. 5B). The median CDO1 TaqMeth value for the T was 
26.0 (range, 3.1–81.2) in the nMGC group (n=33), 40.1 (range, 16.2–85.3) in the MGCSE-1 
group (n=11), and 24.0 (range, 8.6–47.2) in the MGCSE-2 group (n=11), albeit without 
significant differences (P=0.1096, P=0.6180, P=0.6314, respectively; Fig. 5A). The median 
CDO1 TaqMeth value for the TAM was 18.3 (range, 0.0–65.8) in the nMGC group (n=132), 33.2 
(range, 7.1–100.6) in the MGCSE-1 group (n=44), and 24.1 (range, 0.0–56.2) in the MGCSE-2 
group (n=44), with significant differences between the MGCSE-1 group and the nMGC 
and MGCSE-2 groups (P<0.0001 and P=0.0041, respectively; Fig. 5B), and there was no 
significant difference between the nMGC and MGCSE-2 groups (P=0.0560). Intriguingly, no 
significant difference was detected between the TAM values in the MGCSE-1 group and the T 
value for the 55 cases pooled from all groups (P=0.3638; Fig. 5C).
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Prediction according to the CDO1 TaqMeth values in MGC
The optimal cut-off value for the prediction of MGC was analyzed from the TAM data in the 
nMGC and MGCSE-1 groups using receiver operating characteristic curves. The optimal 
TaqMeth value for all TAMs (n=176) in both groups was 29.1 (area under the curve [AUC], 
0.74; P<0.0001; sensitivity, 56.8%; specificity, 79.6%; Fig. 6A). Furthermore, when the 
highest value for the separate four-point TAMs in both groups was extracted, the optimal 
TaqMeth value was 43.4 (AUC, 0.81; P<0.0001; sensitivity, 81.8%; specificity, 78.8%; Fig. 6B).
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Fig. 4. Quantitative methylation-specific polymerase chain reaction for cysteine dioxygenase type 1 in the T and the TAM in EGC. (A) In the nMGC group, there was 
a highly significant difference in the TaqMeth values of CDO1 between the T and TAM tissues (P=0.0006). (B) TaqMeth values of CDO1 for the T and the separate 
TAMs (four points: oral TAM, anal TAM, right TAM, and left TAM) in the nMGC group. Each comparison is significantly different (P=0.0111, P=0.0451, P=0.0201, and 
P=0.0220, respectively). (C) In the MGCSE-1 group, there was no significant difference in the TaqMeth values of CDO1 between the T and TAM tissues (P=0.3914). 
(D) TaqMeth values of CDO1 for the T and the separate TAMs (oral TAM, anal TAM, right TAM, and left TAM) in the MGCSE-1 group. None of the comparisons were 
significantly different (P=0.3606, P=0.9999, P=0.2535, and P=0.5242, respectively). (E) In the MGCSE-2 group, there was no significant difference in the TaqMeth 
values of CDO1 between the T and TAM tissues (P=0.5677). (F) TaqMeth values of CDO1 for T and the separate TAMs (oral TAM, anal TAM, right TAM, and left TAM) in 
the MGCSE-2 group. None of the comparisons were significantly different (P=0.8779, P=0.3751, P=0.1948, and P=0.8386, respectively). 
TaqMeth values = methylation values; nMGC = EGC with no confirmed evidence of metachronous lesions >3 years after curative ESD; EGC = early gastric cancer; 
ESD = endoscopic submucosal dissection; TAM = tumor-adjacent noncancerous mucosa; T = tumor; MGCSE = metachronous gastric cancer developing on scars 
after curative ESD; MGCSE-1 = EGC at the first ESD; MGCSE-2 = EGC at the second ESD performed for treating MGC developing on scars after curative ESD.



The CDO1 TaqMeth values for all cases are presented in Supplementary Tables 2-4. In seven 
cases (21.2%), the highest value for the TAM was equal to or greater than the cut-off value 
(43.4) among the 33 patients in the nMGC group. In contrast, in nine cases (81.8%), the 
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Fig. 5. Quantitative methylation-specific polymerase chain reaction for CDO1 among the nMGC, MGCSE-1, and MGCSE-2 groups. (A) In the T tissue, there was 
no significant difference in the TaqMeth value of CDO1 among the nMGC, MGCSE-1, and MGCSE-2 groups (P=0.1096, P=0.6180, P=0.6314, respectively). (B) In 
the TAM tissue, the TaqMeth value of CDO1 in the MGCSE-1 group was significantly higher than that in the nMGC and MGCSE-2 groups (P<0.0001 and P=0.0041, 
respectively), although there was no significant difference between the nMGC and MGCSE-2 groups (P=0.0560). (C) In the T and TAM tissues, there was no 
significant difference in the TaqMeth values of CDO1 between the pooled T tissue from all groups and the TAM in the MGCSE-1 group (P=0.3638). 
T = tumor; TAM = tumor-adjacent noncancerous mucosa; TaqMeth values = methylation values; nMGC = EGC with no confirmed evidence of metachronous 
lesions >3 years after curative ESD; EGC = early gastric cancer; ESD = endoscopic submucosal dissection; MGCSE = MGC developing on scars after curative ESD; 
MGCSE-1 = EGC at the first ESD; MGCSE-2 = EGC at the second ESD for treating MGC developing on scars after curative ESD; MGC = metachronous gastric cancer; 
CDO1 = cysteine dioxygenase type 1.
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Fig. 6. Quantitative methylation-specific polymerase chain reaction for cysteine dioxygenase type 1 at all points 
and the optimal cut-off value for MGC occurrence. (A) ROC curve for all TAMs (nMGC and MGCSE-1 groups). The 
AUC was 0.74, and there was a significant difference (P<0.0001). (B) ROC curve with the highest value for the 
separate four-point TAMs (nMGC and MGCSE-1 groups). The AUC was 0.81, and there was a significant difference 
(P<0.0001). 
AUC = area under the curve; MGC = metachronous gastric cancer; ROC = receiver operating characteristic; TAM 
= tumor-adjacent noncancerous mucosa; nMGC = EGC with no confirmed evidence of metachronous lesions >3 
years after curative ESD; MGCSE = MGC developing on scars after curative ESD; MGCSE-1 = EGC at the first ESD; 
EGC = early gastric cancer; ESD = endoscopic submucosal dissection.



highest value for the TAM was equal to or greater than the cut-off value (43.4) among the 11 
patients in the MGCSE-1 group. The values significantly differed between the MGCSE-1 and 
nMGC groups (P<0.0001) (Supplementary Table 5). In three cases (27.2%), the highest value 
for the TAM was equal to or greater than the cut-off value (43.4) among the 11 patients in the 
MGCSE-2 group.

DISCUSSION

This is the first study to report on the molecular alterations associated with MGC using 
specimens of MGC developing on scars after curative resection by ESD. MGCSE was detected in 
only 0.5% of all ESD cases. The median duration for the development of new atypical EGC on 
scars after ESD was 22 months (range, 14–49 months). The MGCSE-1 group was compared to 
the nMGC group, and no clear clinicopathological differences were identified them (Table 1).  
This result suggests that MGCSE might have formed because of molecular changes in the 
background atrophic mucosa. These changes may play a critical role in carcinogenesis among 
epigenetic factors. This is also the first report of the clinicopathological features of MGCSE.

The carcinogenic process in the gastric mucosa with atrophy is mainly attributable to 
epigenetic field abnormalities [10]. Atrophy related to old age and H. pylori infection is caused 
by irritation due to chronic inflammation [10,27]. Chronic inflammation leads to DNA and 
epigenetic abnormalities in the gastric mucosa [11,28]. Particularly, epigenetic alterations 
involved in gastric carcinogenesis are considered to contribute to a two-fold higher risk than 
that associated with esophageal squamous cell carcinoma [9], which may be due to so-called 
“field cancerization,” in which epigenetic changes responsible for altering gene expression 
have already occurred in the background gastric mucosa [12]. Although the histological types 
of the MGCSE-1 and MGCSE-2 groups were almost equivalent in our study, the ESD results 
of all MGCSE groups showed that the lateral and horizontal margins were negative, and all 
cases achieved curative resection (R0 resection). Therefore, we suggest that MGCSE-1 was 
pathologically confirmed after curative resection by the first ESD and that MGCSE-2 was not 
caused by residual cancer. However, considering the presence of newly developed cancers in 
the same area, it is strongly suggested that the TAM in the MGCSE-1 group already harbored 
cancer-like changes. Furthermore, by measuring TAMs at four points rather than one, it is 
possible to confirm whether epigenetic changes have occurred in the entire TAM.

We focused on CDO1, a hypermethylated gene with particularly high specificity in human 
cancers because CDO1 is the most promising candidate gene for evaluating cancer-specific 
epigenetic changes. CDO1 is an enzyme that converts cysteine to cysteine sulfinic acid 
in cells, leading to an increase in SO3

2- mediated by aspartate aminotransferase (GOT1) 
and replenishing cystine (CYS2) in the extracellular compartment [29]. xCT mediates the 
transport of cystine from the extracellular space to intracellular compartments, facilitating 
cancer stemness [29]. Its overexpression is accompanied by the production of nuclear factor 
erythroid 2-related factor 2 (NRF2), a central redox sensor, and results in the generation of 
reactive oxygen species, thereby promoting apoptosis [30].

Among the cancer-specific methylation genes in gastric cancer, CDO1 has the highest AUC 
(0.95) for distinguishing cancerous from noncancerous tissues [14]. This finding suggests 
that CDO1 methylation in cancer cells may be strongly associated with carcinogenesis. This 
study revealed that the TAM tissues in the nMGC group were hypermethylated, although 
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not as much as the T tissue (Fig. 4A). Our previous study on CDO1 methylation in PDAC 
showed that 90% of cancerous tissues were methylated, whereas non-CP tissues exhibited 
no methylation [26]. In addition, in remnant gastric cancer, CDO1 was shown to be more 
highly methylated in cancerous tissue than in the noncancerous mucosa far from the tumor; 
however, its methylation level was detectable in the noncancerous mucosa [31]. Furthermore, 
CDO1 methylation has been reported to be significantly higher in precancerous lesions 
of other cancers, such as small bowel cancer, colorectal cancer, and intraductal papillary 
mucinous neoplasm, than in noncancerous tissues [20,21,32]. This study demonstrated 
for the first time that CDO1 hypermethylation in the TAM was more frequently detected in 
the MGCSE-1 group than in the nMGC group. In addition, the CDO1 methylation values for 
the TAM in the MGCSE-1 group were significantly higher than that in the MGCSE-2 group 
(Fig. 5B). Moreover, there was no significant difference in the CDO1 methylation values for 
the TAM between the MGCSE-2 and nMGC groups (Fig. 5B). Since there were no confirmed 
cases of a new MGCSE after the second ESD in the MGCSE-2 group, we propose that 
CDO1 hypermethylation is involved in carcinogenesis. Moreover, using the optimal CDO1 
methylation value (43.4), we identified 9 out of 11 cases in the MGCSE-1 group. Maeda et al. 
reported an association between the development of MGC and hypermethylation of three 
genes (miR-124a-3, EMX1, and NKX6-1) in the gastric mucosa [33]. In this study, although the 
target genes were different, the TAM of the MGCSE group exhibited CDO1 hypermethylation, 
indicating a high risk of carcinogenesis even after curative ESD.

Furthermore, MGCSE groups are considered useful as models for investigating the 
carcinogenesis of gastric cancer. The results of this study are essential, as the results in the 
MGCSE groups reflect epigenetic abnormalities that had already occurred. In predicting 
MGC, Asada et al. [34] examined gene methylation at a fixed point in the antrum (the 
lesser curvature, 2 cm from the pyloric ring) and reported a 2.3-fold increased risk of MGC. 
However, identifying the site of development of gastric cancer is difficult and cannot be 
accurately determined by prior biopsy. In contrast, in the MGCSE groups, MGC developed 
in the same location (MGCSE-2) as that of the first ESD, and the resection was curative 
(MGCSE-1). Furthermore, in the MGCSE-2 group, there was no development of MGCSE 
after the second ESD. Therefore, measuring CDO1 methylation of the T and TAM in nMGC, 
MGCSE-1, and MGCSE-2 specimens may predict the occurrence of new cancers in the same 
location in which the first ESD was performed for EGC. Therefore, MGCSE may be an 
important model for predicting the development of EGC.

Our study has several important limitations. First, DNA methylation does not reflect a change 
that occurs in only a single gene; there is a strong association between methylated genes [35]. 
We have recently reported that when combined with HOPX/Reprimo/CDH1, CDO1 methylation 
can predict future occurrences of remnant gastric cancer [31]. It has been shown that the 
analysis of methylation of only a single gene, CDO1, may predict MGC; however, other 
methylated genes should be considered in combination with CDO1 for the prediction of MGC 
and in clinical applications. Second, we did not examine the case of MGC that did not develop 
scars after ESD in this study. We suggest that CDO1 hypermethylation may be useful in 
predicting MGC compared to nMGC and MGCSE groups. However, since MGCSE is relatively 
rare, a comparison with MGC not developing on scars after ESD should be performed in the 
future to improve the accuracy of predicting MGC in CDO1 hypermethylation. Furthermore, 
in this study, using the nMGC group as a control, the optimal methylation value of CDO1 
(43.4) was used to identify nine of the 11 cases in the MGCSE-1 group. However, among the 
nMGC group, we found seven cases in which the highest value for the TAM exceeded the 
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cut-off value (43.4). These cases need to be closely monitored because of the possibility of 
developing metachronous lesions.

In conclusion, MGCSE specimens can be used to evaluate CDO1 DNA methylation. The results 
showed that CDO1 hypermethylation of the TAM in the MGCSE-1 group was comparable to 
that of T. Thus, CDO1 promoter DNA methylation was implicated in the occurrence of MGC 
and may be an important biomarker for predicting MGC.
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