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Making use of biological nitrogen fixation (BNF) with pulses and green manure

legumes can help to alleviate nitrogen deficiencies and increase soil fertility, problems

faced particularly in smallholder agriculture in Subsahara Africa (SSA). The isolation

of indigenous rhizobia provides a basis for the formulation of rhizobial inoculants.

Moreover, their identification and characterization contribute to the general understanding

of species distribution and ecology. Here we discuss global species discovery of

Bradyrhizobium spp. Although recently the number of validly published Bradyrhizobium

species is rapidly increasing, their diversity in SSA is not well-represented. We summarize

the recent knowledge on species diversity in the Bradyrhizobium yuanmingense lineage

to which most SSA isolates belong, and their biogeographic distribution and adaptations.

Most indigenous rhizobia appear to differ from species found on other continents. We

stress that an as yet hidden diversity may be a rich resource for inoculant development

in future. As some species are exceptionally temperature tolerant, they may be potential

biofertilizer candidates for global warming scenarios.
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INTRODUCTION

In the past 50 years, increases in crop yield have been striking in some regions, e.g., particularly
rice yields in Asia, due to green revolution. However, this high-input approach has been less
successful in Sub-SaharanAfrica (SSA) with its hugely variable environmental, climatic and cultural
conditions (Rudebjer et al., 2013). The predominant agricultural practice based on improved
varieties of common staple crops in high-input systems has not well-succeeded to address food
insecurity and malnutrition in Sub-Saharan Africa, where the prevalence of undernourishment is
still at 20.8%, not having decreased since 2010 (FAO, 2017). As exemplified for many SSA areas,
agriculture in the Okavango region is largely dominated by smallholder and subsistence farming.
Recent surveys conducted at sites in Angola, Namibia and Botswana revealed that 99, 88, and 59%
of the households, respectively, practice arable agriculture (Domptail et al., 2013; Große et al., 2013;
Kowalski et al., 2013). Variability of yields, risk for crop failure, limited financial resources, and
low-fertility N-poor soils are among the contributing factors to food insecurity in these rainfed
agriculture systems (Pröpper et al., 2010). These risks are predicted to increase in SSA due to climate
change. Projections of consequences of climate change at the local scale indicated that the Kavango
basin will become warmer (1.5–2.5◦C), and obtain less mean annual precipitation (50–100mm)
until 2045 (Pröpper et al., 2015).

Making use of biological nitrogen fixation (BNF) of root nodule symbioses with pulses
and legume green manure can help to alleviate nitrogen deficiencies and increase soil fertility

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.02194
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.02194&domain=pdf&date_stamp=2018-09-20
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:breinhold@uni-bremen.de
https://doi.org/10.3389/fmicb.2018.02194
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02194/full
http://loop.frontiersin.org/people/582909/overview
http://loop.frontiersin.org/people/370635/overview


Grönemeyer and Reinhold-Hurek Diversity of African Bradyrhizobium

(Pule-Meulenberg et al., 2010). The application of rhizobial
inoculant carrying highly effective rhizobia can boost BNF and is
regarded as a cost-effective and sustainable approach to increase
yields in N-limited agricultural systems with low productivity
(Dakora and Keya, 1997; Mpepereki and Pompi, 2003). However,
established inoculant strains often fail when transferred to
regions featuring environmental conditions dissimilar to their
original habitat, presumably due to poor persistence and
competitiveness (Roughley, 1970; Mpepereki and Pompi, 2003;
Zhang et al., 2003; Law et al., 2007). Many agriculturally
important legumes enter a symbiotic association with rhizobia
of the genus Bradyrhizobium. Especially pulses commonly used
by smallholders in SSA, cowpea (Vigna unguiculata), Bambara
groundnut (Vigna subterranea), and peanut (Arachis hypogaea),
are nodulated by Bradyrhizobium spp. Here, we will first highlight
that the diversity of bradyrhizobia – as potential adapted
inoculants - is largely underexplored in SSA, and provide recent
insights into their biogeography and diversity.

GLOBAL SPECIES DISCOVERY OF
BRADYRHIZOBIUM SPP.

For a long time the species diversity inside Bradyrhizobium
remained underexplored due to the exceptional conservation
of the 16S rRNA gene sequence that is routinely used as a
marker for species discrimination (van Berkum and Fuhrmann,
2000). The high genospecies diversity inside Bradyrhizobium
was first discovered in a DNA-DNA hybridization study by
Willems et al. (2001). With the help of alternative markers
and multilocus sequence analysis (MLSA) (Stepkowski et al.,
2005; Vinuesa et al., 2005b), species delineation became more
feasible. Now the number of validly published bradyrhizobial
species is rapidly increasing since 2012 (Figure 1) and currently
counting 42 validly published species, more than half of which
have been published since 2014 (Parté, 2014; de Lajudie and
Young, 2017). Approximately one third of the described species
originates from South America, one third from other regions,
and a large number from China, while only few originate
from SSA (Figure 1). As yet, only five species from SSA have
been published: Bradyrhizobium kavangense (Grönemeyer
et al., 2015b), Bradyrhizobium namibiense (Grönemeyer et al.,
2017), Bradyrhizobium subterraneum (Grönemeyer et al.,
2015a), Bradyrhizobium vignae (Grönemeyer et al., 2016),
and “Bradyrhizobium shewense” (Aserse et al., 2017). Thus,
only few genotypes for development of effective inoculants for
agricultural crops are taxonomically well-described and thereby
well-comparable.

Within the sub-Saharan regions, the plant species richness
and endemism is particularly high in the Cape Floristic Region,
the East Coast near Mozambique, and the Congo-Zambezi
watershed (Linder, 2001). Among Leguminosae / Fabaceae,
roughly 1,500 were yet alone considered in Southern Africa
(Trytsman et al., 2016). SSA being the center of origin for many
legumes, these regions might entail a high diversity of effective
microsymbionts (Pule-Meulenberg, 2014). The full potential of
SSA indigenous legumes may not yet have been recognized,

although they can be predicted as valuable germbank for possible
agricultural use in arid and semi-arid regions (Sprent et al.,
2010). Uncovering the full diversity and species richness of the
respective symbionts may provide a vast resource for inoculant
development for legume crops and forage plants. As especially
in these regions, smallholder farming is widespread that could
greatly profit from adapted inoculant technology, future research
should focus on unraveling the putative biodiversity of rhizobia
and particularly Bradyrhizobium in SSA.

PUTATIVE BRADYRHIZOBIUM DIVERSITY
TO BE UNCOVERED IN SSA

The increased number of bradyrhizobial species allowed several
studies to uncover a geographic distribution. Most of our
knowledge about rhizobia and their biogeography is based on
studies conducted in Asia, Europe and the Americas (Pule-
Meulenberg, 2014). Information on SSA rhizobia is limited
despite SSA regions presumably entail a high microsymbiont
diversity that is favored by at least three factors: First, SSA is
characterized by heterogeneous soils and climates, providing
diverse habitats (Petersen et al., 2010; Gröngröft et al., 2013;
Wade et al., 2014). Second, rhizobial diversity may be higher in
arid and semi-arid regions frequently found in SSA, as observed
for Senegal (Wade et al., 2014) or Brazil (Martins et al., 1997).
It has been suggested that the selection pressure on rhizobia
may lead to the evolution of stress tolerant strains which could
partly explain the increased diversity observed in water limited
environments. Third, Africa is the center of origin of many
legumes (including cowpea and Bambara groundnut) and a rich
diversity of wild legume species exists (Pule-Meulenberg, 2014;
Lemaire et al., 2015).

The tribe Crotalarieae, for instance, is largely endemic to SSA
(14 endemic genera comprising over 1,000 species) and known
for its high microsymbiont diversity, including Bradyrhizobium,
Rhizobium, Methylobacterium, Microvirga, Mesorhizobium,
Ensifer, and Burkholderia (Aserse et al., 2012; Sprent et al., 2013;
Ndungu et al., 2018). Earlier studies using DNA fingerprinting
already indicated a high microsymbiont diversity in SSA regions
(Botha et al., 2004; Law et al., 2007). To date, only a small number
of surveys used MLSA to uncover the microsymbiont diversity
in SSA. The few studies focusing on “cowpea group” rhizobia
(from agricultural plants) spanned the countries of Botswana
and South Africa (Steenkamp et al., 2008), Botswana, South
Africa, and Ghana (Pule-Meulenberg et al., 2010), Senegal (Wade
et al., 2014), Namibia and Angola (Grönemeyer et al., 2014),
Ghana and South Africa (Puozaa et al., 2017), Mozambique
(Chidebe et al., 2018), Kenya (Ndungu et al., 2018), and Ethiopia
(Degefu et al., 2018). Their main findings were in general
agreement: First, almost all detected genotypes presumably
represented yet unknown species (Steenkamp et al., 2008;
Grönemeyer et al., 2014; Wade et al., 2014; Degefu et al., 2018).
Second, genotype occurrence strongly relied on the geographic
location (Steenkamp et al., 2008; Pule-Meulenberg et al., 2010;
Grönemeyer et al., 2014; Wade et al., 2014). Third, the highly
diverse genotypes were mainly assigned to a sub-generic group,
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FIGURE 1 | Increase of described species of the genus Bradyrhizobium with time. Data includes all species officially listed (Parté, 2014; de Lajudie and Young, 2017),

and the effectively, but not validly, published species “B. arachidis,” “B. valentinum,” “B. brasilense,” “B. sacchari,” “B. centrolobii,” “B. macuxiense,” and “B.

shewense” (Wang et al., 2013; Durán et al., 2014; Aserse et al., 2017; da Costa et al., 2017; de Matos et al., 2017; Michel et al., 2017).

the Bradyrhizobium yuanmingense lineage (Wade et al., 2014),
forming a clade with B. vignae and B. subterraneum, but not to
the sub-generic group of Bradyrhizobium japonicum (Steenkamp
et al., 2008; Grönemeyer et al., 2014; Wade et al., 2014).

The expectation of high bradyrhizobial species diversity from
agricultural plants in SSA is supported by the phylogeny of
published isolates of the abovementioned studies (Figure 2).
Matching the previous findings, many isolates form distinct
phylogenetic clusters and could not be assigned to recognized
species. In the rare cases where African genotypes cluster with
named species, sequence divergence is high, indicating different
genospecies affiliations. Thus most indigenous rhizobia appear to
differ from species found on other continents.

The observed high rhizobial diversity entails the discovery of
yet unknown species. Remarkably is, however, that recognized
species are virtually absent in SSA. Apart from the geographic
location, this observation might be related to the natural
selectivity of the sampled legume hosts and the lack of
taxonomic studies. Relatively few studies focused on natural
microsymbionts of cowpea and especially Bambara groundnut
(Pule-Meulenberg, 2014; Puozaa et al., 2017). The first validly
published species from this host, B. subterraneum (Grönemeyer
et al., 2015a) was mainly isolated from Bambara groundnut,
and also from peanut. Though the number of studies is limited,
Bambara groundnut is apparently a promiscuous host. In
our cross-inoculation experiments, almost the whole spectrum
of tested bradyrhizobia, including reference species, induced
effective nodulation on Bambara groundnut (Grönemeyer
et al., 2014). Only five out of 26 cowpea rhizobia failed
to nodulate Bambara groundnut in a study in Zimbabwe
(Mpepereki et al., 1996), albeit indicating a certain degree
of selectivity. Most other detected phylotypes include isolates
from cowpea. This is not surprising since cowpea is one
of the most promiscuous legumes (Lewin et al., 1987; Bala
and Giller, 2001). Cowpea rhizobia collections are usually

highly diverse (Grönemeyer et al., 2014; Wade et al., 2014),
and several studies even reported strains from genera other
than Bradyrhizobium to nodulate cowpea (Mpepereki et al.,
1996; Martins et al., 1997). Hence, cowpea isolates obtained
at a specific site largely reflect the local abundance of
competitive bradyrhizobial microsymbionts, providing a solid
basis to study bradyrhizobial biodiversity. Several studies
surveyed the rhizobial diversity associated with cowpea in
China (Zhang et al., 2008), India (Appunu et al., 2009), Japan
(Sarr et al., 2011), Mexico (Ormeno-Orrillo et al., 2012),
and Spain (Bejarano et al., 2014). In contrast to African
studies, phylotypes could be clearly assigned to named species.
Almost all cowpea isolates from Japan represented either
B. japonicum, Bradyrhizobium diazoefficiens, B. yuanmingense, or
Bradyrhizobium elkanii, whereas B. yuanmingense dominated in
India and Bradyrhizobium cytisi and Bradyrhizobium canariense
in Spain, for instance.

LINKAGE OF GENOTYPE OCCURRENCE
AND GEOGRAPHIC LOCATION

The increased number of bradyrhizobial species allowed several
studies to uncover a geographic distribution, and biogeography
could be linked to different variables such as climate (Vinuesa
et al., 2008; Risal et al., 2010; Adhikari et al., 2012), soil pH
(Li et al., 2011; Adhikari et al., 2012), water regime (Wade
et al., 2014), salinity and soil potassium content (Zhang et al.,
2011; Chen et al., 2016), and geographic isolation (Stepkowski
et al., 2012). Biogeography is apparently related to adaptations
at multiple levels, ranging from climate to micro niche (Wade
et al., 2014), and a biogeographic distribution of SSA isolates
from agricultural plants is also reflected in Figure 2. A survey
on the impact of climate, for instance, indicated that B.
japonicum, B. canariense, and B. yuanmingense are mainly
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FIGURE 2 | Maximum likelihood-based phylogeny inferred from glnII-recA

sequences of SSA bradyrhizobia and species type strains. SSA isolates from

agricultural plants (see legend) obtained in five African studies are represented

(Steenkamp et al., 2008; Grönemeyer et al., 2014; Wade et al., 2014; Puozaa

et al., 2017; Chidebe et al., 2018). Considerably shorter sequences were

excluded, and representatives were selected for identical sequences. The tree

was calculated from 751 positions using the General Time Reversible model. A

bootstrap value is indicated when the associated taxa clustered together in

≥50% of 500 pseudoreplicates. The scale bar indicates the number of

substitutions.

found in temperate regions in the Northern Hemisphere,
in Mediterranean regions, or in the subtropics and tropics,
respectively (Vinuesa et al., 2008). Consistently, B. japonicumwas
shown to be less competitive in soybean nodulation under higher

temperatures (Suzuki et al., 2014). The relevance of adaptation
at a more local level is indicated by the prevalent detection
of Bradyrhizobium liaoningense in alkaline soils (Li et al.,
2011; Adhikari et al., 2012), contrasting both Bradyrhizobium
pachyrhizi and B. canariense that are primarily found in acid
soils (Vinuesa et al., 2005a; Grönemeyer et al., 2014). Species
abundance might be further conditioned by physico-chemical
parameters like soil osmotic strength, as indicated in a recent
survey in Senegal (Wade et al., 2014).

Thus, the assignment of a bradyrhizobial strain to a distinct
species can generate information on adaptational properties,
which in turn account for a strain’s suitability to serve as
inoculant at a particular site. As species delineation is mainly
based on similarity of conserved genes differences, adaptational
properties may be further refined by accessory genes. To date,
however, information on bradyrhizobial species biogeography
in SSA regions is limited. Species may be restricted to certain
geographic locations, but othersmay have spread amongmultiple
regions and continents, with soil-contaminated seeds or artificial
inoculation facilitating long-distance dispersal (Perez-Raminez
et al., 1998). Host control and preferential selection can provide
competitive advantages and thus constitute key drivers for the
successful invasion into new geographic regions, especially when
rhizobia and their hosts were co-introduced (Heath and Tiffin,
2009; Porter et al., 2011; Hollowell et al., 2016).

The uniqueness of SSA rhizobia might rather be attributed
to their exclusion or the enrichment of other species by more
selective and better studied legumes of temperate regions.
However, many SSA rhizobia were found to possess the
genomic background to produce highly decorated Nod factors,
presumably allowing a broad host-range (Steenkamp et al.,
2008). Nod factors are lipochitooligosaccharides “decorated”
by diverse modifications, that induce early responses of the
symbiotic interation in the legume host. Symbiotic genes are
readily exchanged between bradyrhizobial species (Horn et al.,
2014; Hollowell et al., 2016). Moreover, most bradyrhizobial
lineages feature a broad host range, without strong barriers to
adapt their chromosomal backgrounds to novel hosts (Parker,
2015). Consequently, host plant selectivity may in general have
a minor impact on species abundance (Hollowell et al., 2016),
and it is more likely that the observed biogeography is due to an
adaptation of species to soil-climatic factors. Consistently, many
cowpea and Bambara groundnut isolates effectively nodulate
peanut and hyacinth bean (Grönemeyer et al., 2014). Thus,
the range of sampled legume hosts is obviously not a major
determinant of the observed species uniqueness.

Alternatively, unique soil-climatic conditions in SSA might
have played a major role, according to the Baas-Becking
hypothesis “everything is everywhere, but the environment
selects.” However, several studies in SSA explored the rhizobial
diversity under highly variable soil-climatic conditions
(Grönemeyer et al., 2014; Wade et al., 2014). Moreover,
several regions in southern Africa and Australia exhibit very
similar soils and climates, as illustrated by the issue that weeds
are easily exchanged (Kottek et al., 2006; Sprent et al., 2013).
Nevertheless, their native floras are very different (Sprent et al.,
2013). Consequently, geographic isolation and adaptation of
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rhizobia to various soil-climatic conditions and undomesticated
legume hosts might have favored the evolution of diverse
endemic species. Geographic isolation of SSA rhizobia was
indicated in a previous study (Steenkamp et al., 2008): The
authors found that, despite being extensively exchanged via
horizontal gene transfer, all bradyrhizobial nodA sequences
detected in SSA cluster in one of the seven recognized major
clades (Stepkowski et al., 2007), contrasting Asian and American
(but not European) nodA sequences which distribute over
various clades. Recently, 16 nodA clades have been described,
where clade III with the majority of SSA isolates is cosmopolitan,
members being widespread in sub-Saharan Africa, the Americas,
Australia and in southern and eastern Asia (Aserse et al., 2012;
Beukes et al., 2016). Since the clade II strains include North
African and European ones the African nodA clade might be
ancient and spread to other continents until the Sahara desert
formed. The resulting geographic isolation then prevented the
import of nodA lineages (or rhizobial species) that evolved on

other continents (Stepkowski et al., 2007). Conversely, species
which evolved in SSA did not spread to other continents and
were thus not detected in the many surveys conducted outside
Africa.

TEMPERATURE TOLERANCE OF
BRADYRHIZOBIA IN GLOBAL CLIMATE
CHANGE SCENARIOS?

Geographic distribution might also be explained by adaptation
at higher levels such as regional climatic conditions (Vinuesa
et al., 2008; Wade et al., 2014). An initial survey using multilocus
sequence analysis to assess bradyrhizobial biogeography found
that B. japonicum, B. diazoefficiens (former B. japonicum Ia,
Delamuta et al., 2013), and B. elkanii are very widespread
across the Northern Hemisphere and are thus detected in
more temperate regions (Vinuesa et al., 2008). Most studies

TABLE 1 | Maximum growth temperature (MGT) and geographic occurrence of selected Bradyrhizobium species and African phylotypes.

Species/Phylotype MGTa Occurrenceb

B. vignae 40◦C Namibia (Kavango), Senegal, Ghana, Southern India, Northern Australia

B. subterraneum 38◦C Namibia (Kavango), Botswana (Notwane), South Africa (Taung), Northern Australia (Kununurra), Western Australia (Carnarvon), Peru

B. kavangense 38◦C Namibia (Kavango)

22 2-1 38◦C Namibia (Kavango), Northeastern Brazil (Bahia), Argentina (Cordoba)

45 1-4 38◦C Angola

B. yuanmingense 38◦C China (Hebei, Anhui, Sichuan, Hubei, Peking, Guangxi, Xinjiang, Henan, Laixi Country, Jiangsu), Taiwan, India (Thar desert, Madhya

Pradesh, Tamil Nadu, Karnataka, Andhra Pradesh), Thailand (Uttradit, Lampang), Myanmar (Shan State), Vietnam, Southern Japan

(Okinawa) Northern Australia (Kununurra), Bostwana (Rasesa), Northern Peru, Northern Ghana, South Africa (Taung), Senegal, and

more

18C 2-1/26 3-1 38◦C Namibia (Kavango)

B. namibiense 37◦C Namibia (Kavango)

B. ganzhouensec 37◦C Southern China (Ganzhou)

36 1-1c 35◦C Namibia (Kavango)

SA-3 (3-2/1-7) 35◦C South Africa (Roodeplaat, Taung), Botswana (Maun, Rasesa, Francistown, Gaborone), Namibia (Kavango), Ethiopia,Senegal,

Southern China

B. diazoefficiens <37◦C USA (North Carolina, Maryland, Mississippi, Iowa), Canada (Quebec, Ontario), Japan (Kyushu, Yamagata, Fukushima, Kumamoto,

Hokkaido, Kagoshima, Miyagi, Niigata), China (Heilongjiang, Chengdu, Hubei, Anhui, Guangdong, Guangxi), Nepal (Kathmandu,

Khumaltar, Khadichaur), Brazil, and more

B. japonicum <37◦C Japan, China (Heilongjiang, Chengdu, Guangdong, Guangxi, Sichuan, Anhui), Nepal (Kathmandu), USA (Mississippi, Maryland),

Canada (Ontario, Quebec), Argentina, Brazil, South Africa (Mpumlanga)

B. lupinic <37◦C USA (Georgia, California), Spain (Canary Islands, Llombai), Northern Tunisia, Southern Australia (Esperance, Carrabin), England

(Rothamsted Research)

30 2-1 <35◦C Namibia (Kavango), Southern India (Karnataka)

51 1-3/42 1-1 <35◦C Angola, Malaysia (Luasong), Southeastern Brazil (Seropedica), Mexico (Veracruz)

GHxc Unknown South Africa, Mexico (Veracruz)

GHivc Unknown South Africa

TUTVSBEKc Unknown Ghana, Mozambique, South Africa, Nigeria, Ethiopia, Southern China, Myanmar, Taiwan, India, USA, and more

TUTVU36c Unknown Mozambique, Venezuela, Brazil, Mexico

AD1T2 3-1 Unknown Angola, South Africa, Ethiopia, Ivory Coast, Brazil, Argentina, Mexico, China, Malaysia

TUTVU77c Unknown Mozambique, South Africa, Ethiopia, Brazil (Porto Trombetas), Mexico, Costa Rica, Malaysia (Luasong), South Korea (Cheongju),

China, Myanmar, USA (North Carolina), Canada (Quebec)

aData from Grönemeyer et al. (2014) and Delamuta et al. (2013).
bBased on ITS and glnII sequence identities of ≥ 98% in Genbank.
cNo ITS sequence data available.
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conducted in SSA (see also Figure 2) pointed out that indigenous
rhizobia were not assigned to the clade of B. japonicum. B.
japonicum presumably evolved in regions outside SSA. Here,
it adapted to more temperate and wet regions, thus probably
lacking the prerequisite of higher level adaptation to many
African climates. Moreover, a survey on soybean rhizobia along
a climate gradient in Nepal revealed that roughly half of the
isolates from temperate regions were related to B. japonicum,
which was absent in subtropical regions (Risal et al., 2010).
Indeed, the temperature tolerance for growth of Bradyrhizobium
spp. varies greatly. Table 1 compares published maximum
growth temperatures with geographic distribution, indicating
that B. japonicum and closely related B. diazoefficiens and
Bradyrhizobium lupini are all widespread in more temperate
regions of both hemispheres, while phylotypes from warmer
climates show a higher temperature tolerance. Many strains
of B. japonicum grow best at 28◦C (Munévar and Wollum,
1981). The genus Bradyrhizobium was indicated to optimally
grow at 25–30◦C, maximal 33–35◦C (Kuykendall, 2005). In
contrast, many SSA phylotypes still grow at 38◦C, B. vignae
exhibiting an exceptional high temperature tolerance growing
above 40◦C (Table 1; Grönemeyer et al., 2014, 2016). The
known geographic range of B. vignae includes regions Namibia,
Senegal, also Ghana and South Africa (Puozaa et al., 2017),
Southern India and Northern Australia (Table 1 and Figure 2).
A common feature of the regions may be climatic conditions.
According to the Köppen-Geiger climate classification (Kottek
et al., 2006), strikingly, climate of Namibia and Senegal is largely
categorized as BSh (arid to semi-arid, steppe climate, hot), and
Ghana, Southern India and Northern Australia are classified
as Aw (tropical; hot with pronounced dry seasons). Thus,
B. vignae is probably competitive in hot regions with seasonal
drought, matching its exclusively high temperature tolerance.
Furthermore, another phylotype cluster SA-3 (Steenkamp et al.,
2008) represented by e.g., strain 1–7 from Namibia (Figure 2)
intermingled with isolates obtained from Botswana and South

Africa, as implying that this heterogeneous cluster is widespread
in parts of southern Africa. Climate in Botswana is mostly
given the same category as the Okavango region, and occurrence
extends to regions of warm climate such as Senegal, Ethiopia,
and Southern China (Table 1). Especially in regions with periodic
harsh heat, temperature tolerance may be a decisive advantage in
competition with other rhizobia, ensuring better persistence in
soils.

PROSPECTS

It became apparent that the vast diversity of Bradyrhizobium
species in SSA is as yet underestimated. As regional strains
may be developed into adapted inoculants for pulses and green
manure, research in diversity, and characterization of nodule
symbionts in SSA should be intensified. Particularly the high
temperature tolerance of some African Bradyrhizobium species
makes them potential candidates for application in global climate
change scenarios that predict temperature increases. Future
research should also address the molecular basis for the unusual
temperature tolerance.
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