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Abstract

The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique
opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding
determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low
sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous
challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and
side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased
comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based
filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On
average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the
experimental structure, with an average root mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å
for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To
predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top
ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to
unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 103

fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental
constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to
contact the ligand. Additionally, in the case of DOR, knowledge of a single specific ligand-protein contact improved
sampling efficiency 7 fold. These findings offer specific guidelines which may lead to increased success in determining
receptor-ligand complexes.
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Introduction

Being able to model the complex interactions between receptors

and small molecule ligands offers immense opportunities for the

basic biochemical understanding of signaling processes and for the

development of pharmacological tool compounds and drugs that

modulate receptor function. The human genome encodes for

approximately 800 G-protein coupled receptors (GPCRs) that

orchestrate the communication between a cell and its surroundings

– an obvious place for small molecule drugs to interfere [1]. While

more than 26% of our current small molecule drugs target Class A

GPCRs alone [2], structure-based drug discovery has played a

limited role in developing these molecules. GPCRs have been the

subject of many structural, comparative modeling and docking

studies. However in many cases, models are affiliated with high

uncertainty and inaccuracy. Primary reasons include a lack of

adequate template structures, the existence of multi-conforma-

tional states which require intense conformational sampling of not

only the protein side chain but also backbone conformational

space, in combination with the large variety of ligands that interact

with GPCRs, including very flexible molecules which are

notoriously challenging subjects for accurate docking [3,4].

Nevertheless, increasing the availability of reliable GPCR models

for structure-based drug discovery would be beneficial in the

development of novel, potent and subtype-selective molecules.

Since the landmark publication by Rasmussen et al. in 2007 [5],

the number of experimentally determined GPCR structures has

been increasing rapidly and now totals to 18 distinct GPCR

structures that are recorded in the Protein Data Bank (PDB).

While this is still just a small subset of the GPCR space, it provides

a more substantial basis for comparative modeling and docking

simulations.
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Despite the increase in experimental structural information, it

remains difficult to predict ligand-binding conformations in

comparative models of GPCRs for all except the receptors most

similar to those which have been solved experimentally [3,4,6].

This difficulty originates in part from the necessity of sampling

both receptor and ligand flexibility which, due to the necessarily

approximate nature of the force fields and protein-less/ligand-less

sampling methods, results in the sampling of biologically irrelevant

conformations. This complicates discrimination between the

global minimum energy conformation (GMEC) and the local

minimum energy conformations (LMEC) of the binding complex,

as deeper sampling reveals many different energy-equivalent

binding modes. The reason for the difficulty in GMEC and LMEC

discrimination is, as discussed by Fleishman and Baker [7], related

to the small energy gap in ligand binding, which moreover is

challenging to measure as it is often mediated by polar contacts

and water molecules.

For GPCRs, the ligand docking problem is even more difficult

for three reasons. Firstly, the alignment is not trivial, as the

transmembrane helices occasionally contain bulges and kinks and

the length of the transmembrane helix is not conserved. Secondly,

GPCRs are able to assume multiple different conformations with

approximately the same energy, as demonstrated by studies on the

beta-adrenergic receptors [8,9]. Thirdly, three extracellular loops

must be modeled, as they often contact the ligand and are involved

in ensemble stabilization in some receptors [10,11].

At the same time, improved algorithms and high-performance

computing revolutionize our ability to sample protein conforma-

tional space swiftly, enhancing the possibility to accurately dock

ligands into comparative models [12]. This, combined with the

increasing number of available templates, lets us assess the

applicability of rapid Monte Carlo Metropolis (MCM) sampling

as implemented in the Rosetta suite of programs for GPCR

comparative modeling and docking [13]. Specifically, we address

the accuracy of backbone placement in transmembrane and

extracellular loops, sampling of ligand binding modes and side-

chain conformations in the binding site, and strategies to select

accurate models from the large conformational space sampled.

Methods

Database Generation
The highest resolution experimental structure for each unique

GPCR in the Protein Data Bank (PDB) at the time of writing was

chosen for comparative modeling and ligand docking, as shown in

Table 1. This includes the following G-protein coupled receptors:

rhodopsin [14], b1-adrenergic [15], b2-adrenergic [16], A2A

adenosine [17], CXCR4 chemokine [18], dopamine D3 [19],

histamine H1 [20], S1P1 sphingosine 1-phosphate [21], M2

muscarinc acetylcholine [22], M3 muscarinic acetylecholine [23],

mu-opioid [24], kappa-opioid [25], N/OFQ opioid [26] and

delta-opioid [27]. Comparative models were constructed of each

GPCR using the other 13 structures as templates. Ligand docking

was performed with the small molecules crystallized within each

receptor (Figure S1). A flowchart demonstrating the full protocol

carried out in this study is shown in Figure 1. Full command lines

for each step are included i (File S1).

Sequence Alignment and Threading
The first step in constructing the models was performing a

sequence alignment of the target sequence with a structural

alignment of the other 13 GPCRs to be used as templates. A

structure-based sequence alignment was generated of all 14 GPCR

templates using MUSTANG [28] as seen in Figure S2 (Figure 1,

Step 1). The sequence of the target GPCR was then aligned with

the profile of structurally aligned templates using CLUSTALW

[29] (Figure 1, Step 2). The sequence of the target GPCR was then

placed onto the helical backbone coordinates of each template

structure (Figure 1, Step 3). Any missing density and variable loop

regions were constructed using the ab initio cyclic coordinate

descent protocol in Rosetta [30,31] (Figure 1, Step 4).

Building in Missing Density and Extracellular Loop
Regions in the Comparative Models

Missing density in the threaded models due to gaps or insertions

in the sequence alignment were built in Rosetta using Monte

Carlo Metropolis (MCM) fragment replacement combined with

cyclic coordinate descent loop closure [30,31] (Figure 1, Step 4).

Cyclic coordinate descent (CCD) was inspired by inverse

kinematic applications in robotics and closes loops by minimizing

the sum of the squared distances between three backbone atoms of

the moving N-terminal anchor and the three backbone atoms of

the fixed C-terminal anchor through the adjustment of dihedral

angles. Its speed and its ability to close a loop over 99% of the time

gives CCD an advantage over other loop closure methods. In

brief, loop regions defined by the user are chosen in a random

order and for each loop, w-y angles of backbone segments from

homologous sequence fragments from the PDB, excluding those

from the target experimental structure, are introduced into the

loop regions. After the fragment substitution, small movements in

the w-y angles are performed to close breaks in the protein chain.

After each defined loop has been closed, resulting full sequence

models were subjected to eight iterative cycles of side chain

repacking and gradient minimization of w, y, and x angles using

the Rosetta scoring function with an implicit membrane potential

[32]. A total of 200 models were constructed with each threaded

model and the lowest energy model was chosen for a full

remodeling of the extracellular loops (Figure 1, Step 5).

Extracellular loops, as shown in Figure S3, were extensively

rebuilt using both the cyclic coordinate descent loop closure

method described above and the kinematic loop closure method

described below. Approximately 1000 models were built for each

target-template pair, resulting in a minimum of 13,000 compar-

ative models per target structure.

A limited benchmark over the comparative modeling of six

GPCRs was performed to compare the results of the kinematic

loop closure (KIC) method in Rosetta [33] with CCD. KIC

analytically determines all mechanically accessible conformations

for six pivot torsion angles of a peptide chain using polynomial

resultants. During kinematic loop closure, all mechanically

accessible conformations for w and y dihedral angle torsions from

the first, middle and last residues in a loop segment, designated as

pivot torsions, are sampled. The remaining torsion angles are

randomly sampled using Monte Carlo minimization from

Ramachandran probabilities of each amino acid. The six pivot

torsions are solved analytically to close the loop. The protocol is

performed for 720 rounds of high resolution loop closure and

models accepted by the Metropolis criterion are subjected to side

chain repacking and gradient minimization as described above.

The data from the benchmark set comparing the two methods

indicated that overall, CCD produced comparative models with

an average root mean square deviation (RMSD) of 2.0 Å over

extracellular loops (ECL) 1 and 3, which was significantly lower

than the average RMSD over ECL1 and 3 for KIC at 2.6 Å

(Table S1). The difference between CCD and KIC for the average

RMSD over the full receptor was even more striking at 3.8 Å and

6.9 Å respectively. Results from CCD loop modeling were

consequently used for further analysis.

Docking in G-Protein Coupled Receptor Models
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Selection Methods of Comparative Models for Docking
Comparative models were filtered for ligand docking using two

different methods (Figure 1, Step 6). Both methods partially build

on the observation that receptor accuracy is correlated with the

Rosetta energy function (Figure S4). The first method was based

on clustering of the 10% best scoring structures. Clusters were

determined based on pairwise RMSD of all C-alpha atoms using

bcl::Cluster [34] and a cluster radius of 3.0 Å. The best scoring

models in each of the clusters were used for further analysis. The

second method was created to avoid sampling of non-native ligand

binding pocket conformations. Pocket residue positions were

defined across all GPCRs as positions in the sequence alignment

where C-alpha atoms of the residues had a distance of less than 4.0

Å to the ligand in at least one experimental structure. This yielded

a list of 29 residue positions, which was reduced to 25 residue

positions when the four residue positions at the top of transmem-

brane helices (TM) two and five were removed to avoid bias from

structural alignment of the proteins. Pocket residues are shown in

the alignment in Figure S2. Comparative models passed the filter

only if C-alpha atoms of all pocket residues had an alignment

equivalent pocket residue in another GPCR within a distance of a

residue position specific cutoff. The cutoffs were chosen to be

residue specific to represent varying flexibility in different parts of

the receptor. The maximum distance between a specific pocket

residue in any receptor and an equivalent pocket residue in any

other GPCR, according to the alignment shown in Figure S2, was

chosen as a distance cutoff for that particular residue position.

When applying the knowledge-based filter, the self-experimental

structure was not considered to avoid circular bias.

Generation of Ligand Conformers
In preparation for docking, ligand conformers were generated

by MOE (Molecular Operating Environment, Chemical Com-

puting Group, Ontario, Canada) using the MMFF94x force field

and Generalized Born implicit solvent model (Figure 1, Step 7).

Conformers were generated using 10,000 iterations of the Low

Mode MD method [35] with a redundancy cutoff of 0.25 Å.

Energy cutoffs for ligand conformers were dependent on the

number of rotatable bonds: 3 kcal/mol for 1–6 rotatable bonds,

5 kcal/mol for 7–9 rotatable bonds and 7 kcal/mol for 10–12

rotatable bonds [36]. The RMSD distribution for the generated

ligand conformers compared to the bioactive ligand conformation

is shown in Figure S10.

The ligand conformers were protonated as shown in Figure S1.

These protonation states were determined based on the local

environment in the individual experimental structures. In the case

of ligand C-24, the protonation state is not what would be

predicted without information from the experimental structure.

Figure 1. Flowchart of the comparative modeling and ligand docking protocol. For each step in the protocol, the name of the application
or method used to execute each step is included. Where multiple methods are mentioned, the results from the method in italics were carried on to
the next step.
doi:10.1371/journal.pone.0067302.g001

Docking in G-Protein Coupled Receptor Models

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e67302



T
a
b
le

1
.
G
-p
ro
te
in

co
u
p
le
d
re
ce
p
to
r
e
xp

e
ri
m
e
n
ta
l
st
ru
ct
u
re
s
an

d
th
e
ir
lig

an
d
s
u
se
d
in

th
is
st
u
d
y.

P
ro

te
in

n
a
m
e

P
D
B
ID

/C
h
a
in

L
o
o
p
le
n
g
th

E
C
L
1
/

2
/3

a
R
e
so

lu
ti
o
n
(Å
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We note that this adds some bias to the method. Likewise, the

stereochemistry of the ligand (E)-IDT in CXCR4 was taken

directly from the experimental structure. Of note, the experimen-

tal structure was solved with a mixture of (E) and (Z)-form, which

cannot be clearly distinguished from the electron density

(Raymond Stevens, personal communication).

Docking Ligands into a Chosen Ensemble of Comparative
Models

Ligand docking into the comparative models was performed

with Rosetta Scripts [37–40] (Figure 1, Step 8). Each ligand was

allowed to sample binding modes in a 5.0 Å radius from the

coordinate representing the center of the ligand binding mode as

given in the experimental structure. This adds some bias to the

sampling, as the smallest unbiased docking sphere enclosing all

ligand binding conformations has a radius greater than 5.0 Å.

During the low-resolution phase of docking, rigid body orientation

of the ligand centroid is performed through translation until the

geometric center of the ligand is in a position not occupied by

atoms in the receptor. High-resolution docking then begins with

1000 cycles of full rotational freedom until the attractive and

repulsive forces fall below a threshold value. Six cycles of side-

chain rotamer and ligand conformer sampling are then coupled

with 0.1 Å, 0.05 radian ligand movements simultaneously in a

Monte Carlo simulated annealing algorithm. All rotatable bonds

within the ligand, except for planar conjugated bonds, were

allowed full flexibility as indicated within the ligand parameters

file. Ligand conformers are randomly chosen until the Monte

Carlo criterion has been satisfied. A final minimization combines

side-chain rotamer sampling with backbone torsion angle mini-

mization with harmonic constraints on the C-alpha atoms.

The energy function used during the docking procedure

contains terms for van der Walls attractive and repulsive forces,

statistical energy derived from the probability of observing a

particular side-chain conformation in the PDB, hydrogen bonding,

electrostatic interactions between pairs of amino acids, and

solvation assessing the effects of both side-chain/side-chain

interactions and side-chain/ligand interactions. For each ligand,

over 2,000 docked complexes were generated and evaluated in

comparison to the experimental ligand binding mode using

RMSD to the heavy atoms.

Assessing the Size of the Ligand Conformational Space
We propose a new measure to enable comparison of docking

benchmark studies across targets and to test how the methods

compare to random sampling – the uniform sampling efficiency

(USE2.0). The proposed measure is equivalent to the sampling

frequency of better-than-2.0-Å-RMSD-binding-modes that would

occur by random sampling in a 5.0 Å docking sphere with no

occluding protein, given a set of ligand rotamers and full rotational

and translational freedom. To calculate USE2.0, each i rotamer of

the N rotamers in the generated ligand ensemble was aligned to

the experimental structure and rotated along its principal axes

(w,h,y) using M (40) uniform spacings. For sampling to be

uniform, a correction factor, Cw, is needed to account for the fact

that the number of ways of choosing h, given w, is proportional to

the circumference of the circle that h draws on the w,h sphere [41].

The translation distance that increased the RMSD to 2.0 Å was

determined for each rotamer-rotation set r(i,w,h,y). USE2.0 was

then determined as the fraction between the volume of space

containing binding modes below 2.0 Å and sampled volume of the

5.0 Å (R) docking sphere.

USE2:0~
XN

i~1

XM

w

XM

h

XM

y

r3i,w,h,y
Cw
�
R3

The distribution of RMSDs that arise from uniform sampling of

ligand conformations is nontrivial, dependent on the ligand size

and on the generated conformers. For the ligands considered in

this dataset, USE2.0 varies from 1025 for DOR to 1027 for S1P1.

The algorithm to determine USE2.0 is available i (File S2).

Enrichment of Native-like Binding Modes using known
Contacts between the Ligand and GPCR

When a mutation of a residue strongly affects ligand binding,

this residue is often interpreted as having a direct contact to the

ligand. To assess how this type of constraints enriches for the

correct binding mode in our ligand-protein ensembles, we

determined the average enrichment through 10,000 iterations of

n randomly chosen known contacts with n running from 0 to all

known contacts for a particular receptor-ligand interaction.

Ligand-protein Evaluation through RMSD-based
Clustering and Binding Energy

Results from the ligand docking study were evaluated using

clustering on pairwise RMSD values calculated over the ligand

heavy-atoms using bcl::Cluster with a 2.0 Å cutoff (Figure 1, Step

9). The lowest energy binding modes of the five largest clusters

were chosen for further analysis. The coverage and accuracy of

correct ligand-receptor contacts compared to the experimental

structure was calculated on the top ranked models using SimiCon

[42]. Contact coverage is calculated as the number of correct

ligand contacts from the model divided by the total number of

ligand contacts made in the experimental structure. Accuracy of

correct contacts is calculated as the number of correct contacts

divided by the total number of ligand contacts made in the model.

All plots were made with the Python 2D plotting library,

matplotlib [43] and Prism 5.01 (GraphPad Software, San Diego,

CA). The alignment figure was created used Aline [44]. Structural

figures were created with PyMOL (PyMOL Molecular Graphics

System, Version 1.5.0.4, Schrödinger, LLC).

Results and Discussion

The results are presented in four parts. In the first part, we

discuss the accuracy of comparative models generated by

sequential sampling algorithms of the transmembrane and loop

regions. Secondly, we discuss methods to select the most accurate

models for ligand docking. Thirdly, we assess the equivalency of

the local minimum interaction energy conformation (LMIEC) with

the lowest energy that we sample and the experimental ligand

binding mode and ask how much receptor flexibility can be

sampled before the lowest energy LMIEC deviates from the

experimental ligand-protein complex. In the fourth part, we assess

the sampling efficiency of native-like ligand binding modes by

docking the ligand ensemble into the ensemble of comparative

models. Various methods used to identify native-like ligand

binding modes in the resulting ensembles are explored.

Templates of Higher Sequence Identity Produce More
Accurate Comparative Models

We generated 13,000 comparative models of each receptor

through minimization and loop building in a sequential fashion as
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described in the Methods section. To assess the parameters which

determine comparative model accuracy in the initial receptor

ensemble, we considered the total energy of the models and the

sequence identity of the template. Sequence identity was

calculated on the aligned GPCR sequences as seen in Figure S2.

As shown in Figure 2A, the average root mean square deviation

(RMSD) of comparative models built with templates having

greater than 50% sequence identity are consistently below 5.0 Å

compared to the experimental structure. For residues in the ligand

binding pocket (the pocket residues), the average RMSD of

comparative models built with templates above 70% sequence

identity within the pocket residues are frequently within 2.0 Å of

the experimental structure (Figure 2B). In fact, only those targets

with templates above 50% sequence identity were able to sample

ligand binding pockets within 1.0 Å of the experimental structure

(Figure S5).

As can be expected, this includes all target-template pairs within

the same sub-family; for example, B1Ar and B2Ar serve as the best

templates for each other at 74% sequence identity, as does M2R

and M3R at 75% sequence identity. The b-adrenergic receptors

also produced accurate models when used as templates for the

muscarinic receptors at 48% sequence identity. The opioid

receptors produced the most accurate comparative models when

used as templates for each other at 65% to 75% sequence identity.

In most cases, templates with high sequence identity also generate

the lowest energy models in comparison to models based on other

templates (Figure S5). Where there were exceptions, the lowest

energy models were produced with templates with at least 45%

sequence identity to the target receptor. Without a template

having sequence identity above 50%, it continues to be difficult to

get accurate models of the ligand binding pocket. While it was

demonstrated that building multiple models based on different

templates provides a better opportunity to sample the correct

conformation and this is leveraged here [12], the generation of a

smaller but improved conformational receptor ensemble could

benefit from using multiple template structures in a single model

[45]. Recently, Worth et al. 2011 demonstrated that similar or

improved comparative models could be generated using a multi-

template approach, where rotameric states as well as specific

sequence and structural features could be modeled in light of the

entire set of available experimental structures which otherwise

might be absent when using a single template [46].

Correct Helical Conformations are Recovered in Regions
of Aligned Secondary Structure

C-alpha RMSD in comparison to the experimental structure

was measured for the full receptor, transmembrane region and

second extracellular loop (ECL2) region in the lowest energy

models and the top ranked models by clustering (Table 2). Among

the top ranked models for all 14 receptors, the transmembrane

region was modeled with an average RMSD of 2.5 Å compared to

their corresponding experimental structures. This average drops to

2.2 Å when considering only those models with template sequence

identities above 50%.

The maximum transmembrane region RMSD among top

ranked models was seen for CXCR4 at 3.2 Å. In this case, helical

placement of TM7 was shifted by six residues between the target

sequence and the sequence of the templates, resulting in a gap in

the alignment (Figure S2). Without reliable backbone coordinates

to model the top of TM7, the resulting models rely on Rosetta to de

novo fold the region using the CCD loop closure algorithm. The

helical structure is recovered, but the top two helical turns of TM7

in the models are displaced from that of the experimental structure

by distance of 13.3 Å (Figure 3A).

However, the conformation of the transmembrane helices is

reasonably accurate throughout regions where transmembrane

helices are aligned, specifically in terms of helical kinks. Deviations

from ideal helical conformation are typically caused by proline or

glycine residues and are important for both function and folding

[47]. Major helical kinks occur in regions where proline residues

are highly conserved between the GPCR sequences, particularly in

TM 5, 6 and 7. In the two cases where templates had a proline or

glycine-induced kink that was not present in the target, Rosetta

was able to remove the kink and recover the correct conformation.

The template of the top ranked S1P1R model, D3R, contains a

proline at P84 which causes a kink in TM2 that was resolved by

Rosetta (Figure 3B). The same is seen for TM4 in KOR, where the

Figure 2. Template sequence identity versus comparative model RMSD. Each point represents the average RMSD over all comparative
models of a target GPCR built using a particular template. For each target-template pair, percent sequence identity was calculated on the sequence
alignment shown in Figure S2. Sequence identity is shown here to correlate with low average A) receptor RMSD, calculated over the C-alpha atoms of
the full receptor and B) pocket residue RMSD, calculated over the C-alpha atoms of residues within the ligand binding pocket.
doi:10.1371/journal.pone.0067302.g002
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glycine-induced induced kink at G178 in DOR was removed

during Rosetta energy minimization to recover the correct

conformation (Figure 3C).

Native-like Loop Conformations are Sampled but are
Difficult to Identify by Score

Rebuilding the three extracellular loops was a point of focus

during the modeling protocol because of their role in ligand

binding. The first and third extracellular loops range in length

from five to ten residues, which is within the range of successful

loop prediction for Rosetta when applied on experimental

structures [30,31]. Here we find that the first and third

extracellular loops are built with an average RMSD of 2.0 Å to

the loop conformation from the experimental structures (Table

S1). In several cases, identification of the correct loop conforma-

tion was possible using the energy of the loop (Figure S6, Figure

S8).

The second extracellular loop (ECL2) ranges in length from 16

to 31 residues. While the length of ECL2 is beyond the capability

of prediction for loops excised from experimental structures,

restriction of the sampling space was provided by requiring

formation of the conserved disulfide bonds. The results demon-

strate that ranking the most accurate ECL2 is difficult based on

energy and clustering, since no top ranked models contained

ECL2 RMSDs under 2.0 Å (Table 2 and Figure S7). However, it is

possible to sample these native-like loop conformations, which is

needed during docking to generate the correct ligand binding

mode as observed in the experimental structure. Specifically, loop

conformations were sampled below 2.0 Å for MOR, M2R and

D3R (Table 2 and Figure 4). When focusing on the C-terminal

region of ECL2, which is most often involved in ligand binding, we

find native-like sampling for all models, with 0.4% to 85% of

sampled ECL2 conformations below 2.0 Å (Table 2).

Accurate ECL2 Conformations Often Recover Secondary
Structure Elements

On average, the ECL2 RMSD for top ranked models by

clustering was 5.3 Å, with the most accurate ECL2 conformations

given for D3R at 3.6 Å, M2R at 4.2 Å and B1Ar at 4.3 Å (Table 2).

Compared to the length of other ECL2s, which are about 21

residues long, D3R was relatively the easiest ECL2 to model with

only 16 residues (Figure 4A). Other comparative models where

ECL2 regions were most accurately sampled were those with

secondary structure within the loop. Applying a fragment-based

approach to de novo loop modeling allows for the insertion of

secondary structure into loop regions where it is predicted from

the sequence. In four of six cases, Rosetta was able recover helical

elements found in ECL2 of experimental structures and one of five

cases where b-sheets were found in ECL2 (Figure S9). MOR was

the one case where b-sheets were conserved in the model, and the

most accurately sampled ECL2 had an RMSD of 1.6 Å

(Figure 4B). B1Ar (Figure 4C), B2Ar, M2R (Figure 4D) and

M3R were the models in which helical elements were correctly

sampled. In cases where predicted secondary structure in the

target agrees with that of the template, such as with B1Ar and

B2Ar, it would be beneficial to keep the loop conformation of the

template and enforce the helical element [48]. The most difficult

loop conformations to model were in S1P1R (Figure 4E) and bRh

(Figure 4F), where the top ranked models only came within 5.4 Å

and 7.5 Å of the experimental structure respectively. Both

receptors have ECL2s longer than twenty residues with little

secondary structure to stabilize the conformation. Additionally,

ECL2 in both receptors packs against the N-terminal region,

which was removed prior to comparative modeling. Therefore,

inclusion of the N-terminal region into comparative modeling

might be beneficial in these cases.

Table 2. Benchmark results for comparative modeling of G-protein coupled receptors.

Protein name

Best sampled ECL2 Full
receptor/TM region/ECL2
RMSD (Å)

Lowest energy model Full
receptor/TM region/ECL2
RMSD (Å)

Top ranked model via
clusteringa Full receptor/TM
region/ECL2 RMSD (Å)

Percent of models with
ECL2b under 2.0 Åc

BRh 4.2/1.3/3.3 4.7/2.5/6.2 4.1/1.4/7.5 0.4

B1Ar 2.8/1.6/2.9 3.7/1.7/4.5 3.2/1.2/4.3 53.9

B2Ar 3.4/1.4/2.7 3.2/1.9/5.9 3.7/1.7/4.4 45.2

A2Ar b – 3.6/2.5/2 3.6/2.5/2 6.8

CXCR4 3.9/3.0/2.3 4.6/3.3/3.2 4.2/3.2/6.5 20.4

D3R 3.9/1.9/1.8 3.0/1.8/3.6 3.0/1.8/3.6 85.2

H1R b – 1.6/2.5/2 2.4/2.4/2 0.8

S1P1R 3.3/2.0/3.4 5.8/2.1/4.8 3.6/2.0/5.4 0.6

M2R 2.2/2.4/1.9 2.2/2.3/4.2 2.2/2.3/4.2 7.0

M3R 3.1/2.4/2.3 3.1/2.9/5.3 2.7/2.4/5.2 9.7

MOR 4.7/3.1/1.6 3.6/1.9/4.6 2.4/2.8/5.8 14.6

KOR 3.7/2.6/2.7 4.4/2.5/6.7 3.1/2.9/5.8 3.8

NOP 2.2/2.6/2.6 3.2/2.8/6.6 3.0/2.4/5.8 10.5

DOR 2.0/2.8/2.5 3.3/2.2/5.5 3.3/2.2/5.5 10.6

Full receptor, transmembrane region and extracellular loop two RMSD over C-alpha atoms compared to the experimental structure is reported for models in each
category.
aTop ranked model is determined by the lowest energy model from the largest cluster.
bECL2 of A2Ar and H1R could not be evaluated because of unresolved structure in this region of the experimental structure in the Protein Data Bank.
cECL2b represents the C-terminal half of ECL2, after the disulfide bond, which contains the residues that contribute to ligand binding as represented in the experimental
structures from the PDB.
doi:10.1371/journal.pone.0067302.t002
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Comparison with Previous Studies on GPCR Loop
Modeling

Other studies have likewise addressed GPCR loop modeling.

They include the protein local optimization program (PLOP)

[48,49], which samples amino acid rotamers in loop regions and

evaluates models using a physics-based energy function while

explicitly modeling membrane molecules. Modeller uses the

CHARMM-22 force field and knowledge-based energy terms to

optimize the loop conformation [50]. The algorithm employed by

Nikiforovich et al. [51] performs geometric sampling of the loops

using all possible conformations of the peptide backbone. In

comparison to their study, Rosetta was able to rank loop

conformations in comparative models more accurately than the

loop conformations built de novo in experimental structures by

Nikiforovich et al. [51]: bRh was modeled to 7.5 Å RMSD

compared to 8.4 Å, B1Ar was modeled to 4.3 Å compared to 6.4

Å, and B2Ar was modeled to 4.4 Å compared to 7.4 Å. In their

most recent study, Goldfeld et al. reported top ranked loop

conformations built de novo in experimental structures as 2.7 Å for

B1Ar and 2.2 Å for B2Ar [48]. However, the algorithm they used

enforced the helical bounds within ECL2 for these structures.

When considering the results from true de novo constructed loop

conformations without the helical constraints, top ranked loop

conformations from Rosetta are also more accurate than PLOP,

whose top ranked ECL2 conformations were 9.1 Å for bRh, 5.6 Å

for B1Ar and 13.8 Å for B2Ar.

These results indicate that even current state-of-the-art methods

for loop modeling continue to have difficulty determining loop

conformations, especially within comparative models. However,

the experimental structures which we attempt to reproduce still

only represent one of many possible loop conformations for these

flexible regions and it is possible that more of the sampled

conformations are in fact realistic [52,53].

Rosetta Captures Native-like Ligand Binding Pocket
Conformations and Samples Beyond the Flexibility
Evident from Experimental Structures

To assess the sampling density of residues lining the ligand-

binding pocket, we aligned all the models to the experimental

structures and measured the collapse of the pocket as the change in

distance for each residue C-beta atom (C-alpha for glycine) to the

closest ligand atom as determined from the experimental

structures (Figure 5). The models display increased flexibility at

the top of the transmembrane (TM) helices, as would be expected

due to the variability represented by the crystallographic

templates. With an average collapse of -0.1 Å and a standard

deviation of 3.6 Å within all the comparative models generated,

Rosetta samples beyond the flexibility that is represented by the

experimental structures, which have an average collapse of -0.1 Å

with a standard deviation of 1.0 Å (Figure 5). As the experimental

structures are still a small and biased representation of the GPCR

space, it is unclear if Rosetta is introducing too much flexibility in

these regions. However, for the present study, many comparative

models within our ensemble will not make constructive interac-

tions with the ligand due to non-native placement of the residues

involved in ligand binding.

Knowledge-based Filters Improve the Accuracy of the
Ligand-binding Pocket

Because Rosetta samples the flexibility of the transmembrane

region beyond the variability that is represented in the experi-

mental structures, a knowledge-based filter was created which

focused on the pocket residues alone to identify models that would

be suitable for ligand docking. Models with structural deviation

beyond the maximum flexibility observed within the binding

pocket in existing experimental structures were removed, as

described in the Methods section. The filter accepted between

0.2% and 10% of the models from the initial receptor ensemble

Figure 3. Structural representations of transmembrane helical regions from GPCR comparative models. A) TM7 in the top ranked
comparative model of CXCR4 (blue) deviates from experimental structure (gray), specifically at W283 (highlighted in yellow). Cases where helical kinks
exist in the template but are resolved in the comparative model include B) S1P1R, where the top ranked model (blue) resolves the kink in TM2 cause
by P84 (highlighted in red) in the D3R template (green) and C) KOR, where the top ranked model (blue) resolves the kink in TM4 caused by G178
(highlighted in red) from the DOR template (green). The top ranked model is the best scoring model of the largest cluster, where clustering is
performed on pairwise full receptor C-alpha RMSD over the top ten percent of comparative models by energy.
doi:10.1371/journal.pone.0067302.g003
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and the overall RMSD of these models were comparable to those

identified by traditional clustering methods (Figure 6A). For

several receptors, there was a correlation between pocket RMSD

and receptor energy (Figure S5) and based on this correlation,

energy was used to reduce the filtered ensemble to a maximum of

100 structures. In this filtered ensemble, the receptor collapse was

0.3 Å with a standard deviation of 0.8 Å, which is slightly greater

compared to what is seen in the experimental structures. This is

possibly due to favorable energy when collapsing the pocket. The

average RMSD of residues constituting the common ligand

binding pocket is significantly improved compared to a receptor

ensemble selected by clustering of the initial receptor ensemble

(Figure 6B).

Accuracy of the Ligand Conformer Ensemble is Highly
Dependent on Ligand Flexibility

The generation of ligand conformations is not a trivial process,

as the bioactive ligand conformation need not occupy its aqueous

GMEC [36,54,55]. Our approach was to create ensembles of low

energy ligand conformations (LMECs) and allow Rosetta to

minimize these conformations in the context of a fully flexible

receptor. Nevertheless, ligand ensembles will inevitably contain

irrelevant conformations which results in the search of irrelevant

binding modes. Low energy ligand conformations were generated

with MOE and the energy cutoff was determined by the number

of rotatable bonds within the ligand [36], as discussed in the

Methods section.

To evaluate how the use of such ligand ensembles would affect

sampling efficiency of ligand binding modes with RMSD below

2.0 Å, the Uniform Sampling Efficiency of binding modes below

Figure 4. Structural representations of extracellular loop two from comparative models compared to experimental structures. For
A) D3R, B) MOR, C) B1Ar, D) M2R, E) S1P1R and F) bRh, the experimental structure is represented in gray, the most accurately sampled model is
represented in yellow and the top ranked model is represented in blue. The top ranked model is the best scoring model of the largest cluster, where
clustering is performed on pairwise full receptor C-alpha RMSD over the top ten percent of comparative models by energy.
doi:10.1371/journal.pone.0067302.g004
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2.0 2.0 Å (USE2.0) was calculated for all ligand ensembles and

compared to that of the bioactive ligand conformation. While the

uniform sampling efficiency dropped by only 6.063.8 fold for the

majority of the ligands by using ligand conformers instead of the

bioactive ligand conformation, it dropped by 68.1, 50.6, 42.4 and

27.2 fold for IT1t, C-24, ML056 and beta-FNA respectively

(Table 1 and Figure S10). These ligands are characterized by

many degrees of freedom, which contribute to the difficulty of

sampling the bound conformation accurately.

While a benchmark of ligand ensemble generation methods was

beyond the scope of this study, we noted some reduction in the

number of non-native ligand conformers by using the Generalized

Born implicit solvent instead of the distance-dependent dielectric

constant. Further improvement might be possible in some cases by

using MD-simulations to generate a canonical ligand ensemble

weighted according to the Boltzmann distribution to identify the

most populated and thereby most probable ligand conformations.

For large, flexible ligands, a fragment-based docking approach

Figure 5. Ligand binding pocket flexibility within comparative models compared to experimental structures. For each of the 26 pocket
residues in the ligand binding pocket of the receptor, pocket collapse is defined as the change in distance from each pocket residue to the ligand,
measured between the model and the experimental structure. A positive pocket collapse value indicates that the pocket residue moves closer to the
ligand in the model compared to the experimental structure, while a negative pocket collapse value indicates movement towards the receptor. The
width of the beanplot area represents the number of models having a pocket collapse of a certain value for the threaded models (blue) and for all
generated comparative models after loop rebuilding and energy minimization (orange), with corresponding blue and orange horizontal lines
representing the average pocket collapse over the given set of models.
doi:10.1371/journal.pone.0067302.g005

Figure 6. Comparison of two comparative models analysis methods: filtering by ligand binding pocket residues and clustering on
RMSD. For each receptor, the ten lowest energy models of the largest five clusters are represented in green and the one hundred lowest energy
models from the knowledge-based filter on residues in the ligand binding pocket are represented in blue. The width of the beanplot area represents
the number of models having a particular A) receptor RMSD and B) pocket residue RMSD, with the corresponding horizontal lines representing the
average RMSD for all models clustered by RMSD (green) and models from the knowledge-based filter (blue).
doi:10.1371/journal.pone.0067302.g006
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might be more suitable and has already been applied in many drug

design studies [56–58].

Interaction Energy is not Reliable for Identification of the
Experimental Ligand Binding Mode when Docking into
Flexible GPCR Comparative Models

The bioactive ligand conformation from the experimental

structure as well as ligand conformers generated by MOE were

docked into the top ranked comparative models as evaluated by

clustering and the knowledge-based filter. While Rosetta considers

the energy of the receptor while sampling ligand binding poses,

noise generated by the multiple loop conformations makes it

difficult to identify low energy binding modes using the total

Rosetta energy for the receptor-ligand complex. As a result, we

choose to make the assumption that all structures from the

comparative model ensemble have equal energy and accuracy

when docking the ligands. Thus the local minimum interaction

energy conformation (LMIEC) with the lowest energy that we

sample needs to equate the energy of the experimental ligand

binding mode in order to be useful for its identification. To test the

extent to which this occurs, the bioactive ligand conformation was

re-docked into the experimental structure it came from with no

relaxation of the complex after docking (Figure S11). In 13 out of

14 cases we find that the lowest energy LMIEC was within 2.0 Å

of the experimental ligand binding mode and that other LMIECs

were significantly separated from the lowest energy LMIEC by

4.663.0 Rosetta Energy Units (REU). The one case where the

lowest energy LMIEC deviated from the experimental ligand

binding mode is IT1t in CXCR4, which has exceptionally few

interactions to the protein, 7 water molecules within 4 Å, and

contacts a residue in the N-terminal region, which is not

represented in our models.

When repeating the protocol with the addition of flexibility

within the receptor through a minimization step, the lowest energy

LMIEC deviated from the experimental ligand binding mode in 6

out of 14 cases and with an insignificant energy gap of 0.362.1

REU, showing that lowest energy LMIEC is not suitable for

identification of the experimental ligand binding mode in flexible

models. However, while the ligand binding mode within a RMSD

of 2.0 Å to the experimental structure could not be identified

consistently by interaction energy in this highly biased analysis, it

was possible to sample the correct binding mode in all 14 cases

(Table 3).

Sampling of Native-like Ligand Binding Modes is on
Average 103 Fold Increased over Random Sampling

Having generated receptor-ligand complexes through docking,

we asked how frequently the experimental ligand binding mode

was sampled within an RMSD of 2.0 Å and compared this to the

sampling efficiency that can be achieved using uniform sampling

in a 5.0 Å docking sphere with no protein (USE2.0). In the

receptor ensemble that was selected based on the knowledge-based

filter, we found that the experimental ligand binding mode was

sampled in all cases with an average of 103 fold increase over

USE2.0 (Figure 7 and Table 3). The correct binding mode for

S1P1R and CXCR4 was sampled correctly least often with only

one correct binding mode out of approximately 104 generated

models. The reason for the difficulty of sampling the correct

S1P1R ligand binding mode is most likely related to its flexibility

and its contacts to the N-terminus, which is lacking in our models.

The low number of ligand-protein contacts in the model seems to

be the main reason for the poor sampling efficiency of IT1t in

CXCR4, which as discussed above, was not in an interaction

energy minimum when its bioactive conformation was docked into

a backbone static receptor. Even so, sampling the experimental

ligand binding mode within 2.0 Å RMSD was increased 300 fold

over USE2.0 for both S1P1R and CXCR4, demonstrating

preference of biologically relevant ligand-protein interactions

during the docking procedure.

On the other end of the spectrum of sampling efficiency is

DOR, which sampled the correct binding mode in 266 out of

approximately 10,000 cases –103 times better than USE2.0. The

ligand in DOR, natrindole, has only 2 degrees of freedom, with all

conformers below 1.0 Å of the bioactive ligand conformation

(Table 1), and binds to the receptor mainly through hydrophobic

contacts and one salt bridge. For all other cases, docking multiple

ligand conformations into the comparative models sampled

binding modes within 2.0 Å of the experimental binding mode

less than 1% of the time (Figure 7).

Sampling of Native-like Ligand Binding Modes Improve
within the Knowledge-based Filtered Comparative Model
Ensemble

To assess the effect of the knowledge-based filter we compared

the sampling efficiency in models selected with the knowledge-

based filter receptor ensemble with those chosen by traditional

clustering methods and found that sampling efficiency is improved

in 10 out of the 14 cases (Table 3 and Figure 7).

Additionally, as an attempt to identify which parameters of the

receptor models yielded native-like ligand binding modes, we

examined the importance of the pocket residue RMSD in Figure 8.

Accuracy between the C-alpha atoms of the pocket residues does

not guarantee accurate ligand placement, as side chain placement

varies greatly and creates many non-native binding pockets. Also,

given the flexibility of the ligand conformations, it is expected that

the docking algorithm detects alternate binding modes within a

particular binding pocket conformation. Despite this, we show that

more accurate placement of the residues within the ligand binding

pocket leads to more binding modes sampled within 2 Å of the

experimental ligand binding mode using the knowledge-based

filters and templates of high sequence identity (Figure 7, Figure

S12). Importantly, while we show a correlation between pocket

RMSD and ligand RMSD, the same effect cannot be shown when

selecting receptor models using full receptor RMSD based

clustering. This is likely due to the irrelevant noise that arises

from non-pocket residues.

Interaction Energy Enriches for Experimental Ligand
Binding Modes

Despite the lack of robustness in the use of interaction energy to

identify the correct binding modes in relaxed experimental

structures, we expected that it might be useful for enrichment of

correct binding modes in our docking ensembles by removing

obvious non-fit ligand-protein interactions. We found that an

enrichment of approximately three fold can be achieved in most

cases by taking the 10% best scored structures, as shown in

Figure 9. However, when taking the top 10% of structures for

bRh, CXCR4 and M3, sampling efficiency dropped. There was

no correlation between optimal cutoff value and the overall

sampling efficiency or the size of the largest cluster (data not

shown).

Clustering Aids in Selecting Native-like Models
In spite of the low sampling efficiency of the experimental ligand

binding modes, we hypothesized that clustering mediated through

total energy optimization during docking might occur, and thus
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offer a method to identify native-like ligand binding modes.

Notably, however, the Rosetta ligand docking algorithm does not

in principle generate a Boltzmann distribution, but instead

emphasizes sampling of rare binding modes, in hope of identifying

a rare native-like global minimum interaction energy conforma-

tion [39]. This might blur any tendencies for clustering around an

experimental ligand binding mode. Clustering was performed on

the heavy-atom ligand RMSD with a cutoff of 2.0 Å and the

lowest energy binding modes of the largest five clusters were

examined further. Other cutoffs of 2.5, 3.0 and 3.5 Å, were also

considered, but did not provide any improvement of clustering

performance. The percentage of models in the largest clusters was

below 1% for most receptors (Figure 10). For the receptors in

which convergence occurred, however, there was some correlation

between cluster size and ligand RMSD (Figure 10A).

Within the largest clusters for each receptor, there was on

average 12% coverage and 10% accuracy of the correct contacts

between the ligand and receptor (Table 4 and Figure 10B). For

CXCR4, KOR and NOP, alternate modes are preferred over the

experimental binding mode. In examining cases where the

experimental binding mode is not preferred, several problems

are identified which keeps the ligand from binding in the correct

mode. For CXCR4 and NOP, less than 30% of the ligand

conformers came within 2.0 Å of the bioactive ligand conforma-

tion, resulting in inaccurate docking results. For ligands binding

high within the receptor binding sites such as A2Ar, incorrect loop

placement in the models blocks the ligand from docking in the

correct mode (Figure 11A). Incorrect loop placement can also

induce hydrogen bonds favorable to the ligand which move it into

an incorrect binding mode, as shown in KOR (Figure 11B). For

many ligands, Rosetta places the ligand in the correct position but

is unable to discriminate the correct interactions and flips the

ligand orientation as seen in H1R (Figure 11C), indicating possible

inaccuracies within the force field and improper treatment of polar

interactions. There were two cases, DOR and M2R, in which

Rosetta was able to identify the correct binding mode within 2.0 Å

in the top ranked clusters (Table 4), shown in Figure 11D and 11E.

Docking naltrindole in DOR and 3-quinuclidinyl-benzilate in

M2R was simplified by the limited number of rotatable bonds in

the ligand and high sequence identities of the templates.

Comparison with Previous Studies on Ligand Docking
into GPCR Comparative Models

Using Glide [59] and Induced Fit Docking [60] to dock ligands

within biased comparative models of GPCRs, Beuming and

Sherman [6] ranked ligand binding modes within 2.5 Å of the

experimental ligand binding mode in six out of the ten receptors

they modeled. In these six cases, success was likely due to the

structural similarity of the templates, which always came from

receptors of the same sub-family: b-adrenergic receptors were used

as templates for each other and for H1R and the muscarinic

receptors were used as templates for each other. Alignments were

manually refined to ensure correct alignment of loop regions and

the disulfide bridge within ECL2. Only regions with missing

density according to the alignment were rebuilt using PLOP [48].

Additionally, the ligand from the template structure remained

within the model during the comparative modeling process, which

may have assisted in the preservation of the ligand binding pocket.

While remaining relatively unbiased in sequence alignment and de

novo loop rebuilding, Rosetta was able to sample binding modes

within 2.5 Å of the experimental ligand binding mode in all cases.

However, inaccuracies in the energy function and flexibility

Table 3. Sampling efficiency for ligand docking results.

Protein
name

Bioactive ligand
docked to
experimental
structure, no
minimization,
n =10001

Bioactive ligand
docked to
experimental
structure,
minimized, n =10001

Bioactive ligand
docked to top
models from
knowledge-based
filter, n =20001

Bioactive ligand
docked to top
models from
clustering by
RMSD, n=60001

Ligand conformers
docked to top
models from
knowledge-based
filter, n = 100002

Ligand conformers
docked to top
models from
clustering by
RMSD, n=60002

BRh 0.05 (5N104) 0.04 (5N104) 1.94 (7N102) 2.40 (2N102) 2.66 (5N102) 3.52 (70)

B1Ar 0.03 (5N104) 0.02 (5N104) 2.05 (5N102) 2.11 (4N102) 2.18 (103) 2.07 (103)

B2Ar 0.03 (4N104) 0.03 (4N104) 2.19 (3N102) 2.10 (3N102) 2.27 (103) 2.40 (8N102)

A2Ar 0.08 (9N103) 0.81 (2N103) 2.85 (20) 2.92 (10) 3.22 (102) 3.70 (30)

CXCR4 0.54 (104) 0.96 (5N103) 2.68 (102) 2.62 (102) 4.00 (3N102) ND*#

D3R 0.04 (4N104) 0.08 (3N104) 2.22 (3N102) 2.40 (2N102) 2.59 (7N102) 2.70 (6N102)

H1R 0.01 (3N104) 0.03 (3N104) 2.07 (3N102) 1.85 (5N102) 2.17 (7N102) 2.15 (8N102)

S1P1R 0.05 (7N104) 0.07 (7N104) 3.30 (40) 2.40 (3N102) 4.00 (4N102) 3.30 (2N103)

M2R 0.02 (4N104) 0.02 (4N104) 1.84 (6N102) 2.38 (2N102) 2.57 (7N102) 2.74 (5N102)

M3R 0.03 (3N104) 0.03 (3N104) 1.94 (4N102) 2.26 (2N102) 2.44 (8N102) 2.74 (4N102)

MOR 0.14 (2N104) 0.35 (104) 2.02 (3N102) 2.27 (2N102) 2.43 (3N103) 3.40 (3N102)

KOR 0.04 (2N105) 0.03 (2N105) 2.07 (2N103) 2.55 (7N102) 3.10 (2N103) 2.92 (3N103)

NOP 0.11 (5N104) 0.11 (5N104) 2.24 (4N102) 2.15 (5N102) 3.52 (103) 3.70 (7N102)

DOR 0.08 (2N104) 0.07 (2N104) 1.51 (8N102) 1.77 (5N102) 1.57 (103) 1.82 (6N102)

Reported is the negative log of the sampling efficiency of ligand binding modes within 2.0 Å RMSD of the bioactive ligand conformation within the experimental
structure as measured over the ligand heavy-atoms.
*denotes where sampling efficiency of Rosetta is worse than the worst-case uniform sampling scenario.
# ND denotes not defined. No binding modes within 2.0 Å were sampled for this case.
1fold improvement over USE2.0 of bioactive ligand is given in parentheses.
2fold improvement over USE2.0 of ligand conformers is given in parentheses.
doi:10.1371/journal.pone.0067302.t003
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introduced within the pocket residues made it difficult to identify

native-like binding modes as top ranked. As discussed above,

Rosetta had success in ranking the correct binding mode only in

the cases of M2R and DOR.

Sampling Efficiency is Increased by One Order of
Magnitude for Every 10 known Ligand-protein Contacts

Docking into comparative models guided by mutational data is

a widespread and largely non-validated method in the literature.

Typically, side-chain alterations that heavily affect ligand binding

are interpreted as having direct contacts to the ligand. To assess

how such information can be used as experimental constraints in

our ligand-protein ensembles, we tested to which extent these

constraints would allow us to detect the correct binding mode.

Enrichment of the correct binding modes was determined through

10,000 iterations of randomly chosen contacts between 0 and total

number of all 4.0 Å contacts between the ligand and receptor.

When docking ligand conformers into comparative models, the

sampling efficiency for native-like binding modes increased on

average by one log scale for every 10 known contacts assumed

between the binding mode and the receptor (Figure 12). The

greatest improvement was seen for receptors where sampling

efficiency of the experimental binding mode was already above

0.1%, particularly for DOR, NOP and B1Ar. Little or no

improvement in sampling efficiency was observed for those

receptor ensembles already sampling less than 0.1% of the

experimental binding mode, including A2Ar, B2Ar, S1P1R and

CXCR4. Experimental data with higher information density, such

as the ionic interactions used for blinded prediction of the binding

mode of eticlopride in the dopamine D3 receptor, can be expected

to provide a significantly higher improvement in sampling

efficiency – in our ensemble, the sampling efficiency was improved

by 7 fold by requiring a distance of less than 3.0 Å between the

positively charged hydrogen atom on the tertiary amine and the

oxygen atoms in the carboxyl acid group of the aspartic acid.

Concluding Remarks
This study provides an analysis of the sampling performance

that can be expected when docking ligands into comparative

models of GPCRs. Previous studies of ligand docking into GPCR

comparative models have demonstrated that the problem is highly

challenging for all but the simplest of cases that require the least

Figure 7. Sampling efficiency for docking into comparative models. For each receptor, the fraction of binding modes sampled within 2.0 Å
of the experimental binding mode is represented for docking the bioactive ligand and ligand conformers into the top models chosen by the
knowledge-based filter and clustering by RMSD. The average sampling efficiency for each method is represented by the black solid line.
doi:10.1371/journal.pone.0067302.g007
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Figure 8. Sampling density of ligand binding modes versus pocket residue RMSD. The number of binding modes within the given RMSD
of the experimental ligand binding mode is given for each pocket residue RMSD.
doi:10.1371/journal.pone.0067302.g008

Figure 9. Enriching sampling efficiency with energy cutoffs. The sampling efficiency for binding modes sampled within 2.0 Å of the
experimental binding mode at each fraction of comparative models selected by Rosetta interaction energy is presented for each receptor.
doi:10.1371/journal.pone.0067302.g009
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sampling of receptor space [3,4,6]. This is in agreement with

recent docking studies for flexible ligand docking into multiple

static structures [61–63], which consistently report that while the

performance in docking and screening accuracy of a ‘small’

conformational ensemble is superior to that of a single conformer,

that performance starts to rapidly decline when the size of the

conformational ensemble begins to grow. The study presented

here sought to quantify the challenges of docking ensembles of

ligand conformers into comparative models through deep and

relatively unbiased sampling using full receptor and ligand

flexibility.

Comparative models of 14 unique GPCRs were constructed

using the other 13 experimental structures as templates. Threading

was based on the unbiased alignment between the target and

template sequences and loops were constructed de novo with a

fragment-based loop closure algorithm in Rosetta. When com-

Figure 10. Clustering captures binding modes with lower RMSD and increased contact coverage. Binding modes for each receptor were
clustered by ligand heavy-atom RMSD with a cutoff of 2.0 Å. When compared to smaller cluster sizes, the large cluster sizes were more likely to
capture A) lower average ligand RMSD to the experimental binding mode and B) a higher percentage of correct ligand contacts. Contact coverage
was calculated using SimiCon [42].
doi:10.1371/journal.pone.0067302.g010

Figure 11. Structural representations of ligand binding modes compared to experimental structures. Incorrect loop placement and
incorrect ligand orientation often prevent Rosetta from converging on the experimental ligand binding mode. Ligand binding modes from the
experimental structures are shown in gray and the top ranked model via clustering by ligand RMSD is shown in yellow for A) A2Ar, B) KOR and C)
H1R. Cases where top ranked binding modes captured the experimental binding mode within 2.0 Å were D) DOR and E) M2R.
doi:10.1371/journal.pone.0067302.g011
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pared to corresponding experimental structures, the most accurate

comparative models demonstrated a correlation to Rosetta energy.

Top ranked structures with templates within 50% sequence

identity were modeled with an average RMSD of 2.2 Å in the

transmembrane region, with the best models coming within 1.2 Å

RMSD. Extracellular loops with lengths ranging between 5 and 7

residues were modeled with an average RMSD of 2.0 Å, while

ECL2 was modeled with an average RMSD of 5.3 Å. The most

difficult cases to model were those in which helical regions were

unable to align to suitable templates and those cases in which N-

terminal residues necessary for ECL2 packing were missing.

Table 4. Top ranked binding modes for ligands docked into G-protein coupled receptor comparative models.

Protein name Cluster Ranka Ligand RMSD Coverage of correct contactsb Accuracy of correct contactsc

BRh 5 3.4 0.11 0.10

B1Ar 2 2.13 0.60 0.50

B2Ar 2 3.48 0.11 0.10

A2Ar 5 3.48 0.22 0.15

CXCR4 3 6.23 0.04 0.04

D3R 4 2.26 0.20 0.14

H1R 5 4.81 0.10 0.10

S1P1R 2 3.37 0.12 0.15

M2R 4 1.86 0.40 0.30

M3R 2 3.5 0.11 0.10

MOR 1 2.7 0.18 0.11

KOR 4 5.67 0.01 0.01

NOP 1 6.72 0.02 0.01

DOR 1 1.78 0.37 0.21

aThe lowest energy binding mode from the largest 5 clusters, determined by heavy-atom ligand RMSD with a cutoff of 2 Å, was used for evaluation. Given here is the
cluster rank for the lowest ligand RMSD of the top 5 ranked models.
bCoverage of correct contacts was calculated with SimiCon [42] and is the number of correct contacts divided by the total number of ligand contacts made in the
experimental structure.
cAccuracy of correct contacts was calculated with SimiCon [42] and is the number of correct contacts divided by the total number of ligand contacts made in the model.
doi:10.1371/journal.pone.0067302.t004

Figure 12. Enriching binding modes with known receptor-ligand contacts increase sampling efficiency of native-like binding
modes. For binding modes generated for each receptor, a random number of known contacts from 0 to the greatest possible number of contacts
were chosen for 50,000 iterations and the fraction of binding modes sampled within 2.0 Å of the experimental binding mode is given.
doi:10.1371/journal.pone.0067302.g012
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Despite these challenges, Rosetta was still able to rank more

accurate loop conformations than other leading methods.

Using the ligands found in the crystallized GPCR structures,

docking was performed in the top ranked comparative models.

Docking ensembles of ligand conformers into comparative models

sampled the correct ligand binding mode for each of the 14

receptors, but often less than 1% of the time. While the lack of

energy gap makes discrimination of the correct binding modes

difficult, certain techniques for filtering the models and binding

modes demonstrated some success in this study. Using templates

with a sequence identity above 50% provides a higher chance for

correctly modeling of the ligand binding pocket as also observed in

previous studies [6]. In cases where such templates do not exist,

using a knowledge-based filter to identify models for which the

binding pocket is within the variability that is represented in the

experimental structures is beneficial for docking, significantly

increasing sampling efficiency in 10 of the 14 cases. Inaccuracies in

the minimized structures strongly affected the accuracy in the loop

regions, which in turn affected the resulting ligand binding modes.

Therefore, it may be best to limit the flexibility introduced by

sampling when using a highly homologous template, such as the

case for B1Ar and B2Ar.

As demonstrated in this study, clustering can provide improve-

ment over energy for identifying correct binding modes, but only if

clusters contain at least 1% or more of the total binding modes.

Selection of the correct binding mode from an ensemble of models

might be further improved using information from structure

activity relationship of active ligands, as proposed by Katritch

et al., to select the best performing models from an ensemble [64].

However, this requires knowledge about active ligands which is

typically limited for novel protein or receptor targets and the

approach is based on the assumption that different ligands share a

common binding mode.

In addition, many papers are published under the premise that

experimental information such as mutational data can aid in

finding the correct ligand binding mode within a large ensemble of

models [65–69]. Considering the challenges faced in this study,

application of mutational data as experimental constraints seems

to be an appealing strategy. Sampling efficiency for binding modes

within 2.0 Å of the experimental ligand binding mode increased

on average by one log scale for every 10 known contacts between

the binding mode and the receptor. However, the expected benefit

should be evaluated carefully on one or more experimental ligand-

receptor complexes to access the true value of such constraints – in

particular since indirect effects are known to occur and could blur

the identification and the selection of the ‘‘correct’’ binding modes.

Through the use of unbiased sequence alignments and sampling

algorithms using the Rosetta software suite, the most challenging

scenario for GPCR comparative modeling and ligand docking was

explored. As with other studies on comparative modeling and

docking, however, there were still minor biases introduced in both

aspects of this work which may limit the scope of this approach.

Bias in the comparative modeling experiments included the

addition of constraints on the disulfide connectivity of the loops

based on the experimental structures, which influenced the

conformations of ECL2. Bias in the ligand docking experiments

included the ligand stereochemistry and protonation state of

CXCR4, restricting the conformational search space by centering

a sphere of 5Å radius at the center of the experimentally

determined binding mode. Also, bias to the experimentally

determined structures could have been eliminated with a leave-

one-out cross-validation of the knowledge based filter. Despite

these biases, the findings of this study identified specific avenues

for improvement to approach this challenging problem. Knowl-

edge-based and energy-based filters are able to improve sampling

performance over random by 103 fold. Additionally, sampling

performance is increased by one order of magnitude for every 10

residues known to contact the ligand. Contacts with high

information density, specifically the salt bridge between the

oxygen atoms of an aspartic acid in DOR and the positively

charged hydrogen atom on the tertiary amine of its ligand,

improved sampling efficiency 7 fold. As the number of GPCR

experimental structures being solved increases, so does the

opportunity to find suitable templates for comparative modeling.

With the guidelines suggested by the results from this study,

relevant ligand docking studies may be able to generate structural

hypotheses to guide experimental designs.

Supporting Information

Figure S1 Ligand structures used in this study. Ligand

structures depicted here were crystallized with the G-protein

coupled receptors used in this study and were obtained from the

Protein Data Bank.

(TIF)

Figure S2 Structure-based sequence alignment of G-
protein coupled receptors. This sequence alignment of the

fourteen GPCRs used in this study was obtained through a

structural alignment of the receptors in MUSTANG [28].

Transmembrane regions are highlighted in blue, cysteine residues

forming disulfide bonds are highlighted in yellow and residues in

contact with their respective ligands are highlighted in purple.

Conserved residues representing Ballesteros-Weinstein x.50 are

outlined with a black box. The figure was generated using Aline

[44].

(TIF)

Figure S3 Structures of G-protein coupled receptors
used in this study. Experimental structures of the fourteen G-

protein coupled receptors used in this study were obtained from

the Protein Data Bank. Extracellular loop (ECL) 1 is shown in

yellow, ECL2 in purple, and ECL3 in orange.

(TIF)

Figure S4 Energy plot of relaxed experimental struc-
tures and comparative models compared with full
receptor RMSD. For each structure, full receptor RMSD is

plotted against total Rosetta energy. The experimental structure

was minimized in the Rosetta force field without the ligand (in

green) and with the ligand (in blue). Comparative models are in

grey, with models selected through clustering in orange and

models selected by the knowledge-based filter in purple.

(TIF)

Figure S5 Energy plot of comparative models based on
templates of varying sequence identity. For each compar-

ative model, pocket residue RMSD is plotted against total Rosetta

energy. Each point is colored by the template by which the model

was built, with color varying from blue to red with increasing

sequence identity.

(TIF)

Figure S6 Energy plot of ECL1 in comparative models.
For each comparative model, ECL1 RMSD is plotted against the

Rosetta energy for residues in ECL1.

(TIF)

Figure S7 Energy plot of ECL2 in comparative models.
For each comparative model, ECL2 RMSD is plotted against the

Rosetta energy for residues in ECL2. ECL2 for A2Ar and H1R
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could not be evaluated because of unresolved structure in this

region of the experimental structure in the Protein Data Bank.

(TIF)

Figure S8 Energy plot of ECL3 in comparative models.
For each comparative model, ECL3 RMSD is plotted against the

Rosetta energy for residues in ECL3. ECL3 for KOR could not be

evaluated because of unresolved structure in this region of the

experimental structure in the Protein Data Bank.

(TIF)

Figure S9 Structural representations of extracellular
loop two from comparative models compared to exper-
imental structures. For A) bRh, B) B1Ar, C) B2Ar, D) A2Ar,

E) CXCR4, F) D3R, G) H1R, H) S1P1R, I) M2R, J) M3R, K)
MOR, L) KOR, M) NOP and N) DOR, the experimental

structure is represented in gray, the most accurately sampled

model is represented in yellow and the top ranked model is

represented in blue. The top ranked model is the lowest energy

model of the largest cluster, where clustering is performed on

pairwise full receptor C-alpha RMSD over the top ten percent of

comparative models by energy.

(TIF)

Figure S10 RMSD of ligand conformations generated by
MOE. Ligand conformations generated by MOE using the

MMFF94x force field and Generalized Born solvation model were

compared to the bioactive conformation found in the experimental

structure by RMSD to heavy atoms in the ligand. The average

RMSD is represented by a black line. The fold decrease in

sampling efficiency is calculated by the uniform sampling

efficiency within a 2.0 Å radius (USE2.0) for the bioactive ligand

conformation divided by the uniform sampling efficiency within a

2.0 Å radius for ligand conformers.

(TIF)

Figure S11 Interaction energy plot of binding modes
from docking into experimental structures and compar-
ative models. For each structure, ligand heavy-atom RMSD is

plotted against Rosetta interaction energy. The bioactive ligand

conformation was docked into the static experimental structure (in

blue), the energy minimized experimental structure (in orange) and

comparative models (in purple). Ligand conformers generated by

MOE were docked into comparative models, shown in yellow.

(TIF)

Figure S12 High sequence identity templates produce
models with more accurate binding modes. Each point

represents the average ligand RMSD over all binding modes

produced by docking the ligand into target GPCR comparative

models built using a particular template. For each target-template

pair, percent sequence identity was calculated on the sequence

alignment shown in Figure S2. Sequence identity is shown here to

correlate with low average ligand heavy-atom RMSD.

(TIF)

Table S1 Rosetta loop modeling in comparative models
with cyclic coordinate descent compared to kinematic
loop closure. Reported is the average RMSD and standard

deviation for all comparative models of target receptors, calculated

over C-alpha atoms in the loop regions compared to the

corresponding experimental structure from the Protein Data

Bank. Loop closure with KIC was only performed on a subset of

the GPCR dataset.

(DOCX)

File S1 Protocol capture. This protocol capture contains the

steps necessary to obtain the results presented in the manuscript

‘‘Assessment and challenges of ligand docking into comparative

models of G-protein coupled receptors’’. The input files necessary

to carry out the steps outlined in this protocol as well as the output

files relating to the results found in the manuscript are provided in

the attached folder: File S2. GPCR_model_dock.zip. While the

actual protocol was carried on every pairwise combination of

GPCRs from Table 1, this protocol capture uses the comparative

modeling of bRh onto the template B2Ar as an example for

simplification. The Rosetta 3.4 software suite is publically available

and the license is free for non-commercial users at http://www.

rosettacommons.org/. The supplementary materials are included

with Rosetta 3.5 under the directory ‘‘rosetta_demos/protocol_-

capture/2012/GPCR_model_dock’’.

(DOCX)

File S2 Files for protocol capture. The input files necessary

to carry out the steps outlined in the protocol capture in File S1 as

well as the output files relating to the results found in the

manuscript are provided in this attachment.

(ZIP)
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