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Abstract

Flash flooding is caused by heavy rainfall that frequently occurs during a tropical storm, and
the Thai population has been subjected to this problem for a long time. The key to solving
this problem by planning and taking action to protect the population and infrastructure is the
motivation behind this study. The average weekly rainfall in northern Thailand during Tropi-
cal Storm Wipha are approximated using interval estimations for the mean of a delta-three
parameter lognormal distribution. Our proposed methods are Bayesian confidence inter-
vals-based noninformative (NI) priors (equal-tailed and highest posterior density (HPD)
intervals based on NI1 and NI2 priors). Our numerical evaluation shows that the HPD-NI1
prior was closer to the nominal confidence level and possessed the narrowest expected
length when the variance was small-to-medium for a large threshold. The efficacy of the
methods was illustrated by applying them to weekly natural rainfall data in northern Thailand
to examine their abilities to indicate flooding occurrence.

Introduction

Human beings and all living things need water to survive, so life would not exist without it.
The amount of water that is usually available depends on the amounts of rain and snow that
fall. Unfortunately, some areas barely see rain while others get more than their fair share.
These situations can cause natural disasters such as floods and droughts, which are dramatic
changes that occur when most people least expect them. In Thailand, long periods of rain
caused by tropical storms have triggered significant flooding. In July-August 2019, Tropical
Storm Wipha crossed the North Vietnam coast and headed westward toward upper Thailand
(mainly the northern and northeastern regions). Heavy rain passing through northern Thai-
land caused flash flooding in Phayao province and also triggered landslides in Nan province in
northern Thailand [1]. As a consequence, these extreme events caused loss of life and signifi-
cantly damaged assets and transport infrastructure in these at-risk areas. One of the most
important factors in solving this problem is how to use the historical rainfall data to plan and
prevent more flooding in the future by taking direct action accordingly. These reasons have
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led to our interest in the estimation of the mean rainfall amount using the observed data from
extreme rainfall events. Importantly, the weekly natural rainfall amounts in the week 29 July to
4 August 2019 follow the assumptions of a delta-three parameter lognormal distribution.

A three parameter lognormal distribution is considered to be suitable for the observed data
that are highly skewed and cannot be modeled using a two-parameter lognormal distribution
[2]. A delta-three parameter lognormal distribution is a combination of zero and non-zero val-
ues following the three-parameter lognormal distribution first introduced by Aitchison and
Brown [3]. The three-parameter lognormal distribution has threshold parameter a, an
unknown parameter that makes it differ from a two-parameter lognormal distribution in that
a > 0. Thus, a two-parameter lognormal distribution is a special case of a three-parameter log-
normal distribution when a = 0. In application involving real-world data, the three-parameter
lognormal distribution has been used in Hydrology [4-6], rainfall network [7, 8], and flood
frequency analysis [9, 10].

In probability and statistical inference, there are two types of estimation: point and interval,
the latter also being known as the confidence interval (CI). Point estimations for the parame-
ters of a three-parameter lognormal distribution have been developed and discussed by many
researchers. For example, Cohen and Whitten [11] proposed modifications of the moment
and maximum likelihood estimates (MLEs). After that Cohen et al. [12] modified the moment
estimates by replacing the function of the first-order statistic in the third moment. Singh et al.
[2] conducted a performance evaluation of the estimates through Monte Carlo simulation.
Later, interval estimations were constructed for the parameters of a three-parameter lognormal
distribution. Royston [13] constructed ClIs for the reference range of random samples from a
three-parameter lognormal distribution. Pang et al. [14] used a simulation-based approach to
assess the Bayesian Cls for the coefficient of variation of a three-parameter lognormal distribu-
tion as one of their proposed distributions. Next, Basak et al. [15] evaluated a maximum likeli-
hood estimate created from an expectation-maximization algorithm when progressive Type-II
censored samples were drawn from a three-parameter lognormal distribution while providing
interval estimations for the mean, variance and threshold in a three-parameter lognormal dis-
tribution using large-sample theory. Finally, Chen and Miao [16] studied the exact CIs and
exact upper Cls for the location parameter (also known as the threshold parameter) of a three-
parameter lognormal distribution.

Recently, Maneerat et al. [17] revealed that the highest posterior density (HPD) interval-
based beta prior was the best-performing method for estimating a single mean and the differ-
ence between two delta-lognormal means. After that the HPD-based normal gamma prior was
developed in the comparison of the estimated rainfall dispersion between northern and north-
eastern regions in Thailand proposed by Maneerat et al. [18], while the HPD-based probability
matching prior was recommended to construct the CIs for the difference between two delta-log-
normal variances [19]. Unfortunately, the CI for the mean of a delta-three parameter lognormal
distribution, especially when the highly skewed non-zero values are present with the zero obser-
vations, has not yet been established. Therefore, the first goal in the study was to propose a
Bayesian CI (BCI) estimation-based approach (equal-tailed (ET) and HPD intervals based on
different noninformative (NI) priors), generalized CI (GCI), and the method of variance esti-
mates recovery (MOVER) for the mean of a delta-three parameter lognormal distribution.
Using this as a starting point, the other goal was to estimate the weekly natural rainfall amounts
during Tropical Storm Wipha in northern Thailand using our proposed methods since the
observed rainfall data can be used to indicate an extreme event that can cause flooding.

The article is outlined as follows. The notation and the proposed methods in the construc-
tion of the CIs of the mean of a delta-three parameter lognormal distribution are elaborated in
Section. In Sections -, details of the simulation studies, including the parameter settings
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together with the criteria for assessing the proposed methods and numerical computation

to identify the best-performing method, are presented. The efficacies of the proposed

methods using weekly natural rainfall amounts during the period of Tropical Storm Wipha are
examined in Section. Finally, this article is ended with a brief discussion and conclusions in
Sections -.

Notation and methods

Let X = (X1, X5, . . ., X,,) be a random sample follows a delta-three parameter lognormal distri-
bution (DTPLN), denoted as X ~ DTPLN(0, iy, 0%, a) where 6 is the probability of having
zero, yx is the scale parameter, g7 is the shape parameter, and a is the threshold parameter or a
quantity defined as a lower bound of X. These parameters &, yx, %, a satisfy 0 < 6 < 1, yx > 0,
0% > 0and a > 0, respectively. The distribution function of X is

0 x=0
G(x;0, piy, 0%,a) =< 0 0<x<a (1)
0+ (1 —9)H(x;uy,0%,a) ;x>a

where H(x; fiy, 0%, a) is the three-parameter lognormal (TPLN) distribution, introduced by
Aitchison and Brown [3], Cohen and Whitten [11] so that the probability density function
of X is

1 {nte—a - uyf} .

h(x; y,0%,4) = ———————¢x
( :uX X ) (X*&l)\/m p 20_:_;

where yy = E[In(x — a)] and 62 = E[In’(x — a)] — {E[ln(x — a)]}’. For x > a, it has the rela-
tion between random variables X and Y = In(X - a), that is, X ~ TPLN(uy, 0%, a) if

Y ~ N(y, 03). The mean of X is defined as i, = (1 — d)[a + exp(u, + 03/2)] which is log-
transformed a

0 =In(1 —9) + In[a + exp(u, + 03 /2)] (3)

The likelihood of X is

n (1) 2\—1/2
nY o, 117 (2703) 1 9
L(éa Hy, 0-3/7 a|data) = I | (x>5 (1 - 5) !:! eXpi((Yi) exp{— 262 [Yz - :u)’] }

i=1 i Y

(1)

- < " )5"«»(1 - 6)"@(%0@)”W“"exp{—%Z[ln(Xi —a) (4)

I’l(o) Y i=1
) (1)
—y] — Zln(Xi —a)
i=1

where n() = {izx; = 0} and n(;y = n — n(g). The likelihood (4) leads to obtain the log-likelihood is

n
In L(0, uy,0%,aldata) = constant. + n,In 6 + n;)In(1 - J) — %ln(ai)

na (5)

1 ) (1)
_ﬁZ[ln(Xi —a) — .“Y]Q - Zln(Xi —a)
Y p

i=1
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The first and second derivatives are

n

9 ) _ Mo My
75 In L(0, uy, 05, aldata) = 5 " 1-35
0 1 X
a—ln L(d, uy,0y,aldata) = — In(X; —a)
Uy Y o1
o n 1 (1)
—InL 2 = -0 In(X, — a) — p,°
ao_gl n (57:uY70-Y7a‘data) 20%,—1_2(0'%)2 ) [n( i a) luY]
0 U | 1 K (In(X, —a) —
—In L(o 2 a|dat = — —t— 7
in L0, aldae) = 3t Sy ]
and
(92 7’1( n
ﬁln L(d,uy, 05, aldata) = 75—3) “13
62 ; My
—_In L(, iy, 6>, aldata) = ——2
O o o
FoN n 1
—~ _In L(J, uy, 0%, aldata) = — ‘ In(X, — a) — u,]’
5(0%,)2 (6, 1y, 0y, 4] ) 2(0%)2 (6%)3 ;[ (X ) — iy
82 ) (1) 1 1 (1)
—In L(o dat = —+— -1+ [In(X;, —a) —
foln L0 i) = Yot S (1 Il — )~ )

From Z1n L(9, iy, 0}, aldata) = 0, we obtain that

(1) (1)
1 1 In(X, —a) —
3 P o O ) Bl 1
X, —a o3 — X, —a

i=1 !

(1) 1 (1) (1)

")
ZX — n(l)Zln(Xi —a) — zljln(Xi —a)+ Zan(Xi —a)
i i=1 i=1 i=1

i=1
-1 [lel) ln(Xi - a)]2 - 0
~) X,—a B

The estimate of threshold (a) was obtained by the modified method of moments estimation,
proved by Cohen and Whitten [11]. Thus, the maximum likelihood estimates (MLEs) of 6, uy

and o2 are
X M
o g
. 1
Hy = — In(X; — a) (8)
By i2x;>0
. L\ o
O-Y.mle = [ n(Xi - a) - luY]
n(l) ix; >0
. . 2 (9)
= — ) In’(X,—a)— |[— ) In(X,—a)
By izx; >0 My i2x;>0

For formulating the CIs for 6, the methods are detailed as follows:
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Bayesian confidence intervals

The BCI for a parameter of interest is constructed from the posterior distribution, introduced
by Gelman et al. [20]. Based on Bayesian approach, the 100(1 — )% equal-tailed CI or central
interval for the parameter of interest can be computed the lower and upper limits from the
100(a/2)% and 100(1 — a/2)% quantiles of the posterior probability, respectively. Box and Tiao
[21] defined the HPD region (Definition 1) can be led to construct the HPD interval which is
different from the equal-tailed CI.

Definition 1. Let p(6]y) be a posterior density function. A region R in the parameter space
of 6 s called a HPD region of content (1 — @) if

)Pr@eRy)=1-qa,
ll) For 61 € Rand 82 ¢ R, p(91 |y)2p(92|y)

The HPD region is defined as the value set that contains the 100(1 — o1)% of the posterior
probability, importantly its density within the region is never less than that outside. In the
present study, the equal-tailed CIs and HPD intervals for the log-transformed mean of a delta-
three parameter lognormal distribution are proposed and constructed using the noninforma-
tive (NI) priors as follows:

NI1 prior. The NII prior is derived from the square root of the Fisher information matrix
of (uy, 0%, 0), given by

Py (0) o /T IGHI) = o6 (1 - 0) (10)
Recall that the likelihood is given by
ny) (1)
L(3, py, 0%, aldata) o< §"O(1 — )" (aa)"uV?exp{—TZun(xi —a) — i, — ;hl(x,. - a)}
o 01 =0y (o) " exp{ =5 [ - 13 (1)

(1)
+n(1)(ﬂy - .uy)z] - Zln(xi - a)}
-1

where (1, — 1)62 = 3! [In(X, — a) — ft,]". The likelihood (11) is updated with the NI1
prior (10) to obtain the posterior of (u,, 0%, 9, a), that is

ol s 1 N
Py (9, fty, 03, aldata) o 5"“))’%(1—5) “ﬁé(of‘)’,) 2 exp{— [(nu)—l)azy

203
) (12)
+n(1)(:ay - .uy)z] - Zln(xi - a)}
The posterior of § is

P(8|data) oc 3011 — 5)(r+d)1 (13)
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It can be implied that 5" ~ beta (”(0> + 35,10, + %) From Eq (12), the posterior of a|data

becomes

P(Nn)(a|data) X / /P(Nll)(57 Hy, U%n a|data)d,uydaf,

N O (ngy —1)a; X
x /(O’Y) 7 exp —T—;ln(&—a)

n
/ - (ﬂy - ﬂY)zdﬂydai

%
[¢]
[}

o
—_—
I

(=
5
—
>

|
)

S—

~—

—
Q
[N
~—
o
[}

o

—N
=
o=

)

8o

=
3
~
——
o
)
<o

")
x exp{ —Zln(Xi - a)}
P
where " o exp{— 3",/ In(X;, — a) } which can be obtained its random samples using
Metropolis algorithm. Let A = (n,) — 1)63 + n,,(it, — ) Z = 5 such that ddzz = ZZ leads
Y

to obtain do? = :2;dZ. The posterior of yy is

222

Py (1y|data) o //P(Nll)(é,,uy,ai,a|data)dada§

/(oz‘y)f E exp{—%}/exp{ Zln . }dado
Y

)t A 3 In(X, — ;
o /(O’i)%exp{——} exp{ Exfl n( i a)} daf,

K

20% S (X —a)”
s A
o /(a%,) 2 exp{ 5o 2}d(f
'

(1) +1

IR / 20D exp{—2}dZ

PLOS ONE | https://doi.org/10.1371/journal.pone.0266455  April 14, 2022 6/25


https://doi.org/10.1371/journal.pone.0266455

PLOS ONE Bayesian interval estimations for the mean of delta-three parameter lognormal distribution

Thus, 1™ ~ ty(fty, 6% /n,)); df = nay — 1. The posterior of o} |data is

P(Nm(aﬂdata) X //P(Nn)(éaﬂy:aiva|data)dﬂyda

n(qy+3 n..—1)62 (1)
x / (ai)zexp{—(sz)Y — Zln(Xi - a)}
Y i=1
"W (g *du,d
~5gz By — Hy) duyda (16)
Y

where 637" ~ IG(a, B); a = ny/2 and f = [n,, — 1]6% /2. The posterior of § based on NI1

can be expressed as
0p05t1 — ln(épostl) + ln [aposﬂ + eXp(‘Ll‘[;;gSﬂ + O_i(postl)/zﬂ (17)
Finally, the 100(1 — o) %BClIs for 0 based on NI1 prior are

0st1 ost1
BClyr . = [Og/zt 70}1)7;/2] (18)

BClypp it = [Qllmmaeiml] (19)

where 0°**' denotes the o™ quantile of #°" and Pr(0"*"' < 0 < 0**") =1 — .

NI2 prior. This prior belief is obtained from the 6, a, yy and ¢? are treated as random var-
iables of the beta, uniform, normal and gamma distributions, denoted as beta(c, ¢), U(a’ = 0, ¥/
=1), N(uy, 1/kn) and G(a, b), respectively, where c = 1/3 + w;, ,/6 and = 1/a7. The prior
of & was derived by Jin et al. [22]. The prior of 0 = (3, u,, 03) is

P(0,a, Hy, n = P, C)P(a§ a, b/)P(:“YM; Hyos ko’I)P(ﬂ; Ay, bo)

- {Far oo Hota) { Wt 57t

. (20)
(1y — .Unoﬂ }{T‘ZO) ﬂ“”lexp[—bm]}
X 5671(1 - 5)6717”“”_1/26)(1) [_ g (ko(:uy - luYAU)2 + 2b0)}
When ko =0, a9 = —1/2 and b, = 0, the NI2 prior of (yy, o°, 8) is derived from
(Uy,0%) ~ NG(tty, nlty, ky = 0,0, = —1/2,b, = 0), and & ~ beta(c, c) as
P(NI?)(H) o 67N (1 — 5)67171_1 (21)
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which is combined with the likelihood (11) in term of 77 as

L6,y aldata) oc 6" (1= 0" Fexp [~ 1 { (g, — 1063+ m ity — )"}

n) (22)
—Zln(Xi —a)
i=1
Meanwhile, the posterior of 6 is
Py (0 43,1, aldata) o &0 (1= o)y exp [~ 2 { (n — 1)6
, ")
+7’1(1)(!11/ - :“Y) } - Zln(Xi - a)
i=1
) (23)
- 5n(u)+c—l(1 - 5)n(1>+c71n"(1[171exp |:_ 11(}’1(1) B 1)O-Y:|
2
Ny . 2 s
Vilexp| - (i = ) Jexp| =D In(x, - a)
i=1
This leads to obtain the posterior of § is
P(d|data) o §"0FI71(1 — §)rw T (24)
This is 8" ~ beta(11(g)+ ¢, 1)+ ¢). The posterior of a|data becomes
P(m)(a|data) o /P(sz)(’?» a|data)dy
ot ’7(”(1) - 1)6'3 &
x / T lexp [— 5 |exP —;ln(X,. —a)|dn (25)

which can be written as a”* o exp{— S In(X, — a)}.Let W=+ [, (fty — 1)’ /2]
and T=nW such that dy = ;dT; f = (n,, — 1)63/2 = S In(X, — a) — fi,]?/2. The
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posterior of y|data is

Py (pt]data) o // (12 (05 ly, 17, a|data)dadn

)
x / “lexp[— / exp[ Zln ) | dadn
(T_
x /( ) —exp[ T)dT
<T
x ( ) T4 exp[—T]dT
S
<[]
0
1 ney(ngy —1)
o« |1+
2(’1(1) _ 1) ﬂ (luY luY)

which is the Student’ t distribution with n;) — 1 the degrees of freedom (df), denoted as
12~ tﬂ(l)fl(,ay7 B/[ny(ngy — 1)]). From Eq (23), the posterior of |data is

Py (] data) // (w12 (05 Ly, 11, aldata)dpuda
n (1)
x )exp [ ’1((1)] exp [ Zln
nn,
ex p[ — iy = #Y)Z} dpda
) n(ﬂm —1)ey S (26)
o /17 T exp|———————|exp Zln
ey —1 —1)62 _\Mo -
~ n%’lexp [_ n(ng, )GY:| exp| n%):;:1 In(X; - a)]
2 2 (X, —a)
"ot [ 77(”(1) - 1)63}
x nz lexp|———
2
It can be concluded that 72 ~ G (%71 , L) Thus, the posterior of o3, is
63@05!2) ~ IG <n(1) -1 7 (n(l) - ]‘)O/\-%’) (27)
2 2
The posterior of 6 based on NI2 can be written as
0past2 —1ln (5post2) + ln[aP”“Z + exp( post2 + O_i(postZ)/Q)] (28)
Hence, the 100(1 — @)%BClIs for 0 based on NI2 prior are
BCly yp, = [Qit;sztza 9170322/2] (29)
BClLyppne = [Qllmﬂa ei(m?] (30)
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where 0°°** denotes the o™ quantile of 07°> and P(0/*" < 0 < **) = 1 — a. Algorithm 1
describes the steps for constructing BCIs for the delta-three parameter lognormal means.
Algorithm 1: BCIs
1:
2: For NIl prior, generate the posterior distributions of §, a, upy, and

02, denoted by &7, aPosth ftang g3 in Eqs (13), (14), (15)
and (16), respectively.

3: For NI2 prior, generate the posterior distributions of &, a, uy, and
62, denoted by &2, aPost2 1 and g3 in Eqs (24), (25), (26)
and (27), respectively.

4: Compute 6P°°%' and 6°°°*? based on NIl and NI2 priors, respectively.

5: Repeat 2-4 a number of times, say, m.

6: For m times, compute the 100(1 - «o)% ET and HPD intervals for 6

based on priors: BCIgp-yr1, BCIgpp-nris BCIgr-n12 @and BCIupp-yiz-

Compute the unbiased estimates 5, Ly, &sz’ and a.

Generalized confidence interval

The GCI is established based on the concept of generalized pivotal quantity (GPQ), defined by
Weerahandi [23]. The CI of 0 can be constructed using GCI. Recall that X ~ TPLN(u, 0%, a)
if Y = In(X — a) be a random variable of normal distribution with mean yy and variance a?.
Cohen [24], Cohen et al. [12] and Cohen and Whitten [11] derived the MLE of threshold (6),
and the asymptotic variance of  is based on the Fisher information matrix, given by

2 oyexp(2uy — a3)

T e [exp(od) (1 + 03) — 208 — 1] G1)

[

By replacing the estimates ji, and 62, the o7 is estimated and denoted by 67. Let 4 be a ran-
dom variable. From the approximation result, it is transformed as

T:&—a:(fl—a)/\/%: Z (32)

which has a Student’s t distribution with n(;) — 2 df, where Z = (& — a)/\/6% and V =

(ny) — 2)63 /0, are independent random variables of standard normal and chi-square distri-
bution with n;) — 2 df, denoted by Z ~ N(0, 1) and V ~ Xi(
tion of pivotal quantity T, the GPQ of a is

R,=a—T./5? (33)

Furthermore, Wu and Hsieh [25] proposed the GPQs of § and (i, 03), defined as

b respectively. By the informa-

3 K
R; = sin®|arcsinV o —
2,/mq

R,lly = ﬂY - W\/ Ra%,/n(l) (35)

Ry = (ny-1)6y/U (36)

where K = 2, /i (arcsinV/6 — aresinv/8) ~ N(0,1), W = (ity — ity)//Rp2 /nyy ~ N(0,1)
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and U ~ Xfl(lrl' The GPQ of 6 is
R,=1In(1 —Ry) + In[R, + exp(R“Y + R0§/2)] (37)

which satisfies the conditions of Weerahandi [23], i.e., the distribution of Ry is free from all
unknown parameters, and the observed value of Ry depends only on the parameters of interest.
Therefore, the 100(1 — a)% GCI for 6 is given by

GCL = [R,(2/2), R,(1 — 2/2)] (38)

where Ryg(a) denotes the a™ quantile of Rg. The steps for computing GCI for 6 are detailed in
Algorithm 2.
Algorithm 2: GCI
1: Generate T ~ t,1-2, K, W~ N(0, 1) and waim—l'
2: Compute the GPQs of a, &, uy and 0'3,, denoted as R,, Rs, RM, and Rﬂi,

respectively.

3: Compute the GPQ of 6, denoted as Rg.

4: Repeat 1-3 a number of times, say, m.

5: For m times, compute the 100(1 - «)%GCI for 6 in Eqg (38).

Method of variance estimates recovery

Let A; be the parameter of interest for the population i;i =1, 2, ..., p. Also, let ;li be the point
estimate of A;. The MOVER interval for the function of parameters A; is a closed-form CI con-
structed by obtaining the variance estimates @(;L ;) at the neighborhood of the lower and

upper limits separately (to recover from confidence limits), given in Zou and Donner [26] and
Zou et al. [27]. Thus, 100(1 — a)% MOVER interval for A is

MOVER = [(dy + ) = /(i = L) + (A, — 1),

‘2

(39)

(o) + 4, = 20"+ (1, = )

where [I, , u; | be the 100(1 — @)% ClIs for A;. Approximate closed-form CI for the logarithm of

delta-three parameter lognormal mean is considered and developed using the MOVER. Recall
that

0 =1nd" +Infa + exp(uy, + 62/2)] =In0, +In0, (40)

where § =1-6.Let0 = In él +In (92 be the point estimate of 6; 91 = ' and
@2 = a + exp(fty + 63 /2). The MOVER intervals for In 6, and In 6, are described as follows.
First, the 100(1 — or)% Wilson interval for In 0, is proposed by Zou et al. [27], given by

n 0y = nl’unl
CI]O - [llO 10]

In

2
nony Ky
(”(1) + kz/z/Q) + ka/2 On = /(n+ kZ/z)

4

where k, denotes the o quantile of standard normal distribution. Next, the 100(1 — @)%
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MOVER interval for In6,
CIln()2 = [lln027 ”moz}
= In[0, — \/(51 — la)2 + (uy + O’%/Q — l#y+0§,/2)2, (42)
A AN2 2
0, + /1ty = @) 4 (20 — 1y — 03/2))]
where
[lm ua} = [& - to{/Q,df 6‘27 a— tl*?ﬁ/?,df V 6‘2] (43)
Wz/ﬁz &t ng —1 ’
L2ty g2 n] = |ty +62/2 — X iy W — )
ny+oy/20 Puy+oy /2 Y Y "y 9 X%ﬂ/ln(lrl
(44)
w?, 62 &4 n,, —1 ’
~ S a/27Y 1
R RN e 1 L |
B Laj2n-1

Note that ¢, 4rand w, denote the ot quantile of Student’s t distribution with n(;, — 2 df and

standard normal distributions, respectively. The [I, 1a2/20 Yy 102 5] is given in Zou et al. [27].

Applying Eq (39), the 100(1 — @)% MOVER interval for 8 is

MOVER = [in, +1n0, —/(nd, — 1,,)" + (n0, — )"

00, + 100, + \/(t,0, = 100,)" + (14,,, — In0,)"

The MOVER for 6 can be computed in Algorithm 3.

Algorithm 3: MOVER
1) Compute the CIs for a and uy+a§,/2 in Egs (43) and (44),
respectively.
2) Compute Cl,, and CI,,.
3) Compute the 100 (1 - «o)$MOVER for 6 in Eqg (45).

Simulation studies

Simulation studies were conducted to calculate the performances of the methods: the coverage
probabilities (CPs) and expected lengths (ELs) of BCIs (HPD and ET intervals)-based NI1 and
NI2 priors, GCI, and MOVER for the logarithm of the delta-three parameter lognormal mean.
Both performances are defined as follows:

CP: the proportion of intervals in which the true parameter falls within the intervals.
EL: the average lengths of simulated intervals.

Monte Carlo simulation studies were undertaken to compare the performances of our pro-
posed methods and provide insight into their sampling behavior. In the comparison of the
methods, a CI with a CP close to the nominal level 0.95 and the narrowest EL are the criteria
for the best performance. In the simulation studies, the values of the threshold parameter were
chosen as a = 1, 5, 15. For each threshold value, the parameter combinations were sample sizes
n = 30, 50, 100; proportion of zero § = 10%, 30%, 50%; mean y = 2 and variance 0> =0.3,0.5,
0.8, 1.0, 2.0. For each set of parameter settings, 5,000 simulation runs were generated and
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5,000 GPQs were fixed for the GCI. The steps of the simulation study were executed as shown
in Algorithm 4.

Algorithm 4
1: Generate X ~ DTPLN(J, uy,0%,a).

2: Compute the unbiased estimates 3, ay, 6%, and a.

3: Compute the CIs: BCIs, GCI and MOVER in Algorithms 1, 2 and 3,
respectively.

4: For the 5000 generated values, the CIs in Step (3) are computed.

5: Computed the estimated CPs and ELs of the CIs in Step (4).

Monte Carlo simulation results

The simulation results for threshold a = 1 (Table 1 and Fig 1) show that GCI and MOVER gen-
erated CPs close to nominal level 0.95 when the variance was small for all of the proportions of
zero observations, although those of the BCIs (HPD and ET intervals based on the NI1 and
NI2 priors) were under it. For threshold a = 5 (Table 2 and Fig 2),the CP and EL performances
of HPD-NI1, ET-NI1, GCI, and MOVER were better than a = 1, while HPD-NI1 performed
the best in terms of EL for small-to-large sample sizes except for large variance. For a large
threshold a = 15 (Table 3 and Fig 3), HPD-NI1 performed better than the other methods with
a CP close to the nominal level and the narrowest EL when the variance was small-to-medium.

An illustrative example

We applied the Cls constructed with the proposed methods to real-world data. In the week 29
July to 4 August 2019, Tropical Storm Wipha moved from Vietnam to northern Thailand,
thereby putting the area at high risk of flash floods and landslides caused by heavy rain [1].
Thus, predicting the weekly natural rainfall data in the above-mentioned period is of interest.
Data on the weekly rainfall during this period was collected by the Thailand Meteorological
Department (TMD) (Table 4). The northern station includes 62 substations: 55 with positive
rainfall records (88.71%) and the rest with no recorded rainfall.

By applying the theory in Section and with known a, the weekly positive rainfall data follow
anormal distribution when they are log-transformed as In(X — a). It is possible that this posi-
tive rainfall data have a lognormal distribution (the histogram and the empirical cumulative
distribution function (CDF) plots in Fig 4). To determine which model fits the positive rainfall
data, Nguyen [28] suggested that it might be insufficient to use the probability value (p-value)
for decision-making alone in statistical testing of hypotheses. Thus, the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) are used to avoid using the p-value
for model evaluation. Akaike [29] and Stone [30] defined the AIC and BIC which are the
methods for scoring and selecting a suitable model derived from frequentist and Bayesian

probabilities, respectively. Let 6 be the set (vector) of model parameters and L(0) be the likeli-
hood of the candidate model when evaluated at the MLE of 6. The AIC and BIC of a model are
expressed as

AIC = —2In L(0) + 2k (46)

BIC = —2In L(0)+ 2kIn(n) (47)

where k stands for the number of estimated parameters in the candidate model and # stands
for the number of recorded measurements. The AIC and BIC results, in Table 5, reveal that
the reduced rainfall data (X — a) fit a lognormal distribution. When factoring in the empty
rainfall records, the weekly positive rainfall data in the week 29 July to 4 August 2019 follow a
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Table 1. CP and EL performances of 95% CI for 6: a = 1.

a=1 CP EL
n 7 HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER | HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER
30 10% | 0.3 0.9358 0.9420 0.9256 0.9322 0.9966 0.9968 0.5181 0.5257 0.4922 0.4994 0.7926 0.8028
0.5 0.9186 0.9258 0.9060 0.9136 0.9916 0.9914 0.6449 0.6509 0.6126 0.6184 0.8484 0.8548
0.8 0.9266 0.9304 0.9124 0.9156 0.9738 0.9724 0.7915 0.7966 0.7519 0.7568 0.9320 0.9342
1.0 0.9310 0.9330 0.9160 0.9186 0.9642 0.9606 0.8858 0.8905 0.8415 0.8460 0.9958 0.9963
2.0 0.9196 0.9160 0.9088 0.9024 0.9238 0.9222 1.3163 1.3196 1.2505 1.2536 1.3710 1.3653
30% | 0.3 0.9552 0.9616 0.9446 0.9534 0.9928 0.9938 0.7172 0.7290 0.6814 0.6925 0.9426 0.9395
0.5 0.9374 0.9446 0.9254 0.9316 0.9840 0.9830 0.8527 0.8629 0.8101 0.8198 1.0288 1.0232
0.8 0.9304 0.9370 0.9186 0.9238 0.9746 0.9726 1.0137 1.0220 0.9630 0.9709 1.1550 1.1451
1.0 0.9348 0.9352 0.9210 0.9238 0.9660 0.9632 1.1194 1.1278 1.0634 1.0714 1.2412 1.2292
2.0 0.9202 0.9144 0.9056 0.9030 0.9222 0.9174 1.5505 1.5568 1.4729 1.4789 1.6359 1.6182
50% | 0.3 0.9490 0.9620 0.9398 0.9510 0.9846 0.9850 1.0057 1.0248 0.9554 0.9735 1.1897 1.1661
0.5 0.9420 0.9540 0.9294 0.9436 0.9788 0.9798 1.1843 1.2010 1.1251 1.1410 1.3465 1.3199
0.8 0.9446 0.9538 0.9310 0.9410 0.9790 0.9770 1.3801 1.3945 1.3111 1.3248 1.5224 1.4924
1.0 0.9468 0.9528 0.9344 0.9420 0.9732 0.9698 1.4945 1.5076 1.4198 1.4323 1.6316 1.5976
2.0 0.9440 0.9450 0.9312 0.9334 0.9566 0.9504 1.9594 1.9713 1.8614 1.8727 2.0981 2.0567
50 10% | 0.3 0.8518 0.8598 0.8376 0.8470 0.9972 0.9972 0.3721 0.3757 0.3535 0.3569 0.6789 0.6841
0.5 0.8692 0.8756 0.8512 0.8612 0.9904 0.9912 0.4601 0.4631 0.4371 0.4399 0.6570 0.6609
0.8 0.9262 0.9302 0.9120 0.9138 0.9740 0.9726 0.5918 0.5943 0.5622 0.5645 0.6850 0.6869
1.0 0.9300 0.9324 0.9172 0.9206 0.9514 0.9494 0.6783 0.6806 0.6444 0.6466 0.7358 0.7371
2.0 0.9144 0.9138 0.9008 0.9012 0.9196 0.9176 1.0444 1.0455 0.9922 0.9932 1.0627 1.0611
30% | 0.3 0.9072 0.9142 0.8926 0.9018 0.9936 0.9932 0.5207 0.5263 0.4946 0.5000 0.7935 0.7927
0.5 0.9024 0.9098 0.8864 0.8958 0.9832 0.9838 0.6099 0.6151 0.5794 0.5843 0.8062 0.8039
0.8 0.9310 0.9328 0.9158 0.9210 0.9722 0.9712 0.7414 0.7456 0.7044 0.7083 0.8528 0.8493
1.0 0.9388 0.9384 0.9222 0.9220 0.9594 0.9542 0.8264 0.8300 0.7850 0.7885 0.9044 0.8997
2.0 0.9252 0.9208 0.9082 0.9080 0.9250 0.9230 1.2095 1.2132 1.1490 1.1526 1.2433 1.2362
50% | 0.3 0.9290 0.9408 0.9160 0.9256 0.9890 0.9894 0.7254 0.7355 0.6891 0.6987 0.9587 0.9496
0.5 0.9250 0.9344 0.9116 0.9232 0.9856 0.9858 0.8317 0.8404 0.7902 0.7984 1.0115 1.0004
0.8 0.9258 0.9350 0.9144 0.9202 0.9696 0.9670 0.9737 0.9810 0.9250 0.9319 1.1021 1.0884
1.0 0.9398 0.9448 0.9268 0.9326 0.9742 0.9718 1.0624 1.0699 1.0093 1.0164 1.1687 1.1537
2.0 0.9236 0.9224 0.9134 0.9098 0.9242 0.9206 1.4647 1.4693 1.3914 1.3958 1.5291 1.5113
100 10% | 0.3 0.7382 0.7428 0.7216 0.7290 0.9984 0.9984 0.2496 0.2510 0.2371 0.2385 0.5141 0.5161
0.5 0.8800 0.8850 0.8628 0.8688 0.9864 0.9868 0.3222 0.3235 0.3061 0.3073 0.4356 0.4373
0.8 0.9444 0.9422 0.9318 0.9304 0.9620 0.9634 0.4194 0.4202 0.3984 0.3992 0.4589 0.4599
1.0 0.9410 0.9404 0.9288 0.9298 0.9488 0.9474 0.4836 0.4845 0.4594 0.4603 0.5046 0.5052
2.0 0.9212 0.9192 0.9074 0.9074 0.9256 0.9256 0.7599 0.7605 0.7219 0.7224 0.7665 0.7661
30% | 0.3 0.7956 0.8052 0.7786 0.7864 0.9948 0.9946 0.3520 0.3540 0.3344 0.3363 0.6199 0.6202
0.5 0.8850 0.8920 0.8688 0.8752 0.9848 0.9854 0.4197 0.4217 0.3987 0.4006 0.5532 0.5528
0.8 0.9378 0.9394 0.9218 0.9256 0.9606 0.9606 0.5195 0.5213 0.4935 0.4953 0.5697 0.5686
1.0 0.9420 0.9426 0.9302 0.9292 0.9490 0.9478 0.5840 0.5853 0.5548 0.5560 0.6135 0.6120
2.0 0.9216 0.9186 0.9104 0.9074 0.9240 0.9246 0.8790 0.8797 0.8351 0.8357 0.8883 0.8866
50% | 0.3 0.8594 0.8662 0.8428 0.8532 0.9902 0.9906 0.4898 0.4936 0.4653 0.4689 0.7544 0.7522
0.5 0.8926 0.9000 0.8736 0.8828 0.9840 0.9826 0.5560 0.5592 0.5282 0.5312 0.7139 0.7106
0.8 0.9334 0.9340 0.9178 0.9228 0.9606 0.9584 0.6611 0.6641 0.6281 0.6309 0.7347 0.7303
1.0 0.9440 0.9456 0.9326 0.9326 0.9570 0.9562 0.7355 0.7382 0.6987 0.7013 0.7822 0.7772
2.0 0.9228 0.9178 0.9066 0.9072 0.9218 0.9194 1.0536 1.0558 1.0010 1.0030 1.0715 1.0662
Remark: Boldface indicates the recommended method for each case.
https://doi.org/10.1371/journal.pone.0266455.t001
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Fig 1. Performance measures of 95%ClIs for 0: a = 1 (A) Coverage probabilities and (B) Expected lengths.
https://doi.org/10.1371/journal.pone.0266455.9001
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Table 2. CP and EL performances of 95% CI for 6: a = 5.

a=5 CP EL
n o 7 HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER | HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER
30 10% | 0.3 0.9622 0.9634 0.9536 0.9544 0.9936 0.9942 0.4043 0.4138 0.3841 0.3931 0.6484 0.6627
0.5 0.9540 0.9546 0.9434 0.9424 0.9900 0.9894 0.4996 0.5077 0.4746 0.4823 0.6733 0.6857
0.8 0.9482 0.9456 0.9360 0.9348 0.9732 0.9726 0.6316 0.6379 0.6000 0.6060 0.7336 0.7436
1.0 0.9422 0.9390 0.9310 0.9286 0.9628 0.9610 0.7196 0.7256 0.6836 0.6893 0.7920 0.8005
2.0 0.9026 0.8996 0.8888 0.8836 0.9154 0.9136 1.1200 1.1240 1.0640 1.0678 1.1547 1.1576
30% | 0.3 0.9556 0.9626 0.9458 0.9534 0.9896 0.9904 0.6013 0.6153 0.5713 0.5845 0.8073 0.8056
0.5 0.9564 0.9608 0.9462 0.9516 0.9802 0.9812 0.6989 0.7107 0.6639 0.6752 0.8578 0.8554
0.8 0.9576 0.9582 0.9466 0.9466 0.9722 0.9714 0.8309 0.8415 0.7894 0.7995 0.9430 0.9393
1.0 0.9558 0.9538 0.9444 0.9434 0.9660 0.9646 0.9294 0.9397 0.8830 0.8928 1.0188 1.0139
2.0 0.9136 0.9094 0.8990 0.8946 0.9222 0.9148 1.3422 1.3503 1.2751 1.2827 1.3995 1.3906
50% | 0.3 0.9412 0.9558 0.9300 0.9440 0.9828 0.9850 0.8606 0.8825 0.8176 0.8384 1.0440 1.0217
0.5 0.9550 0.9634 0.9426 0.9566 0.9788 0.9792 0.9784 0.9987 0.9295 0.9487 1.1286 1.1065
0.8 0.9644 0.9680 0.9532 0.9592 0.9760 0.9738 1.1517 1.1695 1.0941 1.1111 1.2771 1.2531
1.0 0.9596 0.9614 0.9464 0.9524 0.9694 0.9662 1.2491 1.2658 1.1867 1.2025 1.3668 1.3415
2.0 0.9400 0.9380 0.9262 0.9240 0.9456 0.9382 1.7240 1.7386 1.6378 1.6516 1.8271 1.7974
50 10% | 0.3 0.9584 0.9576 0.9482 0.9460 0.9972 0.9982 0.2984 0.3030 0.2835 0.2879 0.5477 0.5545
0.5 0.9488 0.9480 0.9346 0.9378 0.9888 0.9886 0.3665 0.3705 0.3482 0.3519 0.5066 0.5131
0.8 0.9438 0.9420 0.9292 0.9304 0.9700 0.9692 0.4735 0.4767 0.4498 0.4529 0.5317 0.5374
1.0 0.9340 0.9322 0.9198 0.9156 0.9500 0.9474 0.5441 0.5467 0.5169 0.5193 0.5791 0.5842
2.0 0.9098 0.9068 0.8960 0.8924 0.9208 0.9206 0.8822 0.8840 0.8381 0.8398 0.8978 0.8995
30% | 0.3 0.9466 0.9510 0.9356 0.9390 0.9902 0.9906 0.4478 0.4544 0.4254 0.4317 0.6723 0.6721
0.5 0.9498 0.9526 0.9400 0.9414 0.9800 0.9820 0.5117 0.5180 0.4861 0.4921 0.6618 0.6613
0.8 0.9488 0.9482 0.9372 0.9356 0.9708 0.9686 0.6172 0.6225 0.5864 0.5914 0.6918 0.6907
1.0 0.9418 0.9390 0.9298 0.9270 0.9538 0.9508 0.6874 0.6918 0.6530 0.6572 0.7390 0.7376
2.0 09110 0.9096 0.8976 0.8930 0.9184 0.9146 1.0421 1.0454 0.9900 0.9932 1.0664 1.0633
50% | 0.3 0.9462 0.9522 0.9326 0.9414 0.9838 0.9854 0.6370 0.6480 0.6052 0.6156 0.8395 0.8305
0.5 0.9466 0.9524 0.9364 0.9428 0.9772 0.9774 0.7110 0.7212 0.6755 0.6851 0.8625 0.8531
0.8 0.9588 0.9596 0.9468 0.9478 0.9730 0.9706 0.8252 0.8345 0.7839 0.7927 0.9241 0.9133
1.0 0.9524 0.9542 0.9424 0.9404 0.9636 0.9612 0.9074 0.9157 0.8620 0.8699 0.9857 0.9742
2.0 0.9152 0.9090 0.8990 0.8962 0.9180 0.9120 1.2812 1.2878 1.2171 1.2234 1.3264 1.3136
100 10% | 0.3 0.9448 0.9462 0.9328 0.9332 0.9970 0.9972 0.2046 0.2062 0.1944 0.1959 0.3803 0.3829
0.5 0.9500 0.9522 0.9362 0.9382 0.9874 0.9884 0.2546 0.2559 0.2419 0.2431 0.3289 0.3317
0.8 0.9404 0.9390 0.9262 0.9270 0.9596 0.9582 0.3310 0.3321 0.3144 0.3155 0.3564 0.3588
1.0 0.9400 0.9390 0.9294 0.9240 0.9494 0.9490 0.3814 0.3823 0.3623 0.3632 0.3958 0.3980
2.0 0.9134 0.9128 0.8982 0.8996 0.9214 0.9210 0.6400 0.6408 0.6080 0.6087 0.6468 0.6477
30% | 0.3 0.9384 0.9406 0.9272 0.9278 0.9936 0.9932 0.3106 0.3130 0.2951 0.2973 0.4904 0.4907
0.5 0.9464 0.9458 0.9348 0.9354 0.9760 0.9762 0.3566 0.3589 0.3388 0.3410 0.4396 0.4397
0.8 0.9458 0.9480 0.9338 0.9336 0.9586 0.9582 0.4313 0.4330 0.4098 0.4113 0.4616 0.4615
1.0 0.9434 0.9436 0.9274 0.9272 0.9498 0.9498 0.4813 0.4831 0.4573 0.4589 0.5003 0.5002
2.0 0.9258 0.9256 0.9100 0.9124 0.9280 0.9272 0.7482 0.7494 0.7108 0.7119 0.7574 0.7571
50% | 0.3 0.9410 0.9440 0.9302 0.9326 0.9840 0.9842 0.4431 0.4472 0.4209 0.4249 0.6315 0.6291
0.5 0.9452 0.9464 0.9344 0.9332 0.9724 0.9734 0.4891 0.4927 0.4646 0.4680 0.5970 0.5939
0.8 0.9432 0.9458 0.9274 0.9306 0.9600 0.9580 0.5692 0.5724 0.5408 0.5437 0.6143 0.6106
1.0 0.9492 0.9488 0.9354 0.9370 0.9542 0.9516 0.6217 0.6246 0.5906 0.5934 0.6518 0.6481
2.0 0.9220 0.9208 0.9120 0.9076 0.9230 0.9226 0.9109 0.9131 0.8654 0.8675 0.9258 0.9222
Remark: Boldface indicates the recommended method for each case.
https://doi.org/10.1371/journal.pone.0266455.t002
PLOS ONE | https://doi.org/10.1371/journal.pone.0266455  April 14, 2022 16/25


https://doi.org/10.1371/journal.pone.0266455.t002
https://doi.org/10.1371/journal.pone.0266455

PLOS ONE Bayesian interval estimations for the mean of delta-three parameter lognormal distribution

A 10% 30% 50%
1.00
0.95-]
(]
o
0.90]
0.85-
1.00 i Methods
-._.M.-;-.;.,.‘___A__‘. —e— HPD-NI1
0951 Qe e, || $—ee o 8 || g & - HPD-NI2
% a -e- ET-NI
0.90] -~ ET-NI2
-e. GCI
-e- MOVER
0.85
1.00
0.95-]
<)
o
0.90]
0.85-
0.3 0.5 0.8 1 2 0.3 05 0.8 1 2 0.3 0.5 0.8 1 2
2
Gy
B 10% 30% 50%
1.5
1.0 8
0.5
Methods
154 —e— HPD-NIH
-e- HPD-NI2
d 104 g - ET-NH
-~ ET-NI2
0.5 e GCI
-e- MOVER
1.5
1.04 é
0.5

Fig 2. Performance measures of 95%ClIs for 0: a = 5 (A) Coverage probabilities and (B) Expected lengths.
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Table 3. CP and EL performances of 95% CI for 6: a = 15.

a=15 CP EL
n o s HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER | HPD-NI1 | HPD-NI2 | ET-NI1 | ET-NI2 GCI MOVER
30 10% | 0.3 0.9596 0.9670 0.9480 0.9586 0.9908 0.9936 0.3033 0.3151 0.2881 0.2994 0.4881 0.5065
0.5 0.9610 0.9620 0.9486 0.9510 0.9822 0.9876 0.3554 0.3660 0.3376 0.3477 0.4786 0.4978
0.8 0.9530 0.9524 0.9410 0.9394 0.9690 0.9708 0.4430 0.4524 0.4209 0.4298 0.5051 0.5248
1.0 0.9504 0.9460 0.9378 0.9344 0.9622 0.9614 0.5077 0.5162 0.4823 0.4904 0.5512 0.5704
2.0 0.9102 0.9020 0.8934 0.8892 0.9206 0.9168 0.8417 0.8477 0.7996 0.8053 0.8738 0.8878
30% | 0.3 0.9390 0.9488 0.9300 0.9388 0.9752 0.9818 0.4983 0.5140 0.4734 0.4883 0.6623 0.6609
0.5 0.9516 0.9594 0.9388 0.9498 0.9742 0.9806 0.5538 0.5688 0.5261 0.5403 0.6790 0.6782
0.8 0.9574 0.9604 0.9440 0.9492 0.9688 0.9698 0.6388 0.6523 0.6068 0.6197 0.7219 0.7228
1.0 0.9590 0.9578 0.9476 0.9466 0.9638 0.9634 0.7044 0.7174 0.6692 0.6816 0.7688 0.7698
2.0 0.9248 0.9190 0.9108 0.9020 0.9270 0.9218 1.0401 1.0499 0.9881 0.9974 1.0907 1.0926
50% | 0.3 0.9410 0.9524 0.9282 0.9406 0.9754 0.9768 0.7395 0.7642 0.7026 0.7260 0.9009 0.8773
0.5 0.9430 0.9588 0.9336 0.9482 0.9752 0.9774 0.8024 0.8254 0.7623 0.7841 0.9380 0.9159
0.8 0.9534 0.9610 0.9432 0.9502 0.9696 0.9706 0.9092 0.9311 0.8638 0.8846 1.0202 0.9993
1.0 0.9626 0.9684 0.9510 0.9582 0.9714 0.9710 0.9787 1.0000 0.9297 0.9500 1.0801 1.0607
2.0 0.9464 0.9422 0.9358 0.9316 0.9424 0.9390 1.3712 1.3893 1.3026 1.3198 1.4720 1.4523
50 10% | 0.3 0.9504 0.9586 0.9388 0.9480 0.9936 0.9946 0.2266 0.2323 0.2152 0.2207 0.3767 0.3859
0.5 0.9518 0.9544 0.9398 0.9406 0.9792 0.9826 0.2666 0.2717 0.2533 0.2581 0.3443 0.3544
0.8 0.9498 0.9476 0.9380 0.9372 0.9656 0.9668 0.3342 0.3386 0.3175 0.3216 0.3650 0.3753
1.0 0.9456 0.9450 0.9346 0.9336 0.9554 0.9542 0.3832 0.3871 0.3641 0.3678 0.4022 0.4125
2.0 0.9104 0.9078 0.8996 0.8936 0.9194 0.9190 0.6450 0.6478 0.6127 0.6154 0.6601 0.6673
30% | 0.3 0.9444 0.9494 0.9326 0.9376 0.9818 0.9844 0.3856 0.3933 0.3663 0.3736 0.5326 0.5322
0.5 0.9572 0.9574 0.9468 0.9478 0.9752 0.9766 0.4211 0.4284 0.4001 0.4069 0.5077 0.5075
0.8 0.9458 0.9464 0.9310 0.9352 0.9572 0.9556 0.4804 0.4869 0.4563 0.4626 0.5237 0.5245
1.0 0.9492 0.9496 0.9374 0.9368 0.9510 0.9516 0.5267 0.5329 0.5004 0.5062 0.5567 0.5581
2.0 0.9264 0.9232 0.9128 0.9104 0.9276 0.9254 0.7973 0.8021 0.7574 0.7620 0.8192 0.8213
50% | 0.3 0.9430 0.9522 0.9332 0.9422 0.9742 0.9760 0.5699 0.5820 0.5414 0.5529 0.7210 0.7107
0.5 0.9492 0.9552 0.9400 0.9470 0.9728 0.9738 0.6060 0.6176 0.5757 0.5867 0.7115 0.7010
0.8 0.9458 0.9510 0.9334 0.9380 0.9592 0.9598 0.6728 0.6836 0.6392 0.6494 0.7396 0.7305
1.0 0.9524 0.9560 0.9412 0.9424 0.9594 0.9598 0.7215 0.7322 0.6854 0.6956 0.7753 0.7667
2.0 0.9370 0.9322 0.9236 0.9160 0.9322 0.9294 1.0160 1.0242 0.9652 0.9730 1.0558 1.0490
100 10% | 0.3 0.9462 0.9516 0.9344 0.9406 0.9922 0.9920 0.1587 0.1609 0.1508 0.1528 0.2448 0.2483
0.5 0.9494 0.9494 0.9350 0.9360 0.9770 0.9776 0.1856 0.1875 0.1764 0.1781 0.2219 0.2259
0.8 0.9466 0.9444 0.9338 0.9324 0.9552 0.9554 0.2314 0.2328 0.2198 0.2212 0.2444 0.2486
1.0 0.9448 0.9436 0.9304 0.9290 0.9488 0.9482 0.2649 0.2661 0.2516 0.2528 0.2726 0.2766
2.0 0.9228 0.9216 0.9080 0.9078 0.9288 0.9284 0.4653 0.4661 0.4420 0.4428 0.4717 0.4746
30% | 0.3 0.9468 0.9488 0.9346 0.9370 0.9812 0.9840 0.2732 0.2761 0.2596 0.2623 0.3600 0.3600
0.5 0.9472 0.9520 0.9318 0.9356 0.9702 0.9702 0.2945 0.2973 0.2798 0.2824 0.3339 0.3340
0.8 0.9540 0.9558 0.9424 0.9446 0.9594 0.9608 0.3348 0.3372 0.3180 0.3203 0.3514 0.3520
1.0 0.9468 0.9474 0.9338 0.9340 0.9502 0.9484 0.3674 0.3695 0.3490 0.3510 0.3783 0.3792
2.0 0.9214 0.9204 0.9062 0.9076 0.9234 0.9222 0.5688 0.5707 0.5404 0.5421 0.5776 0.5788
50% | 0.3 0.9446 0.9480 0.9332 0.9370 0.9764 0.9758 0.4052 0.4095 0.3849 0.3890 0.5117 0.5081
0.5 0.9472 0.9490 0.9324 0.9378 0.9636 0.9650 0.4265 0.4307 0.4052 0.4092 0.4790 0.4755
0.8 0.9404 0.9430 0.9294 0.9318 0.9498 0.9498 0.4670 0.4707 0.4436 0.4471 0.4926 0.4894
1.0 0.9462 0.9468 0.9330 0.9318 0.9492 0.9482 0.5015 0.5050 0.4764 0.4797 0.5202 0.5173
2.0 0.9378 0.9346 0.9224 0.9226 0.9360 0.9338 0.7187 0.7211 0.6828 0.6850 0.7323 0.7306
Remark: Boldface indicates the recommended method for each case.
https://doi.org/10.1371/journal.pone.0266455.t003
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Fig 3. Performance measures of 95%ClIs for 0: a = 15 (A) Coverage probabilities and (B) Expected lengths.
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Table 4. Data on weekly natural rainfall in northern Thailand in the week 29 July to 4 August 2019.

125.3 160.1 118.5
0 50.1 76.8
206.6 114.9 283.1
8.1 20.8 122.8
27 9.1 46.1

Source: Thailand Meteorogical Deparment

148.8
71.8
61.5

228.6
34.6

Weekly natural rainfall data

50 66.7 52.6 131.1 45.2 0 25.2 106.5 0

31.4 0 32.9 34.5 26.8 83.4 189.1 179.3 309.7

25 18 15 16.6 46 14.5 15 24.7 23

10.2 107.4 0 26.9 26.2 17.7 15.6 22.9 34.1
0 25.8 18.2 15.1 8.5 0

URL: https://www.tmd.go.th/services/weekly_report.php

https://doi.org/10.1371/journal.pone.0266455.1004

delta-three parameter lognormal distribution. The descriptive statistics for the data are as fol-
lows: n=62,a = 1.7604, § = 11.29%, jt, = 3.7256 and 63 = 1.0489.

The mean of the weekly positive rainfall records is 62.5183 mm/wk. Computations of the
95% ClIs for the BCIs, GCI, and MOVER for the estimated mean are reported in Table 6. The
weekly rainfall amounts infer heavy rain (35.1-90.0 millimetre), as per the criteria of the TMD
[31]. Importantly, it is in line with the TMD warnings of heavy downpours and flash floods to
the population living in the at-risk areas. For a = 1, the evidence in support of the estimated
ClIs can be found in the simulation results in Section.

Discussion

Random samples were drawn from data following a delta-three parameter lognormal distribu-
tion including zero observations of proportion ¢ and highly skewed non-zero values in the
remaining proportion following a three-parameter lognormal distribution. This distribution
offers a solution for how to handle highly skewed observed data that cannot be modeled using
a two-parameter lognormal distribution. In this study, CI estimates for the mean of a delta-
three parameter lognormal distribution were developed based on BCIs (HPD and ET-based
NI intervals), GCI, and MOVER. Applying our proposed methods to predict the weekly natu-
ral rainfall amount was the motivation for this study.

When the threshold was large, HPD-NI1 provided better performance than the other meth-
ods in the extreme situation where the variance was small-to-medium, although it did not deal
well with a large variance. The first reason is that the ET interval can substantially differ from
the HPD region if the posterior density is highly skewed, as noted by Gelman et al. [20]. The
next reason is that the NI1 prior was obtained from the prior of 62 using its Fisher information
matrix, which might make it stronger than the NI2 prior (the normal-gamma prior of
(uy,0%)). However, it is important to note the limitation of HPD-NI1 when dealing with large
3. Likewise, the current study has a research gap in the perspectives on spatial information
because it could be useful for statistical estimation if this study has been enabled by consider-
able insights associated with modeling framework using rainfall spatial analysis. See details in
Banerjee et al. [32]. These need further research in the future.

Conclusions

The present study aimed to propose BCIs-based NI1 and NI2 priors, GCI, and MOVER for
the logarithm of the mean of delta-three parameter lognormal model. Our numerical evalua-
tion shows that in situations of small threshold, MOVER maintained a good performance and
obtained the recommended Cls for large proportion of zeros except for large variance, while
the next recommended CIs were obtained by apply GCI. On the other hand, HPD-NI1
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Fig 4. Histogram and empirical CDF plots of weekly rainfall records in northern Thailand in the week 29 July to 4
August 2019.

https://doi.org/10.1371/journal.pone.0266455.9004
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Table 5. Results of AIC and BIC for weekly positive rainfall data.

Distributions Criteria
AICs BICs
Cauchy 610.1506 614.1653
Exponential 575.2178 577.2251
Gamma 576.7389 580.7536
Logistic 622.7518 626.7665
Lonormal 569.3073 573.3219
Normal 628.9230 632.9376
T-distribution 612.0378 618.0598
Weibull 577.1703 581.1850

https://doi.org/10.1371/journal.pone.0266455.t1005

Table 6. 95%CIs for the weekly average natural rainfall in northern Thailand.

Methods 95% Cls for 0 Lengths
Lower Upper
HPD-NI1 44.9290 90.9399 46.0109
HPD-NI2 44.8439 90.6832 45.8393
ET-NI1 44.7487 90.6611 45.9124
ET-NI2 43.3894 84.1893 40.7999
GCI 45.3618 91.5032 46.1414
MOVER 44.7933 91.6743 46.8810

https://doi.org/10.1371/journal.pone.0266455.1006

performed quite well in situations of small-to-medium variance and a large threshold. There-
fore, the HPD-NI1 is recommended for constructing CI estimation for the mean of a delta-
three parameter lognormal distribution under these conditions. Furthermore, the GCI and
MOVER are considered as the alternative methods.
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