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Four 16 cm diameter spherical phantoms were modeled in this study: a homog-
enous water phantom, and three water phantoms with 1 cm thick shell each made
of different materials (PMMA, Plastic Water™ and polystyrene). The PENELOPE
Monte Carlo code was utilized to simulate photon beams from the Leksell Gamma
Knife (LGK) unit and to determine absorbed dose to water (D) from a single
18 mm beam delivered to each phantom. A score spherical volume of 0.007 cm?
was used to simulate the dimensions of the sensitive volume of the Exradin A-16
ionization chamber, in the center of the phantom. In conclusion, the PMMA shell
filled with water required a small correction for the determination of the absorbed
dose, while remaining within the statistical uncertainty of the calculations (= 0.71).
Plastic Water™ and polystyrene shells can be used without correction. There is
a potential advantage to measuring the 4 mm helmet output using these spherical
water phantoms.

PACS numbers: 87.10.Rt, 87.50.cm
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. INTRODUCTION

The Leksell Gamma Knife (LGK) is a complete system for radiosurgery marketed worldwide
by Elekta. The effective non-invasive treatment is made by 201 Cobalt-60 (°°Co) beams that
have sufficient penetration to reach even the most deep-seated tumors in the brain. The treat-
ment is achieved by delivering prescribed doses (shots) of radiation, in compliance with a
pre-prepared treatment plan to the exact site of the intracranial target. The tissue in the target
is thus treated by radiation while sparing surrounding tissue.() It provides a low morbidity and
effective alternative to conventional surgery.> A spherical polystyrene phantom 160 mm in
diameter furnished by Elekta is usually used in dosimetry, according to the American Associa-
tion of Physicists in Medicine (AAPM) Task Group 21 Protocol.+-10)

Currently, the worldwide trend in radiation dosimetry is to standardize absorbed dose to
water (D, ) as measured by a water phantom,!) and a new AAPM TG 51 protocol has been
instituted for water calibration.(!?) It provides the possibility of reducing the uncertainty in the
dosimetry of radiotherapy beams. Recently, a thimble-shaped calibration water phantom, with a
2 mm plastic wall was designed for LGK calibration in water.(!3) This method avoids dosimetric
uncertainties resulting from the composition of the traditional polystyrene phantom construction
materials. In this work, four 16 cm diameter spherical phantoms were modeled: a homogenous
water phantom, and three water phantoms with different 1 cm thick materials. The PENELOPE
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Monte Carlo code was utilized to simulate photon beams from the LGK unit and to determine
D, from a single 18 mm beam delivered to center of each of the phantoms.

Il. MATERIALS AND METHODS

For the LGK Model B and Model C, the dose is delivered with 201 Cobalt-60 (°°Co) sources
that are distributed on the surface of a hemisphere with a radius of about 400 mm, such that
the beams are collimated to a common focal point (isocenter). Sources are distributed along
five parallel circles separated from each other by an angle of 7.5°. Each one of the ®°Co sources
consists of 20 cylindrical ®*Co pellets 1 mm in diameter and 1 mm in length. According to
a simplified model,(!*!5 the active core can be considered as a unique cylindrical source of
1 mm diameter and 20 mm height made of ®°Co. The sources are encapsulated in 303 series
stainless steel (C 1.0%, Mn 2.0%, P 0.045%, S 0.03%, Si 1.0%, Cr 18.0%, Ni 9.0%, Fe 69.8%)
with welded closures. The dimensions of the source capsule are 7 mm in diameter and 33 mm
long. Each beam channel consists of a 65 mm long tungsten cylinder with a radius of 2 mm in
a precollimator followed by a 92.5 mm lead cone collimator and ends in a 60 mm interchange-
able tungsten collimator helmet. The available sizes of the interchangeable collimator helmet
are 4, 8, 14 and 18 mm.

Four 16 cm diameter spherical phantoms were modeled: a homogenous water phantom and
three water phantoms with 1 cm thick shells made of different materials. The shell materials
were PMMA, Plastic Water™ and polystyrene. Table 1 gives the physical characteristics and
composition of each material. The center coincides with the isocenter of the LGK unit. The
schematic diagram of the spherical water phantom is shown in Fig. 1. Idealized experiments
were performed using the PENELOPE Monte Carlo code for 18 mm collimator helmet to
obtain the single-beam profiles, isodose distribution, and the percent deviation in D, at the
center of the phantoms.

The PENELOPE Monte Carlo code implements advance electron, positron and photon trans-
port algorithms. It is suitable for simulating problems relevant to stereotactic radiosurgery.(7-1®)
A detailed description on the structure of PENELOPE can be found in Salvat et al.(!®) During
simulation, source capsule, precollimator and cone collimator (part I), collimator helmet (part
IT) and spherical water phantom (part III) were simulated separately. Two phase-space files
(PSFI and PSFII) were obtained during the simulation of part I and part II, respectively. PSFI
contained all the particles scored at the plane below the inner surface of the tube collimator.
PSFII contained all the particles scored at the plane below the inner surface of the final colli-
mator helmet. The simulation was controlled by means of several parameters: C,, C,, W__ and
W,,. E,,(electron e/ e"/photon), as well as DSMAX. The first two refer to elastic collisions.
C, represents an average angular deflection produced by multiple elastic scattering along a path
length equal to the mean free path between hard elastic events. C, defines the maximum average

TasLe 1. Composition (in weight percent fraction) and densities of PMMA, Plastic Water™ and polystyrene.

PMMA® Plastic Water™? Polystyrene®
H 8.05 9.25 7.7
C 59.98 62.82 92.3
N 1.00
O 31.96 17.94
Cl 0.96
Ca 7.95
Br 0.03
Density (g cm™) 1.190 1.014 1.060

4 As given by Penelope.
b As given by Tello et al,(1%) its density was generated by Penelope according to its composition.
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FiG. 1. Schematic diagram of the spherical water phantom.

fractional energy loss between consecutive hard elastic events. W and W are energy cutoff
values to separate hard and soft events. The inelastic collisions with energy loss W <W__and
emission of bremsstrahlung photons with W < W _ are considered as soft stopping interactions
in simulation. E , (electron e/ ¢/photon) is the absorption energy, when the energy becomes
smaller than a given energy and particles are assumed to be effectively stopped and absorbed in
the medium. The input parameter DSMAX defines the maximum allowed step length for e”/e*
for photons. In each simulation of part [, [l and III, C, and C, are 0.1; W_ and W are 10 keV;
E,, (electron e”/ e"/photon) is 10 keV. DSMAX is given a value of the order of one-tenth of
the “thickness” of that body. In the simulation of part I, a total of 6.7 x 107 histories were fol-
lowed and the initial directions were sampled in a cone with semi-aperture angle 10° toward
the isocenter to get PSFI. In the simulation of part II, PSFI was used with a splitting factor 20
to obtain PSFII. In the simulation of part III, PSFII was used with a splitting factor 50. The
statistical uncertainty of the Monte Carlo estimate is determined by the Eq.1 and Eq. 2:(19
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where N is a large number of simulated histories, g, is a random value scored by all particles
of the i, history, and O is an average score of N. The statistical uncertainties given throughout
this paper correspond to i, .

lll. RESULTS & DISCUSSION

Figure 2 shows the single-beam dose profiles of three spherical phantoms for the 18 mm col-
limator helmet of the LGK unit, which were normalized in homogenous water at the region of
dose maximum. The solid, dot, dash-dot and dash-dot-dot lines correspond to the homogenous
water phantom, water phantoms with 1cm Plastic Water™ shell, PMMA shell and polystyrene
shell, respectively. The dash curve shows the single-beam dose profile simulated by another
Monte Carlo code, EGS4 for the 18 mm collimator helmet.(© In the study by Chung et al., the
single-beam dose profile was normalized with Elekta profiles at the region of dose maximum,;
the agreement is very good. Wu et al.?% reported that the dimension of the 50% isodose or
full-with- at- half- maximum (FWHM) of 18 mm collimator helmet equals 18 mm. As shown
in Fig.2, our Monte Carlo results were consistent with those in the Wu et al. study.

The curves in Fig. 3 were obtained by fitting the values of the relative dose for each material
in a radial distance varying from 0 to 5 mm. Even though there was a relatively large uncer-
tainty in the MC calculation, these results showed not only the expected relationship among
the absorbed dose with these materials and their mass energy attenuation coefficient, but also
the sensitivity of the modeling technique. Based only on the value of the energy absorption
coefficient by the National Institute of Standards and Technology (NIST), a correction of about
0.2% and 0.8% were found for polystyrene and for PMMA, respectively, which were very close
to that performed in this work. Nevertheless, the calculations performed in this work served
to predict, in a more accurate fashion, the required amount of correction which was needed
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Fi1G. 2. Comparison of single-beam dose profile in the center of the spherical water phantoms with the different shell
materials for the 18 mm collimator helmet.
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Fic. 3. Isodose distribution in the center of the spherical water phantoms with the radial distance varying from
0 to 5 mm.

to compensate for the thickness of the shell material — rather than water, which was used in
a spherical water phantom. Measurements performed with a 1 cm and 0.5 cm PMMA shell
thickness are in progress and will be published.

Figure 4 shows the isodose distribution in the center of the spherical water phantom with
the PMMA material for 18 mm collimator helmet. With the different shell materials, there is
no observable difference.

The Exradin A-16 chamber of collecting volume of 0.007 cm? is used in the AAPM TG-21
calibration of the LGK unit.® A score spherical volume of 0.007 cm? was used to simulate the
dimensions of the sensitive volume of the Exradin A-16 ionization chamber, in the center of
the phantom. Within the statistical uncertainty of the modeling prediction (£ 0.71%), Table 2
gives the attenuation factor of the shell material in the D, in the center of the water phantom.
Within the statistical uncertainty of the modeling prediction, the following percent deviations
were found in D_ in the center of the water phantom: 0.2%, 0.7%, and 1.4% as compared with
homogenous water phantom for water phantom with Plastic Water™, polystyrene and PMMA
shells, respectively.

The spherical water phantom with 1 cm thick shell can be easily machined. A spherical water
phantom with 1 cm thick PMMA shell made of two hemispheres and with a diameter of 16 cm
was designed and built (Fig. 5). It can be positioned at the mechanical center of LGK and can
be rotated in one plane. At the center of the phantom, either an ionization chamber or films can
be placed with good accuracy, due to their geometric construction.

It is difficult to measure output factor of 4 mm helmet using ionization chambers due to their
size. Film was used to measure the 4 mm helmet output factor for the LGK using a spherical
polystyrene phantom 16 cm in diameter.>!?? Butson et al.*3) reported that water would be
the optimal medium for use in film dosimetry. The effects of water on the film are minimal
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because water could remove any spurious results caused by imperfect film-phantom contact
during parallel film exposure which could occur with the use of solid phantom. The film can be
located at the center of our designed spherical water phantom. There is a potential advantage
to measure the 4 mm helmet output using our spherical water phantom using film dosimetry
instead of the ionization chamber.

TaBLE 2. Attenuation factor of the shell material in the dose to water (D)) in the center of the water phantom; D,
normalized to the homogenous water phantom. The statistical uncertainty of each simulation was + 0.71%.

Shell Material, 1 cm thick D, Attenuation Factor
Water 1.000 N/A
PMMA 0.986 1.4%
Plastic Water™ 0.998 0.2%
Polystyrene 0.993 0.7%

3D Dose Distribution (keVW/g per history)
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FiG. 4. Isodose distribution in the center of the spherical water phantoms with the PMMA material for 18 mm collimator
helmet. With the different shell materials, there is no observable difference.

F1G. 5. A spherical water phantom with 1 cm thick PMMA shell.
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IV. CONCLUSIONS

In this work, four 16 cm diameter spherical phantoms were modeled: a homogenous water
phantom, and three water phantoms with 1cm thick shells of different materials.

The PENELOPE Monte Carlo code was utilized to simulate photon beams from the LGK
unit and to determine D, in their center from a single 18 mm beam delivered to each phantoms.
A spherical volume of 0.007 cm? was used to simulate the dimensions of the sensitive volume
of the Exradin A-16 ionization chamber in the center of the phantom.

The PMMA shell filled with water required a small correction for the determination of the
absorbed dose, while remaining within the uncertainty of the calculations (+ 0.71). The Plastic
Water™ and polystyrene shells can be used without correction. There is a potential advantage
to measuring the 4 mm helmet output using these spherical water phantoms.
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