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Abstract

Trophoblast stem (TS) cells are ideal models to investigate trophectoderm differentiation and placental development.
Herein, we describe the derivation of rabbit trophoblast stem cells from embryonic stem (ES) cells. Rabbit ES cells generated
in our laboratory were induced to differentiate in the presence of BMP4 and TS-like cell colonies were isolated and
expanded. These cells expressed the molecular markers of mouse TS cells, were able to invade, give rise to derivatives of TS
cells, and chimerize placental tissues when injected into blastocysts. The rabbit TS-like cells maintained self-renewal in
culture medium with serum but without growth factors or feeder cells, whilst their proliferation and identity were
compromised by inhibitors of FGFs and TGF-b receptors. Taken together, our study demonstrated the derivation of rabbit
TS cells and suggested the essential roles of FGF and TGF-b signalings in maintenance of rabbit TS cell self-renewal.
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Introduction

In most mammals, the trophectoderm is one of the first cell

types to be specified in the blastocyst. It surrounds the inner cell

mass (ICM) and is responsible for the initiation of implantation. A

subset of trophectoderm cells (trophoblast stem cells) retain the

capacities to proliferate and to differentiate, eventually producing

the entire trophoblastic population of the mature placenta, an

ephemeral organ essential for nutrient and waste exchange

between the fetus and its mother [1]. Trophectoderm differenti-

ation and trophoblast formation are highly dynamic and finely

regulated. Abnormalities in trophoblast formation and function

underlie many aspects of early pregnancy loss and pregnancy

complications in humans [2]. Experimentally modeling the in vivo

process of trophoblast formation is difficult and presents a big

challenge. However, trophoblast stem (TS) cells can be used to

model and study the trophoblast in vitro [3].

Trophoblasts display morphological, functional and molecular

diversity within and across species. Although some knowledge has

been obtained from the study of mouse TS cells, which can be

easily isolated from blastocysts, much less is known regarding

human trophoblast development. To study the human tropho-

blast, several human trophoblast cell lines were derived from

placental tissue or through immortalization of trophoblast cells

[4,5]. A recent study also reported the generation of cytotropho-

blast stem cells from human ES cells [6]. These cells, however,

failed to recapitulate the early stage of trophoblast development.

Embryonic stem (ES) cells and TS cells have distinct cell lineage

fates and do not transdifferentiate in vivo or in vitro. However,

recent studies demonstrated that genetic manipulation of the key

players in trophoblastic lineage development, including forced

repression of Oct4 [7] or over-expression of caudal-related

homeobox 2 (Cdx2) or Eomes [8], can induce trophoblastic

differentiation and permit the derivation of TS cells from ES cells.

Moreover, ES cells cultured on embryonic feeder cells can be

induced into trophoblastic differentiation by collagen IV or BMP4

[9,10]. These studies indicated that ES cells have the ability to

differentiate into trophoblastic lineage if they are provided with the

correct clues.

Rabbit is a mating-induced ovulator. Its pregnancy can be

precisely timed and the window of implantation can be readily

defined by several biochemical markers [11,12]. In addition, at the

points where the blastocysts attach to the uterine epithelium, the

trophectoderm forms unique structures known as trophoblastic

knobs, which are readily identifiable during early pregnancy

[13,14]. For these reasons, rabbits and their TS cells appear to be

ideal models to study the processes of implantation and

placentation. We have established one rabbit ES cell line [15].

Using this ES cell line, we herein report the derivation of rabbit

TS cells from ES cells differentiated with BMP4, which induced

human ES cell differentiation into trophoblast [10]. We also

provide evidences suggesting the essential roles of FGFs and TGFb
signalings in maintaining stem cell self-renewal. Rabbit ES cells

and human ES cells display morphological and molecular

similarities [15]. We therefore expected that rabbit TS cells would

resemble human TS cells, and the knowledge obtained from

studying rabbit TS cells could shed light on the process of human

placentation.
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Results

Derivation of epithelial-like cells in embryoid bodies (EBs)
Rabbit ES cells treated with BMP4 were induced to differentiate

into epithelial-like cells in both EB and monolayer culture systems.

In EB differentiation, cells displayed heterogeneity at the

beginning of BMP4 treatment (day 0), with cuboidal epithelial-

like cells surrounded by fibroblast-like cells at the edge. The

epithelial-like cells proliferated faster than the fibroblast-like cells,

leading to domination of the epithelial-like population at day 10–

15 of differentiation. A few multinucleated cells were formed at

this stage. There was no significant difference among the four

groups of BMP4 treatment in term of differentiation rates (1, 5, 10

and 20 ng/ml). These epithelial-like (Figure 1A) and fibroblast-like

cells (Figure 1B) were expanded via limited dilution and individual

cell clones were established from single cells. The epithelial-like

cells were capable of self-renewal and have been passaged up to 60

times. The doubling time was 16.08460.379 hours.

In adherent differentiation, the epithelial-like cells appeared

three days earlier in groups treated with high concentrations of

BMP4 (10 or 20 ng/ml) when compared to those treated with

lower concentrations (1 or 5 ng/ml) (3–4 days versus 6–7 days

after treatment, respectively). Furthermore, the cells were

homogeneous in morphology, without the formation of fibro-

blast-like cells (data not shown). However, these cells failed to

sustain the morphological characteristics and eventually differen-

tiated into multinucleated cells as well as giant nuclear cells

(Figure 1C).

Epithelial-like cells expressed genes characteristic of TS
cells

The epithelial-like cells maintained self-renewal during contin-

uous passages, although some cells spontaneously differentiated

into giant nuclear cells (Figure 1D, arrow). These properties

prompted us to examine if these cells are trophectodermal lineage

stem cells. The mRNA expressions of Oct4, Nanog, Sox2 (three

pluripotency genes), Cdx2, Esrrb, Eomes (three transcription

factors characteristic of the trophectoderm in mouse and vole),

Hand1 (known to promote the differentiation of giant trophoblast

cells and is highly expressed in undifferentiated and differentiated

Figure 1. Derivation of epithelial-like cells from rabbit ES cells. (A) Epithelial-like cell clone. (B) Fibroblast-like cell clone. (C) Multinucleated
cells formed in monolayer culture. Arrow pointed to the cell nucleus; magnification 2006. (D) Giant cells spontiniously differentiated from epithelial-
like cell culture. Arrow pointed to cell nucleus. All magnifications were 1006, unless otherwise stated. The scale bar represents 100 mm.
doi:10.1371/journal.pone.0017124.g001
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mouse and vole TS cells), Gcm1 (syncytiotrophoblast marker) and

Tpbpa (specific for spongiotrophoblast and ectoplacental cone)

were examined by RT-PCR [7,16,17,18]. As shown (Figure S1),

the epithelial-like cells highly expressed the pluripotency marker

Oct4 but not Nanog or Sox2 at passage 17. However, the

expression level of Oct4 decreased dramatically at passage 40, as

that of Gcm1 (Figure 2B), which might suggest stress [19]. The

trophoblastic lineage markers Cdx2, Eomes, Hand1 and Gcm1

were consistently detected in epithelial-like cells at passages 17

(P17) and 40 (P40). Tpbpa mRNAs were expressed in rabbit

placenta but not in epithelial-like cells. Surprisingly, the transcrip-

tion factor Esrrb, which is expressed in TS cells and placenta of

both mouse and vole [17], was not detected in either rabbit

placenta or epithelia-like cells. Further studies were needed to

verify the expression of Esrrb in rabbit. In consistency with the

mRNA expression data, immunofluorescent staining and western

blotting detected the expression of cytokeratin-7 (epithelial

marker), CDX2, and chorionic gonadotropin b subunit (CG-b,

trophoblast marker) [10] in these cells (Figure 2A, 2C). The germ

layer markers Vimentin (Figure 2A), Nestin or Brachyury were not

detected in these cells (data not shown). In accordance to the

observation of spontaneous differentiation, Placental lactogen-I

(PL-I), a specific marker for giant cells [20], was occasionally

detected in some cells after prolonged culture by immunofluores-

cent staining (Figure 2A). Taken together, these data suggested

that these epithelial-like cells were TS-like cells.

Figure 2. Epithelial-like cells expressed TS cell markers. (A) Immunofluorescence staining detected the ubiquitous expression of CDX2, CK7,
and CGb in epithelial-like cells. Note that the expression of CK7 by giant cells was weak (arrow), placental lactogen-1 (PL1) was only detected in giant
cells (arrowhead), and Vimentin was absent in all cells. The scale bar represents 100 mm. (B) RT-PCR analysis of the expressions of TS cell markers in
epithelial-like cells. Mouse MEF and rabbit ES cell cDNA were used as negative control and cDNA from d20 rabbit placenta was used as positive
control. Lane 1, day 20 rabbit placenta sample; Lane 2, rTS cell sample at the 17th passage; Lane 3, rTS cell sample at the 40th passage; Lane 4, mouse
embryonic fibroblast sample; Lane 5, rabbit ES cell sample. (C) Western blotting detected the expression of CDX2, CK7, placental lactogen-1 (PL1) and
CGb in rTS-like cells. The GAPDH expression was used as loading control.
doi:10.1371/journal.pone.0017124.g002
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TS-like cells can differentiate into trophoblastic
derivatives in vitro and in vivo

To further clarify the identity of these TS-like cells, we went on

to investigate if they have TS cell abilities to differentiate into

trophoblast subtypes in vitro, and to chimerize placental tissues in

vivo [21,22,23]. TS-like cells were treated with dibutyryl cAMP

(dbcAMP) (0 mM, 2 mM and 4 mM) to induce differentiation into

syncytiotrophoblast [24]. dbcAMP promoted transformation of

TS-like cells into multinucleated cells in a concentration-

independent manner. Similarly, time lapse microscopy revealed

that adherent TS-like cells occasionally formed multinucleated

syncytiotrophoblast when they met each other. Syncytiotropho-

blasts were also formed through the fusion of mononucleated

daughter cells (Movie S1). In accordance with the morphological

change, the expression of the genes specific to the differentiated

syncytiotrophoblast increased under the drug treatment. As

shown, addition of dbcAMP increased Gcm1 expression and

decreased CDX2 expression as detected by semi quantitative RT-

PCR (Figure 3A). The protein level of relaxin, a marker of rabbit

placental syncytiotrophoblast cells [24], was also elevated by

dbcAMP treatment (Figure 3B). Moreover, the secretion of

hormones (chorionic gonadotropin, progesterone and estradiol)

by TS-like cells could be detected in the culture medium (Figure

S2).

Invasion assay was utilized to examine if TS-like cells could

differentiate into invasive trophoblastic giant cells. Matrigel-coated

transwell mimic the three-dimensional structure of the endome-

trium, allowing assessment of the invasive capacity of trophoblast

giant cells in vitro [25]. In the invasive assay of monolayer TS-like

cells, an average of 406.7633.0 cells (n = 3) had invaded the

transwell to reach the bottom of the membrane. While most of the

penetrating cells were characterized with giant nuclei (Figure 3C,

arrows), some cells retained small nuclei (Figure 3C, arrow heads).

The above evidences prompted us to take the strictest test as if

these TS-like cells were able to chimerize the placental tissues

when injected into blastocysts. GFP transgenic TS-like cells

(Figure 4A) were injected into blastocysts to examine their ability

to chimerize the placental tissues. At day 20 of gestation, placenta

proper, but not embryo proper of the conceptus (4 out of 12)

derived from the green TS like-cell injected blastocysts emitted

intensive green fluorescence (Figure 4B–D). In contrast, no green

fluorescence was detected in placentas developed from uninjected

control blastocysts (12 out of 12) (Figure 4E–G), demonstrating the

chimerization of TS-like cells. Notably, we did not detect any

fluorescence in placental blood vessels (Figure 4D, arrow) and the

yolk sac (Figure 4H–I). Taken together, these evidences demon-

strated the ability of rabbit TS-like cells to differentiate into

trophoblastic derivatives in vitro and in vivo.

FGF and TGFb signalings are essential for TS-like cells
self-renewal

Previous studies reported the essential roles of FGF and TGF-b
signaling in maintenance of mouse TS cell self-renewal [16,26]. In

this study, rabbit TS-like cells were propagated in culture medium

supplemented with FBS but without growth factors under the

feeder-cell free condition. To clarify if TS-like cell proliferation

was regulated by FGF and/or TGFb signaling, we cultured TS-

like cells in the presence or absence of FBS supplied with or

without these growth factors. Cell proliferation was monitored by

the change of DNA content. As shown, the proliferation rate of

TS-like cells was attenuated after withdrawal of FBS. The

attenuation could be partially reversed by addition of 2 ng/ml

TGF-b1 or 25 ng/ml aFGF+25 ng/ml bFGF into serum-free

medium. However, addition of growth factors in the presence of

FBS did not affect the proliferation rate (Figure 5B). These data

suggested that FGF and TGF-b signalings were beneficial to TS-

like cell proliferation, and their activation could be triggered by

serum. To further confirm the indispensable roles of FGF and

TGF-b signalings in the maintenance of TS-like cells, we treated

the cells with FGF receptor 1 (FGFR1) inhibitor SU5402 or TGF-

b type I receptor inhibitor SB431542 [27] to interrupt the

signaling. In the absence of FBS, interfering either of the signaling

pathways increased the population of cells at the G1 phase

(Figure 5C), indicating that the proliferation of the TS-like cells

was dependent of the two signalings. Concordantly, in TS-like cells

we detected the mRNA expression of some components of FGF

Figure 3. Rabbit TS-like cells can differentiate into trophoblastic derivatives in vitro. (A) Semi-quantitative RT-PCR analysis detected the
increase in mRNA expression of Gcm1 (marker of syncytiotrophoblast) and the decrease of Cdx2 expression (trophoblast stem cell marker) in TS-like
cells treated with different concentrations of dbcAMP. (B) Western blotting detected the expression of relaxin (syncytiotrophoblast marker) inTS-like
cells treated with different concentrations of dbcAMP. (C) The TS-like cells cultured on Matrigel coated transwell invaded the transwell membrane.
Fluorescent image (Hoechst 33342) and merged image of Hoechst 33342 with differential interference contrast (Dic) is shown. Arrows showed the
giant nuclei of the penetrated cells and arrowheads showed the small nuclei of the cells. Red arrow indicated the pore of the transwell membrane. All
analyses were repeated three times, and the representative figures are shown here.
doi:10.1371/journal.pone.0017124.g003
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pathway (FGFR2, FGFR3, FGFR4, SOS1, PTPN11) and TGF-b
pathway (Smad1, 2, 3, 4) (Figure 5A).

To test if FGFs and TGF-b signalings are able to maintain TS-

like cell identity, the mRNA expression level of the genes specific to

trophoblastic lineage (Cdx2, Eomes, Gcm1, and Hand1) was

compared before and after 48 hour of treatment. As shown

(Figure 5D), in the presence of FBS TGF-b1 had no effect on

Cdx2 expression. However, it increased the mRNA expression of

Gcm1, Hand1, and Eomes (another TS cell specific transcription

factor downstream of Cdx2). In the absence of serum, interference

of the TGF-b signaling with SB431542 led to the decreases in

mRNA expressions of Eomes, Gcm1, and Hand1. Similarly, the

reduction in mRNA expressions of Cdx2, Eomes, Gcm1, and

Hand1 was observed when the FGF signaling was interrupted with

SU5402 (Figure 5D). In contrast to the changes in gene expression

level, the morphological transformation of TS-like cells was not

obvious during 48 hour treatment. However, prolonged blockage of

TGF-b or FGF signaling for more than four days caused the

differentiation of TS-like cells into giant cells and syncytiotropho-

blast followed by catastrophic death of all cell types (data not

shown). Taken together, these evidences demonstrated the essential

roles of these signalings in rabbit TS-like cells self-renewal.

Discussion

Trophoblast stem cells are ideal models to study the biology of

trophoblast [3]. In mouse, TS cells can be easily isolated from

blastocysts. However, there has been no success in establishing

human TS cells, albeit a study has reported derivation of stable,

proliferating cytotrophoblast stem cells from human ES cells [6].

In this study, we have shown that rabbit ES cells were induced to

differentiate into epithelial-like cells by BMP4. These epithelial-

like cells expressed TS cell markers, were able to proliferate while

maintaining their identity, to differentiate into trophoblastic

derivatives in vitro, and notably, to chimerize the placental tissues

in vivo. Thus, we demonstrated the establishment of rabbit TS cells

from ES cells. Rabbit is phylogenetically closer to primates than

mouse [28]. Our previous studies showed that rabbit and human

ES cells, which had similar morphology, expressed the same stem

cell markers (SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81) and

maintained self-renewal in the absence of LIF signal [15]. These

similarities suggested that rabbit TS cell could be a suitable tool to

study the molecular events occurring during human implantation

and placentation.

Rabbit TS cells were derived from ES cells differentiated in EBs

instead of in monolayer culture. Although differentiated cells in the

monolayer culture system were more homogeneous in morphology

than those derived in EBs, they lost proliferation capacity shortly

after differentiation, as observed in human ES cells [10]. We

speculated that EBs were able to provide the correct signals for ES

cells to differentiate into TS cells. Otherwise, we could not exclude

the possibility that gelatin, used in the monolayer culture, was not

ideal for inducing differentiation of rabbit ES cells into TS cells.

The blastocyst is composed of two distinct cell lineages: inner cell

mass (ICM) and trophectoderm (TE). ES cells are derived from

ICM, while TS cells come from TE. ICM and TE, and ES cells and

TS cells, correspondingly, have distinct lineage fates and do not

transdifferentiate. ICM as well as ES cells contribute exclusively to

the embryo proper, whilst TE or TS cells contribute to the

extraembryonic tissues [29,30,31,32,33]. However, recent studies

reported that ectopic manipulation of some genes or signaling

pathways could divert ES cells from embryonic to trophoblastic

fates. For instance, forced repression of Oct4 and Nanog or

overexpression of Cdx2 and Hras could divert mouse ES cells

toward trophoblastic fates [8,34,35,36]. Collagen IV was also shown

to induce mouse ES cells to differentiate into TS cells [9]. These

reports altogether implicated ES cells as ideal models to investigate

the molecular events governing the first cell fate determination

Figure 4. Rabbit TS-like cells can chimerize placentae in vivo. (A) GFP transgenic TS-like cells. (B) Whole-mount phase-contrast photographs of
the undersides of chimeric placenta. White rectangle represents the part of placenta magnified in (C). (C) Magnification of part of the chimeric
placenta in (B). (D) Fluorescent photograph of (C). The placenta showed an extensive contribution of GFP+ cells; Note that the blood vessels of the
placenta had no fluorescence (arrow). (E) Whole-mount phase-contrast photographs of the undersides of control placenta developed from un-
injected blastocyst. White rectangle represents the part of placenta magnified in (F). (F) Magnification of part of a non-chimeric placenta in (E). (G)
Fluorescent photograph of (F). The control placenta showed weak background fluorescence. (H) Phase-contrast photograph of the Yolk sac from the
chimeric embryo. (I) Fluorescent photograph of (H) Magnification of C, I, J is 46, and F is 26; Magnification of D, E is 76, and G and H is 46.
doi:10.1371/journal.pone.0017124.g004
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during early embryogenesis. Rabbit ES cells were transdifferen-

tiated into TS cells by treatment with BMP4, suggesting that BMP4

signaling plays key roles in the first cell lineage determination during

rabbit embryogenesis. More studies are needed to confirm the

existence and activation of BMP4 signaling in preimplantation

embryos and to investigate its functions and the underlying

molecular mechanisms in cell lineage determination.

The requirements for successful derivation and maintenance of

TS cells vary across the species. For instance, propagation of

mouse TS cells strictly requires MEF feeder cells (or feeder cell

conditioned medium), FGF4 and TGF-b growth factors in the

culture medium [16,26]. Proliferation of vole and rat TS cells is

FGF4 independent [17,18]. In our study, rabbit TS cells do not

require feeder cells to keep undifferentiated, but their self-renewal

depends on the FGF and TGF-b signalings. TS cells of different

species also express distinct stemness markers. Mouse and vole TS

cells expressed Sox2 but not Oct4 or Nanog[17]. Rat TS cells

expressed both Sox2 and Oct4[18]. Whereas rabbit TS cells

expressed Oct4 but not Nanog or Sox2 in this study.

In summary, we have demonstrated the establishment and

maintenance of rabbit TS cells. These knowledges could shed light

on our understanding of human implantation and placentation.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Figure 5. FGF and TGF-b signalings are essential for rabbit TS-like cells self-renewal. (A) RT-PCR detected the mRNA expressions of the key
components of FGF and TGF-b signalings in TS-like cells. Lane 1, sample of rabbit ES cells; Lane 2, sample of TS-like cells at 17th passage; Lane 3,
sample of TS-like cells at 40th passage. (B) FACS examination of cell cycle stages (G1, G2, and S phases) after TS-like cells were treated with growth
factors for 48 hours in the presence or absence of serum. Note that in the absence of serum, growth factors stimulate cell proliferation (n = 3,
* represents P,0.05). (C) FACS examination of cell cycle stages (G1, G2, and S phases) after TS-like cells were treated with growth factor inhibitors
(20 mM of SB431542 against TGF-b type I receptor or 20 mM SU5402 against FGF receptor 1) for 48 hours in the serum-free medium (SF). Note that
growth factor inhibitor treatments increased the percentages of TS-like cells at G1 phase (n = 3, * represents P,0.05). (D) Semi-quantitative RT-PCR
analysis of mRNA expressions of the genes specific to trophoblastic lineage in TS-like cells cultured in ES medium (ES), ES medium with TGF-b
(ES+TGF-b), serum free medium (SF), serum free medium with SB431542 (SF+SB), or serum free medium with SU5402 (SF+SU).
doi:10.1371/journal.pone.0017124.g005
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Laboratory Animals of the National research council. The

protocol was approved by the Institutional Animal Care and

Use Committee(s) (IACUC) of Kunming Institute of Zoology,

Chinese Academy of Sciences (approval ID KIZ 20060011). All

surgery was performed under isoflurane anesthesia, and all efforts

were made to minimize suffering.

Rabbit ES cell culture
Rabbit ES cells from one cell line derived in this laboratory were

cultured as described [15]. Briefly, ES cells were seeded onto MEF

feeders from E13.5 mouse fetuses (129/Sv) in gelatin and cultured

in Dulbecco’s modified Eagle’s medium (DMEM, high glucose,

without sodium pyruvate; Invitrogen, Carlsbad, CA, USA)

supplemented with 2 mM glutamine, 0.1 mM mercaptoethanol,

16 Non-essential amino acids (Invitrogen), 16 penicillin-strepto-

mycin and 15% defined fetal bovine serum (FBS; Hyclone, Logan,

Utah) (referred to as ES medium thereafter). The cells were

passaged with 5–10 mg/ml dispase every 3–5 days. All chemicals

were from Sigma Chemical (St. Louis, MO, USA) unless otherwise

stated.

Derivation of rabbit TS-like cells from ES cells
Rabbit ES cells were differentiated in EB or in monolayers

under the treatment of BMP4 [10]. In adherent differentiation ES

cells were dispersed with 5 mg/ml dispase and plated onto gelatin-

coated 6-well dishes (Becton Dickinson, Franklin Lakes, NJ, USA).

Various concentrations of BMP4 (1, 5, 10 or 20 ng/ml; R&D

Systems, Minneapolis, MN, USA) were included in ES medium

for 7–15 days to promote differentiation. In EB differentiation, ES

cells were digested with 5 mg/ml dispase, resuspended and

cultured in hanging drops of ES medium for two days (30 ml/

drop, 40 cells/ml). Aggregated EBs were then transferred to Petri

dishes (Becton Dickinson) coated with agar to maintain continuous

suspension cultures. After five or six days, the resultant cystic EBs

were re-plated onto 6-well plates coated with 0.5% gelatin and

cultured in the presence of 1, 5, 10 or 20 ng/ml BMP4 for 10–15

more days.

Limited dilution was utilized to isolate the epithelial-like cell

colonies after differentiation. Briefly, cells were trypsinized,

resuspended in ES medium and diluted to a density of 30 cells

per 96-well plate, then plated onto a 0.5% gelatin coated 96-well

plate (Becton Dickinson). Colonies were grown in ES medium and

those exhibiting relatively homogeneous epithelium morphology

were considered as promising epithelial-like cells [16] and picked

for further expansion and downstream study. epithelial-like cells

were expanded in ES medium until they reached confluence. They

were replated at 16103/cm2 under the same culture conditions.

In vitro differentiation of rabbit TS-like cells
To examine the differentiation potential of TS-like cells,

dibutyryl cAMP (dbcAMP) was added to ES medium as described

previously [24]. Briefly, 2.56104 cells/well were seeded onto a 6-

well plate, and 2 or 4 mM dbcAMP was added to the culture

medium. After treatment for 4 days, cells were harvested for

analysis. All experiments were performed on cells that were

between passages 20 to 30 unless otherwise stated.

Immunofluorescence and Confocal Microscopy
Cells were fixed with 4% paraformaldehyde (PFA) for 10–

15 min at 25uC and then rinsed three times in PBS, followed by

permeabilization with 0.2% Triton X-100 for 10–15 min. Cells

were then blocked in 5% goat serum for 30 min at 25uC and

incubated with primary and secondary antibodies (Table S1)

before imaging on a LSM 510 META confocal microscope (Carl

Zeiss). Antibodies were obtained commercially and DNA was

labeled with Hoechst 33342 or Propidium Iodide (PI). In each

experiment, an isotype-matched IgG was used as negative control.

Immunoblotting
As described [37], cells were washed and lysed in RIPA lysis

buffer (Santa Cruz Biotechnology, Inc. Santa Cruz, CA, USA) for

1 hour on ice. Debris was removed by centrifuging at 120006g for

15 min at 4uC. Equal amounts (25 mg) of samples were analyzed

by SDS-PAGE. Immunoblots were performed with primary

antibodies (Table S1) and horseradish peroxidase-conjugated

secondary antibody (Table S1). Images were obtained with

enhanced chemiluminescence (Pierce, Rockford, IL, USA),

followed by exposure to Kodak autoradiography Biomax film

(Kodak, Rochester, NY, USA). All experiments were repeated

three times.

RT-PCR and Semi-quantitative RT-PCR
Total RNA was extracted from rabbit placentas at day 20 of

gestation (positive control), mouse MEF cells (negative control),

rabbit ES cells, and clonal TS-like cells with Trizol (Invitrogen,

Carlsbad, CA). RNAs were subjected to DNase I (Fermentas,

Vilnius, Lithuania) treatment to remove possible genomic DNA

contamination. Reverse transcription was carried out with

approximately 2 mg of total RNA using RevertAid H Minus First

strand cDNA synthesis kit (Fermentas, Vilnius, Lithuania). Due to

the unavailability of the rabbit sequence information, specific

primer sets (Table S2) were derived from the conserved sequences

of the human, mouse and rat genes.

One ml of RT products was added to 16 Reaction Ready

HotStart PCR master mix (Takara, Dalian, China) in 25 ml of final

volume and amplified under the following conditions: 1 cycle at

95uC for 3 min; 25–35 cycles at 95uC for 30 sec, 56–60uC for

30 sec, and 72uC for 30 sec; and a full extension cycle at 72uC for

5 min. The PCR products were separated on 2% agarose gel and

visualized after staining with ethidium bromide. For the semi-

quantification RT-PCR, the intensity of the PCR band was semi-

quantified with Quantity One quantitation software (Bio-Rad,

Hercules, Calif). The relationship between the inverse of band

intensity and the number of PCR cycles was linear.

Invasion assay
Invasion assay was utilized to examine the invasive capacity of

derivatives from TS-like cells [25]. Polycarbonate membrane

transwell chambers with an 8 mm pore size (Corning, New York,

US) were prepared for the invasion assay [25]. Membranes were

coated with 1:25 Matrigel (Becton Dickinson) in DMEM medium

and rehydrated with DMEM medium the next day for 2 hours at

37uC under 95% humidity and 5% CO2. Suspensions of TS-like

cells (66104 cells in 300 ml) were plated on top of the chambers in

ES medium. Two days later, membranes were fixed in 4% PFA

and the cells on top of each membrane were scraped off. The

membrane was then stained with Hoechst 33342 before imaging

on a LSM 510 META confocal microscope (Carl Zeiss). Five

separate regions of the transwell membrane were randomly

selected and the cells invading the membrane were counted

manually.

Growth factor or growth factor inhibitor treatments and
DNA content analysis

To investigate the effects of growth factors on rabbit TS-like cell

proliferation, cells were cultured with growth factors or growth
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factor inhibitors. In the growth factor treatments, 16104 cells were

seeded as the starting point, and 16105 cells in the case of

inhibitor treatments. Cells were seeded in 6-well plates in ES

medium overnight followed by synchronization in serum-free (SF)

medium for 24 hr. The cells were then cultured for 48 hour in the

presence of growth factors or growth factor inhibitors. The growth

factor treatments included: 1) control (SF medium); 2) 5 ng/ml

recombinant TGF-b1 (Chemicon International Inc, Temecula,

CA, USA); and 3) 25 ng/ml aFGF+25 ng/ml bFGF (Chemicon

International). The inhibitor treatment groups were as followings:

1) control (SF medium); 2) inhibitor of TGF-b signaling,

SB431542 (20 mM, Tocris Cookson Inc, Ellisville, USA) [27]; 3)

FGF receptor inhibitor, SU5402 (20 mM, Tocris Cookson Inc,

Ellisville, USA). Following treatment, cells were harvested and

fixed in pre-cooled 70% ethanol at 4uC for 2 hour before

incubation with 50 mg/ml propidium iodide plus 100 mg/ml

RNase A in PBS for 30 min at 37uC. The DNA content was

analyzed with FACS vantage SE (BD Biosciences), and the data

were obtained using Cell Quest Software (BD Biosciences).

Lentiviral infection of rabbit TS-like cells
TS-like cells were transfected with lentiviral vector expressing

GFP. Briefly, Lentiviral vector FUGW constitutively expressing

GFP (ubiquitin-C promoter–GFP) was generated as reported [38].

HEK-293T cells were co-transfected with GFP expression vector

and viral packaging vectors pCMV-dR8.91 and pCMV-VSV-G

using lipofectamine 2000 (Invitrogen). Lentiviral supernatants were

collected 72 hour after transfection, and filtered through a 0.45 mm

sterile filter. The viral particles were concentrated by ultracentri-

fugation at 100,0006g followed by reconstruction in PBS. Virus

titre was determined immediately in HEK-293T cells (16107 virus/

ml). Rabbit epithelial-like cells were cultured in 500 ml of ES

medium containing 10 ml lentivirus and 5 mg/ml polybrene at 37uC
for 48 hour. Thereafter, cells were trypsinized and resuspended for

FACS sorting (Becton Dickinson). GFP-positive TS-like cells were

collected, expanded, and subjected to one more FACS sorting in

order to purify the transgenic cell population.

Injection of rabbit GFP transgenic TS-like cells
Ten to twenty GFP transgenic TS-like cells in ES medium were

injected into rabbit blastocysts. Uninjected blastocysts were used as

negative control. The injected blastocysts were then transferred

into uterine of pseudo-pregnant female rabbit [16]. Each time six

control and TS-like cell injected blastocysts were transferred back

into opposite uterine horns of each pseudo-pregnant female rabbit,

respectively. Placentas and embryos at gestation day 20 were

dissected and photographed on a Leica MZ16A microscope. The

experiments were repeated two times. All animal experiments

were approved by the Institute’s research animal resource

committee.

Statistical analysis
The results were presented as means6standard error of the

mean (SEM). The statistical analyses were performed using SPSS

version 11.0 statistic software. The percentages of cell cycle

distributions were transformed by arcsine of the square root prior

to ANOVA analysis followed by Tukey’s test. P# 0.05 indicated a

significant difference.

Supporting Information

Table S1 Antibodies used in this research.
(DOC)

Table S2 PCR primers and conditions for gene expres-
sion analysis.
(DOC)

Figure S1 The mRNA expression of pluripotency genes
(Oct4, Sox2, Nanog) in rabbit TS-like cells (rTS-like).
The mRNA expression of Oct4, but not Sox2 and Nanog was

abundant in rTS-like cells at passage 17. The expression level

decreased dramatically at passage 40.

(TIF)

Figure S2 Secretion of placental hormones by rabbit
TS-like cells. The concentrations of CG (A), estradiol (B), and

progesterone (C) in culture medium in the presence (+TS) or

absence (-TS) of TS-like cells.

(TIF)

Movie S1 Time lapse microscopy revealed that adherent rabbit

TS-like cells occasionally formed multinucleated syncytiotropho-

blast when they met each other. Syncytiotrophoblasts were also

generated through fusion of mononucleated daughter cells.

(MOV)
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