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The worldwide prevalence of overweight and obesity has tripled since 1975. In the United
States, the percentage of adults who are obese exceeds 42.5%. Individuals with obesity
often display multiple metabolic perturbations, such as insulin resistance and persistent
inflammation, which can suppress the immune system. These alterations in homeostatic
mechanisms underlie the clinical parameters of metabolic syndrome, an established risk
factor for many cancers, including breast cancer. Within the growth-promoting,
proinflammatory milieu of the obese state, crosstalk between adipocytes, immune cells
and breast epithelial cells occurs via obesity-associated hormones, angiogenic factors,
cytokines, and other mediators that can enhance breast cancer risk and/or progression.
This review synthesizes evidence on the biological mechanisms underlying obesity-breast
cancer links, with emphasis on emerging mechanism-based interventions in the context of
nutrition, using modifiable elements of diet alone or paired with physical activity, to reduce
the burden of obesity on breast cancer.
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INTRODUCTION

Obesity is a state of increased adiposity defined by a body mass index (BMI) ≥ 30 kg/m2 (1). Current
global estimates suggest that 1.97 billion adults are overweight (BMI =25.0-29.9 kg/m2) and over
650 million are obese (2). By 2030, it is estimated 57.8% of the global adult population will be
overweight or obese if current trends continue (3, 4). The impacts of obesity on human physiology
include dysregulation of insulin, bioavailable insulin-like growth factor (IGF)-1, adipokines (e. g.
leptin and adiponectin), inflammatory factors (e. g. cytokines), and vascular integrity-related factors
(e. g. vascular endothelial growth factor (VEGF)) (3, 4). As a result, multiple diseases are associated
with obesity, including hypertension, dyslipidemia, type 2 diabetes, coronary heart disease, and
several cancers (5).

Breast cancer (BC) is the most common cancer in women worldwide (6). As a heterogeneous
disease, BC subtypes have been extensively described elsewhere (7). Briefly, the intrinsic subtypes are
classified by hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/
HER2-, Luminal A), HR+/HER2+ (Luminal B), HR-/HER2+ (HER2-enriched), HR-/HER2- (basal-like
or triple negative breast cancer, TNBC), and claudin-low (TNBC-metaplastic) (8, 9).Worldwide, there
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were over 2 million new BC cases in 2018 (6); and global
epidemiological patterns show the importance of cultural and
lifestyle factors, with only 5-10% of BCs being inherited (10). An
estimated ~20-50% of BC can be attributed to modifiable risk
factors, including physical inactivity and nutritional choices that
result in obesity (11).

Obesity-driven BC risk is associated with multiple factors
including menopausal status (12). Further, the risk of developing
postmenopausal BC is exacerbated by obesity (13). These women
have worse disease-free and overall survival despite appropriate
therapeutic approaches. Results from a meta-analysis of 34
cohort studies with over 2.5 million women found that with
each 5 kg/mg2 increase in BMI, there is a 12% increase in risk of
postmenopausal BC (14). The risk is further dependent on other
factors including, BC subtype (15, 16), race/ethnicity (16–18),
estrogen and progestin use (18) and hormone receptor status
(19). Obese BC patients also experience complications during
surgery, radiation, and chemotherapy, and are at increased risk
for local recurrence. Additionally, there is a greater probability
for increased tumor size, metastatic rates, resistance to endocrine
therapy, and advanced disease stage at diagnosis (19, 20). While
obesity is known to increase postmenopausal, HR+ BC risk (13),
more recent studies assessing central adiposity revealed that high
abdominal obesity increases risk for ER- and TNBC in
premenopausal women (13, 16, 21, 22). Similarly, in preclinical
animal model studies, mammary tumor development and
progression of HR+, basal-like and claudin-low subtypes is
exacerbated by obesogenic environments (1, 23). In contrast,
only minimal clinical and pre-clinical data supports that the
Luminal B and HER2 subtypes, are enhanced by obesity (1, 24).

Here we focus on nutritional and physical activity-based
interventions shown to ameliorate obesity-associated
enhancements of growth signaling, inflammation, angiogenesis,
and metastatic processes in BC.We also discuss gaps and potential
uses of these strategies to mitigate obesity pro-BC effects.
THE ROLE OF GROWTH FACTOR AND
HORMONE SIGNALING IN OBESITY-
BREAST CANCER LINKS

Overweight and obese patients have increased risk of developing
hormone and growth factor perturbations resulting in insulin
resistance, increased production of estrogen, enhanced insulin-
like growth factor (IGF)-1 bioavailability and a decreased
adiponectin/leptin ratio. These can all increase BC incidence,
tumor development, progression, and worsen clinical outcomes.

Insulin and Insulin-Like Growth Factor-1
Most obese patients have high levels of insulin, increased
bioavailable IGF-1, low levels of IGF binding proteins (IGFBPs),
and higher steady state levels of mTOR activation (25, 26) (Figure
1). Insulin, produced by pancreatic beta cells and released in
response to elevated blood glucose, predominantly mediates
metabolic activity whereas IGF-1, primarily produced by the
liver, controls long-term action to determine cellular fates. IGF-1
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bioavailability is regulated by IGF binding proteins (IGFBPs) 1-6,
which regulate IGF-1 binding to the IGF-1 receptor (IGF-1R) and
cross-reactivity with the insulin receptor (IR) (27). The activation
of IR and IGF-1R lead to downstream phosphorylation cascades
that promote the PI3K/AKT/mTOR and RAS/RAF/mitogen
activated protein kinase (MAPK) pathways. These signaling
pathways are associated with cancer development and
progression (1, 28, 29). The connection between insulin and BC
risk has been shown in several meta-analyses (30, 31), suggesting
that hyperinsulinemia and elevated basal insulin levels increase BC
risk and are a negative predictor of BC prognosis (31–33).

Estrogen and Aromatase
The production of estrogen in the adipose tissue of obese
patients, secondary to increased aromatase activity, has been
found to be a key driver of BC (21, 34). The rapid expansion of
adipose tissue observed during weight gain in obese women
causes a rise in pre-adipocytes expressing aromatase (35). The
tumor microenvironment, rich with adipocytes, is also a source
of estrogen production and aromatase expression in BC cases,
and can contribute up to 10-fold increased levels of estrogen in
breast tumors compared to levels in surrounding tissue (3). In
ER+ BC, increased ERa promotes cell proliferation (36), and
obesity is positively associated with ERa positive tumors (37).

Leptin, Adiponectin, and Their Ratio
In the obese state, the dysfunctional adipose tissue overproduces
the hormone leptin, causing leptin resistance (38, 39) and
reducing the adiponectin/leptin ratio (40) (Figure 1), which is
negatively associated with BMI (41, 42). High levels of leptin
through its receptor, Lepr, activate the Janus kinase and signal
transducer activator of transcription (JAK/STAT) pathway that
is often dysregulated in cancer (43). Hyperleptinemia also
stimulates mitogenesis, angiogenesis, and the secretion of
proinflammatory cytokines such as interleukin (IL)-6, tumor
necrosis factor (TNF)-a, IL-2 and interferon (IFN)-g (44). High
leptin levels and reduced adiponectin/leptin ratio were associated
with an increased risk of postmenopausal BC in a multiethnic
case-control study (45, 46). Similar results have been
documented in preclinical models of BC (47).

Interventions to Break Growth Factor and
Hormone-Signaling-Associated Obesity–
Breast Cancer Links
Many nutritional and lifestyle habits can modify BC risk. Physical
activity, for example, has many benefits including promotion of
weight loss, reduction of hormone levels (48, 49), regulation of
insulin and IGF-1 bioavailability, and normalization of leptin/
adiponectin ratio (50, 51). According to the National Cancer
Institute, exercising for four or more hours per week decreases BC
risk (52). This is supported by epidemiological studies that
observed inverse relationships between physical activity and
risks of BC (53, 54). Interventions designed to reduce calorie
intake, such as, calorie-restricted diets and intermittent fasting,
can reverse the high levels of insulin and IGF-1 (55–57) (Figure
1). However, there is no consensus regarding the impact of diet
March 2021 | Volume 12 | Article 632284
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and exercise on IGF-1 and IGFPB. Although there are limited
clinical studies in the field, a recent study in young obese females
showed that 4-weeks of aerobic exercise (6 days/week, two hours
twice a day) combined with a diet intervention (daily energy
intake of 1,400 or 1,600 calories) reduced the serum levels of
IGFBP-3 while increasing the activity of IGF-1; however the
Frontiers in Endocrinology | www.frontiersin.org 3
intervention did not affect the total serum levels of IGF-1 (58).
A different study showed that 5 weeks of diet combined with 45
minutes of moderated-to-intensive exercise has no impact on
IGF-1 and IGFBP levels in overweight or obese women, but the
molar ratio IGF-1/IGFBP3 was significantly increased by the
intervention (59). Better reduction of total IGF-1 serum levels
FIGURE 1 | Mechanisms linking obesity with breast cancer development and intervention strategies to break Obesity-Breast Cancer Links. Increased energy intake
and low physical activity results in obesity. Excess adiposity causes systemic changes, such as increased circulating levels of insulin/IGF-1, aromatase activity,
estrogen production, and leptin:adiponectin ratio. Local changes due to the hyperplasia and hypertrophy of adipocytes, leads to a pro-inflammatory response
promoting the secretion of cytokines and inflammatory molecules. These systemic and local changes activate key signaling pathways (PI3K/AKT/mTOR, RAS/RAF/
MAPK, and JAK/STAT). The complex interplay among all of these alterations generates a microenvironment favorable for breast epithelial cell transformation and
increase breast cancer risk and progression. Dysfunctional adipocytes, distant and present within the tumor microenvironment, produce high levels of leptin that
contributes to chronic inflammation and BC progression. Obesity promotes cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT),
angiogenesis and recruitment of immune cells. Obesity increases myofibroblast content, which stiffens the extracellular matrix (ECM) and enhances cancer cell
growth. All these effects stimulate the entry of invasive cells into the circulation and the subsequent metastatic colonization of distant organs, such as bone, lung, liver
and brain. Nutritional interventions, such as calorie restricted diets with balanced protein content and intermittent fasting can break the obesity-BC links, the benefits
of the dietary interventions can be further improved by increasing daily physical activity.
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might be achieved with longer intervention times. Low circulating
levels of IGF-1 were reached after 16 weeks of strength training
(60). High levels of IGF-1 could be lowered temporarily by
bariatric surgery (55); however, for long term reduction of IGF-
1 level, a nutritional intervention is necessary to maximize the
effects of the surgery on IGF-1 levels (55, 61). Dietary
interventions (55–57), in particular, a 2008 study by Fontana
et al. demonstrated total caloric restriction (CR) and targeted
protein reduction was needed to lower circulating serum IGF-1,
albeit in a small study of six participants (56); however a recent
meta-analysis of six clinical trials corroborated these findings in
part, showing an increase in circulating IGF-1 in response to
increased protein intake (57). Studies in mice have also shown
that low circulating IGF-1 correlates with reduced mammary
tumor volume (1, 62). Thus, further investigation is warranted on
the role of CR and macronutrient ratio modification methods to
determine whether the BC associated to obesity with IGF
dysfunction can be disrupted by these strategies.

Regarding dietary components, BC researchers have long
investigated the impact of nutritional strategies to decrease the
risk of BC and improve treatment outcomes. For example, plant-
based diet interventions, rich in fiber, antioxidants, and
phytochemicals could reduce BC incidence. In recent years
intermittent fasting has emerged as a strategy to reduce adipose
tissue and improve insulin levels, which can also lower estrogen
levels and slow the growth of breast tumors. It was shown that
short-term fasting 24 hours before and after chemotherapy can
reduce the cytotoxicity of neoadjuvant docetaxel/doxorubicin/
cyclophosphamide treatment in HER2- BC (63, 64). Intermittent
fasting impacts multiple cancer related pathways (Figure 1),
including reducing IGF-1 and increasing IGF1BP by negatively
regulating growth hormone-mediated IGF-1 mRNA production
(65, 66). Fasting lowers blood glucose and circulating insulin
levels, this could result in suppression of PI3K/Akt and reduction
of mTOR activity. Studies using mouse models have shown that
mTOR inhibitors block the tumor-enhancing effects of obesity
(67), indicating that mTOR inhibitors in combination with
intermittent fasting could represent a potential strategy for
breaking the obesity-BC link. Nutritional-dependent mitigation
strategies to facilitate mTOR repression, could include the
incorporation of cardamonin found in cardamom spice and
other plants and flavonoids in the diet (68, 69).
MEDIATORS OF INFLAMMATION AND
IMMUNOSUPPRESSION IN OBESITY–
BREAST CANCER LINKS

Chronic inflammation is an established hallmark of cancer (70–
72), and represents a highly relevant mechanistic target for
nutrition and cancer research (Figure 1). Stromal breast tissue
communicates with tumor cells in the microenvironment to usurp
homeostatic inflammatory and resolution mechanisms, increase
genomic instability, and recruit immune cells, further propagating
inflammatory signals and increasing cancer cell survival. Failure to
resolve inflammation often occurs with obesity, and the
Frontiers in Endocrinology | www.frontiersin.org 4
mechanisms underlying this are under intense investigation (73).
Well described inflammatory mediators include transcription
factors (i.e., NF-kB), soluble signaling molecules (i.e., cytokines,
chemokines, growth factors, and specialized pro-resolving
mediators) and their receptors, and immune cell populations
(e.g., tumor-associated macrophages and T-cells) (74–78).

Cytokines and Pro-Inflammatory
Mechanisms
Cytokines are small proteins that coordinate immune responses
to assist with re-establishing homeostasis following insult or
injury (79). Many cytokines have pleiotropic activity making
interpretation of their expression patterns and downstream
consequences difficult in the disease context (80, 81). However,
several are useful biomarkers of systemic dysfunction when
unchecked inflammation does not resolve, including
angiogenin, IL-1b, IL-6, IL-17, osteopontin, osteoprotegerin,
RANTES, TNF-a and TGF-b, linking persistent inflammatory
mechanisms to arthritis, type 2 diabetes, obesity and cancer (82–
85). NF-kB is a master regulator coordinating genetic, metabolic
and inflammatory instabilities in many cancers, primarily by
increasing cytokine levels and signaling, and these effects are
typically more dysregulated in obese patients (86). Pro-
inflammatory signaling can promote BC proliferation,
angiogenesis, invasion, metastasis repress tumoricidal host
immunosurveillance programs and decrease chemotherapeutic
treatment response (87–91) (Figure 1).

Under obesogenic conditions, the crosstalk between
dysregulated adipose tissue, inflammatory mediators and tumor
cells can have adverse impacts on BC outcomes (92). Autocrine and
paracrine signaling mechanisms drive anti- and pro-inflammatory
signals within the tumor microenvironment, linking inflammation
to tumor aggressiveness, disease progression and chemoresistance
programs (92, 93). This communication, which also includes other
stromal components (i.e., fibroblasts and tumor-adjacent normal
tissue), creates a milieu promoting genetic instability that enhances
every aspect of BC progression from increasing proliferation,
reducing apoptosis, and facilitating angiogenesis, migration, and
ultimately metastasis (94). In obese women, systemic abnormalities
can also include comorbidities like nonalcoholic fatty liver disease,
shown to interfere with expression of several cytochrome
P450 genes involved in drug metabolism, contributing to
obesity-associated reductions chemotherapeutic efficacy (95, 96).

Obesity, Breast Cancer, and
Immunosuppression
Breast tumors are usually infiltrated by multiple immune cell
populations, most notably macrophages, referred to as tumor-
associated macrophages (TAMs), as well as neutrophils and T-cells,
that can reduce treatment efficacy through immunosuppressive
mechanisms (76, 97). Grimm and colleagues reviewed how
persistent pro-inflammatory cytokine and chemokine signaling
(including IL-4, IL10, IL-13 and TGF-b) increases reactive
oxygen and nitrogen species, enhancing programs related to
oxidative stress and nitrosylation, which initially recruits
tumoricidal macrophages (M1 phenotype) that switch to a pro-
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tumor (M2/TAMs) phenotype. This microenvironmental
mechanism of immunosuppression interferes with proper
recruitment of regulatory T-cells, through arginase upregulation
(98). Karki and Kanneganti describe a similar dichotomous role of
inflammasomes driving immunosuppressive programs by
inhibiting the antitumor activity of Thelper cells (CD4+, CD8+),
also involving myeloid-derived suppressor cells, natural killer cells
and TAMs (89). Thus, increased levels of circulating inflammatory
cytokines and recruitment of certain immune cell populations can
propagate tumor phenotypes, resulting in poorer outcomes.
Targeting specific cell populations or blocking the soluble factors
that drive them is emerging as a promising approach for disrupting
obesity-influenced cancer links (92, 93, 99).

Nutritional Strategies That Mitigate Breast
Cancer-Promoting Immune Mechanisms
Obesity is one of the most prevalent conditions by which low-grade
inflammation becomes a chronic and systemic problem.
Modulation of several specific dietary components represents a
viable intervention strategy to offset the immunosuppressive and
procancer effects of obesity (100). For example, many in vivo
studies have demonstrated the capability of long chain n-3
polyunsaturated fatty acids (PUFAs) to reduce adipose-associated
leptin and cytokine levels (i.e., TNFa, IL-6 and MCP-1), and
increase anti-inflammatory adiponectin (101–104) (Figure 1). By
reducing obesity-associated inflammation, PUFAs like eicosanoids
exert chemoprotective effects, including, decreased proliferation
and increased apoptosis, shown to reduce BC tumor burden and
metastasis (105, 106). Kanaya and colleagues demonstrated the
benefit of whole blueberry extract to modulate cytokine signalling
and inhibit TNBC metastasis in mice (107). Consumption of high
carbohydrate or high fat diets has been shown to increase breast
cancer progression (108) in association with increased levels of
specific cytokines, including IL-12 (109), osteopontin (110) or
TIMPs (111, 112). Future studies should incorporate precision
nutrition approaches to account for individual differences in
metabolic, inflammatory and/or immune responses to dietary
interventions. Sources of heterogeneity in response to dietary
factors include genetic, epigenetic, and microbiome differences.
For example, the D.I.E.T project focused on identifying optimized
diets to augment immunotherapies, particularly through
microbiome manipulation (113). Studies such as D.I.E.T.
reinforce the need for precision nutrition efforts to address
research gaps (114) and provide new opportunities to use food as
medicine (115, 116) to break immune and inflammation-driven
obesity-breast cancer links.
MEDIATORS OF VASCULAR INTEGRITY
THAT ENHANCE OBESITY-BREAST
CANCER LINKS

Tumor vasculature is an important component of the tumor
microenvironment and is involved in various molecular
processes (117). Tumor growth and proliferation require new
blood vessels that can supply ample nutrients and oxygen and
Frontiers in Endocrinology | www.frontiersin.org 5
provide transport for metabolic waste. Moreover, metastasis
requires tumor cells to infiltrate the vasculature to colonize
distant sites (118, 119) (Figure 1). Angiogenesis, stimulated by
TNFa, VEGF, and IL-8 (120), recruits new blood vessels during
cancer initiation, progression and metastasis (121). New blood
vessel formation is the first step in the metastatic cascade, and a
critical mechanistic target triggered by inadequate oxygen supply
(122). Hypoxia in the microenvironment stabilizes hypoxia-
inducible factor (HIF)-1a , which regulates numerous
metabolic, angiogenic, and apoptotic genes. HIF-1a enhances
the expression of the chemokine receptor CXCR4 and interacts
with the lipoxygenase pathway (122). The hypoxia that develops
within a tumor promotes the malignant phenotype as the
genomic stability of the growing tumor decreases (120, 122).

Intra-tumoral blood vessels display vessel dilation, high
proliferation rate and increased permeability (118, 119, 122).
Highly vascular tumors are associated with a greater number of
macrophages (123). Obesity is associated with activation of the
NLRC4 inflammasome, enrichment of TAMs, elevated IL-1b,
and increased angiogenesis (124, 125). The high levels of IL-1b in
response to obesity induce the expression of Angiopoietin-like 4
(ANGPTL4) from primary adipocytes in a manner dependent on
NF-kB- and MAPK-activation, which is enhanced by hypoxia
(125). Studies in mouse models have shown that adipocyte-
derived ANGPTL4 drives BC progression under obese
conditions and it could be a potential therapeutic target for
treating obese BC patients (125). Microvessel density is a major
prognostic factor for metastatic cancer, and a measure of
angiogenesis (122, 123). For a tumor to gain metastatic
potential, it must undergo an “angiogenic switch,” which
occurs when factors enhancing angiogenic processes exceed the
antiangiogenic factors of a tumor (126).

Vasculature-Dependent Targets
for Intervention
Dysfunctional tumor vasculature limits chemotherapy delivery to
tumors. Additionally, a lack of sufficient oxygen delivery promotes
hypoxia and acidification which ultimately leads to the
development of more aggressive tumors. Physical exercise
improves intratumoral vascularization and perfusion. Regular
exercise is associated with lasting tumor vascular maturity,
reduced vascular resistance, and increased vascular conductance.
Thus, regular exercise is linked to reducing intratumoral hypoxia
favoring the accessibility of circulating immune cells to the tumor
microenvironment, inhibiting tumor development and improving
cancer treatment (127).

Fatty acids, such as arachidonic acid and omega-3 fatty acids,
have been found to have a role in breast cancer (128, 129). An
increased expression of arachidonic acid in breast cancer tissues is
strongly correlated with an enhanced mTORC1 and mTORC2
signaling (128). Furthermore, arachidonic acid-activated mTOR
plays a primary role in angiogenesis and tumorigenesis (128). The
expression of VEGF and cytosolic phospholipase A2 (cPLA2) are
also increased by arachidonic acid (128). Omega-3 fatty acids
have been linked to protective roles in breast cancer progression,
such as the inhibition of angiogenesis and metastasis (Figure 1).
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Additionally, several studies have suggested an association
between a higher omega-3 intake and a lower risk of breast
cancer (129, 130). Supplementation of omega-3 fatty acids in
women undergoing surgery for locally advanced, invasive
carcinoma resulted in decreased expression of both Ki-67 and
VEGF compared to a control group (130). Furthermore, the
omega-3 fatty acid supplementation group displayed a longer
disease-free survival and overall survival (130).

Oxidative stress occurs due to an imbalance between
antioxidant defenses in the body and production of reactive
species, such as reactive oxygen species (ROS) or reaction
nitrogen species (RNS) (131). This stress has been suggested as
an important factor in tumor initiation and progression. Nitric
oxide synthases (NOS), such as endothelial NOS, can generate
RNS, and have been shown to modulate processes including
inflammation, angiogenesis and metastasis (131). Human breast
cancer cells displayed activation of the EGFR and ERK pathways
when treated with nitric oxide, and ultimately showed an increase
in invasive potential (132). In one study using rats with mammary
tumors, a diet enriched with PUFAs resulted in tumor regression
due to improved drug delivery. The observed tumor regression
was associated with decreased activation of endothelial NOS,
which normalized the vasculature of the mammary tumors (133).
OBESITY LINKS TO BREAST CANCER
METASTASIS AND INTERVENTIONS TO
DISRUPT THE LINKS

Metastasis is linked to 90% of tumor-related deaths in BC
patients (134), and ~ 30% of patients develop metastases at
some point after diagnosis (135). Obese patients have larger
primary tumors at diagnosis and increased risk of lymph node
metastasis for all BC subtypes (136). Obesity decreases the time
from primary diagnosis to metastatic disease, and mouse models
have confirmed that lung metastases are more prevalent in obese
mice compared with lean mice (137, 138). Given that increased
metastatic potential is associated with obesity, uncovering the
mechanisms of this relationship is now a major focus of research.

Adipose stem cells (ASCs), abundant in adipose stromal tissue,
can become osteoblasts, chondrocytes, myocytes, or monocytes,
and are a new player in obesogenic metastasis (134, 139),
specifically in TNBC. ASCs from obese mice increase tumor
microenvironment leptin levels, directly promoting metastasis
rather than enhancing primary tumor growth (134). Chronic-
low-grade, obesity-associated inflammation activates immune
cells preparing the metastatic niche (140); which then limits
immunosurveillance protections, suppressing CD8+ T-cell
function through IL-1b, while promoting neutrophil expansion
and polarization (141). Neutrophil-mediated mechanisms in
lungs of obese mice were specifically shown to result in higher
metastatic burden (138, 142).

Epithelial-to-mesenchymal transition (EMT) is another
mechanism associated with a more invasive and aggressive
metastatic phenotype. EMT involves loss of epithelial polarity,
de-differentiation, and local invasion (134, 143), but its
mechanistic underpinnings have only recently become linked
Frontiers in Endocrinology | www.frontiersin.org 6
with obesity. For example, Bousquenaud and colleagues
demonstrated tumors from mice fed a high-fat diet lost the cell
junction protein E-cadherin, but increased expression of
mesenchymal markers N-cadherin and vimentin (138). Obesity-
driven inflammatory markers (i.e., NF-kB, STAT3, and COX-2)
also play a role in EMT (3, 144). These emerging mechanisms
have begun to reveal the complex relationships between obesity
and the metabolic reprogramming of tumor cells that favor
metastatic progression. Future interventions strategies will also
need to account for the multi-factored contributors, namely
inflammation, when addressing this aspect of BC.
DISCUSSION ON CHALLENGES AND
GAPS FOR NUTRITIONALLY RELEVANT
INTERVENTIONS

The aggressive biology of the tumor microenvironment
metabolically activated by dysregulated adipose tissues in the
obese state reduces the efficacy of cancer treatments, posing
greater challenges in patient care and disease management.
Further investigations are needed to improve early diagnosis
and treatment mechanisms to successfully target BC within these
patients. Nutrition and physical activity-based interventions that
better manage obesity represent viable strategies to break
obesity-breast cancer links.

The most recent guidance for adult (19-65 years) daily
nutritional intakes includes protein at 10-35%, fat at 20-35%
and total carbohydrates at 45-65% (145–147). These ranges
demonstrate the complexity involved in deciphering what
determines a healthy diet/dietary pattern. Dietary Reference
Intake (DRI) guidelines classify diet and the role of nutrition
in the context of chronic diseases more specifically (148–153),
but navigating these extensive reports is a major challenge.
Current recommendations focus on making nutritional choices
that reflect overall healthy eating patterns to reduce chronic
disease incidence (154), including l imit ing refined
carbohydrates/sugars to 25% of total daily intake, and levels of
cholesterol, trans- and saturated fatty acids to, “as low as possible
while consuming a nutritionally adequate diet” (147, 155).

A substantial number of preclinical (47, 96, 156–163) and
epidemiological (164–170) studies have shown the impact of
diets, that result in obesity, with different macronutrient
compositions on BC development and disease outcomes. For
example, several studies have demonstrated the negative impacts
on overall health from diets high in fat content, including cancer
outcomes from consumption ofWestern-style diets, high in poor
quality carbohydrates (refined and simple sugars) and saturated
fats (171–176). Comparatively, there is still controversy
regarding high protein (thus, lower carbs and fat) diets.
Animal and human studies have demonstrated the benefits of
high protein content (at intakes of 23-69%) on slowing or
inhibiting mammary tumor formation, reducing disease
progression, improving chemosensitivity, and extending
survival/lifespan (177–179). In contrast, Park et al. correlated
higher acid load, presumably from high protein intake and
concomitant high phosphorus consumption, with higher ER-
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BC risk (180) and other lifetime cancer risks (181, 182) in the
Sister Study. TheMediterranean-style diet involves consumption
of high levels of protein and fat, but the sources are restricted to
lean, non-processed (low red meat) proteins and ‘healthier’
forms of fat, with increased fiber content from fruits,
vegetables and whole grains. This dietary pattern has been
associated with lower BC risk, specifically through microbiome
population modifications (i.e., Lactobacillus) that diminish
cancer-promoting mechanisms, like oxidative stress, in the
mammary gland (174, 183). However, there are still significant
gaps at both the population and individual level concerning
dietary guidelines to maintain health. Several reviews and
investigations have focused on defining appropriate nutrient
intakes for improved BC patient outcomes (100, 166, 184–
186). Yet, changes in life-style and food choices represent a
challenge for BC patients; for example, Shi et al. found that newly
diagnosed with BC consistently consume excessive fat and
slightly increased consumption of fruits and vegetables
following diagnosis (166). These and other findings stress the
need of incorporating nutritional and psychosocial counseling to
better manage diverse ramifications of diagnosis and treatment
of BC patient to increase recovery rate and overall health.
CONCLUSIONS

In conclusion, there has been tremendous progress in
understanding the mechanisms underlying the obesity-BC link.
While there is more to learn about the biology of this link,
emphasis should be placed on translating our knowledge into
Frontiers in Endocrinology | www.frontiersin.org 7
effective strategies to reduce the obesity-associated burden of BC
in women. Emerging initiatives in precision nutrition focused on
understanding why metabolism and nutrition requirements
differ between individuals —considering host factors (i.e.,
genetic, epigenetic, microbiome) and environmental factors
(i.e., diet, physical activity, mental health, and direct
environmental exposures)— will enable more personalized,
targeted guidance for optimal mechanism-based nutritional
strategies to reduce obesity-driven BC (114).
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