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Abstract

The planar cell polarity (PCP) signaling pathway is essential for embryonic development because 

it governs diverse cellular behaviors, and the “core PCP” proteins, such as Dishevelled and 

Frizzled, have been extensively characterized1–4. By contrast, the “PCP effector” proteins, such 

as Intu and Fuz, remain largely unstudied5, 6. These proteins are essential for PCP signaling, but 

they have never been investigated in a mammal and their cell biological activities remain entirely 

unknown. We report here that Fuz mutant mice display neural tube defects, skeletal 

dysmorphologies, and Hedgehog signaling defects stemming from disrupted ciliogenesis. Using 

bioinformatics and imaging of an in vivo mucociliary epithelium, we establish a central role for 

Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies 

and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we 

identify a novel, Rab-related small GTPase as a Fuz interaction partner that is also essential for 

ciliogenesis and secretion. These results are significant because they provide novel insights into 

the mechanisms by which developmental regulatory systems like PCP signaling interface with 

fundamental cellular systems such as the vesicle trafficking machinery.
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PCP signaling is essential for a variety of vertebrate developmental events, including 

morphogenesis of the neural tube, heart, kidney, and ear. Components of the pathway 

govern a wide array of polarized cellular behaviors, including cell intercalation and 

migration, cell division, and ciliogenesis1, 2. In Drosophila and Xenopus, the “PCP 

effector” proteins, including Fuz, act together with the “core” components such as 

Dishevelled (Dvl)5, 6. The PCP effectors have received little attention, being the subject of 

only a single study in vertebrate animals6, whereas the core proteins have been the subject 

of intense study1, 2, 7–9. Fuz is essential for ciliogenesis in Xenopus6, but its precise 

molecular function, like that of all intracellular PCP proteins, remains very poorly 

understood.

We asked if PCP effectors were essential for mammalian development by obtaining murine 

ES cells with a gene-trap inserted into the second of eleven exons in Fuz, the mouse 

orthologue of Drosophila Fuzzy and Xenopus Fuz. This gene trap is predicted to disrupt the 

transcription of the Fuz gene. These cells were used to generate mice carrying the inactive 

Fuz allele. Litters from heterozygous matings produced no viable full-term homozygous 

mutant pups, as the small litters failed to follow expected genotypic ratios upon analysis. 

Homozygous fetuses were obtained at E18, and these mice displayed a wide range of 

developmental defects (Fig. 1 and Supp. Fig. 1).

All homozygous mutant mice displayed severe developmental defects, including 

craniofacial malformations and incompletely penetrant rostral neural tube closure defects, 

such as exencephaly and encephaloceles (Fig. 1B, Supp. Fig. 1D, E). Some Fuz mutant mice 

displayed normal neural tube closure despite having severe craniofacial and ocular defects 

(Supp. Fig. 1F). However, even mice with mild overt neural tube closure defects displayed 

severe internal hydrocephalus (Supp. Fig. 1H). Fuz mutant mice consistently displayed 

polydactyly on all limbs (Fig. 1D), and we observed widespread defects in skeletal 

development and organogenesis, including malformed sternum, ribs, and long bones, as well 

as severely hypoplastic lungs and conotruncal defects (Fig. 1C–F, I, J; Supp. Fig. 1I–L). 

This spectrum of defects reflects the phenotype of mice with defects in ciliogenesis10, 11, 

and is also reminiscent of the defects in human patients with ciliopathic syndromes such as 

Bardet-Biedl Syndrome 12, 13, Meckel-Gruber syndrome14 or Jeune’s asphyxiating 

thoracic dystrophy15

Collectively, these malformations are consistent with a failure of cilia-mediated Hedgehog 

signaling in Fuz mutant mice, so we next examined the expression of Hedgehog target genes 

in the spinal cord6, 10. We found that while Nkx2.2 and FoxA2 were robustly expressed in 

the ventral spinal cord of control mice, these expression domains were almost entirely 

absent in Fuz mutant mice (Fig. 1K–N). Finally, we found that Fuz mutant mice displayed 

defects in primary ciliogenesis. Immunostaining for acetylated tubulin revealed that primary 

cilia in the Fuz mutant mice were significantly shorter than cilia of wild-type mice (Fig. 1G–

H). Despite the extremely significant difference in average length, the effect on cilia length 

was variable, and cilia of nearly normal length were occasionally observed in Fuz mutant 

mice (Supp. Fig. 1B), consistent with the result of Fuz knockdown in Xenopus6. Moreover, 

this finding is consistent with the Fuz mutant mouse embryonic phenotypes; Fuz mutants 

resemble single BBS mutations or hypomorphic alleles of IFT genes, in which cilia are 
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present but defective10, 11. By contrast, Kif3a null mice lack cilia entirely and display far 

more severe embryonic phenotypes16.

In addition to these defects in Hedgehog signaling, Fuz mutant mice also displayed defects 

consistent with a failure of PCP signaling. For example, the homozygous Fuz mutant mice 

displayed a kinked or curly tail (Fig. 1B), a phenotype that is consistently associated with 

heterozygous mutations in core PCP proteins such as Dvl or Vangl28, 9. The homozygous 

Fuz mutant mice also displayed cardiac defects, including single outflow tracts and ventral 

septal defects (Fig. 1J; Supp. Fig. 1L), similar to those observed in mouse models lacking 

core PCP genes2, 8. The pattern of congenital malformations in the Fuz mutant mice is thus 

entirely consistent with that found in Xenopus embryos following Fuz knockdown6. Fuz 

morphant Xenopus embryos and Fuz mutant mice each display comparatively mild PCP 

defects together with more severe defects in cilia-mediated developmental events.

The evolutionarily conserved role for Fuz from frogs to mammals provides us an 

opportunity to exploit the tremendous wealth of bioinformatics data in mammalian systems 

to help us elucidate the mechanisms of action for the novel Fuz protein. We first queried the 

human interactome for potential Fuz-interacting proteins. We noted that high-throughput 

yeast two-hybrid screening17 suggested a weak interaction between human Fuz and the 

protein encoded by human Chromosome 1 Open Reading Frame 89 (Chr1orf89). BLAST 

predicted this gene to encode a small GTPase similar to REM2 and the vesicle-targeting Rab 

proteins (Supp. Fig. 2A). Based on this homology, we propose renaming C1orf89 as Rem/

Rab-Similar GTPase 1, RSG1. Co-immunoprecipitation confirmed that RSG1 associates 

with Fuz (Supp. Fig. 2B).

To assess the function of RSG1, we designed an antisense morpholino-oligonucleotide 

(MO) to block translation of the protein. Dorsally-targeted injection of this MO resulted in 

defects in rostral neural tube closure, similar to the defects observed in Fuz morphants6 and 

in Fuz mutant mice (Supp. Fig. 2D, F). Co-injection of GFP-RSG1 mRNA suppressed the 

open neural tube phenotype of RSG1 morphants in a dose-dependent manner, demonstrating 

that the effect of the MO was specific (Supp. Fig. 2D, G). To examine the function of RSG1 

during ciliogenesis, we made use of the Xenopus embryonic epidermis, which is a highly 

tractable and easily imaged in vivo model for mucociliary epithelial development18. The 

MO was targeted specifically to the epidermis by ventral injection, thus circumventing the 

neural tube phenotype. In these morphants, SEM revealed severe defects in ciliogenesis in 

the epidermal multi-ciliated cells (Fig. 2A–C). This phenotype was very similar to that of 

Fuz knockdown (Fig. 2D).

RSG1 contains the invariant serine/threonine residue whose mutation to asparagine has been 

shown in other GTPases to alter the guanine nucleotide binding affinity and to generate a 

dominant-negative protein (Supp. Fig. 2C yellow/pink residues). We therefore mutated this 

residue and expressed high levels of RSG1T65N in Xenopus embryos. Overexpression of 

RSG1T65N resulted in defective ciliogenesis in multi-ciliated cells of the epidermis, while 

we observed no effect from overexpression of wild-type RSG1 (Fig. 2E, F). These 

experiments confirm the results of RSG1 knockdown and suggest that the GTPase activity 

of RSG1 is essential for ciliogenesis.
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Finally, we examined RSG1 subcellular localization by expression of low levels of GFP-

RSG1, and we observed that it localized strongly to the vicinity of basal bodies in multi-

ciliated cells (Fig. 2G). This localization is very likely accurate, since GFP-RSG1 can rescue 

the phenotype of RSG1 morphants (Supp. Fig. 2D, G). By contrast, the GFP-RSG1T65N 

localized only very poorly to basal bodies (Fig. 2H). Together, the results of knockdown, 

expression of the dominant-negative, and localization of the GFP-fusion proteins, suggest a 

role for the RSG1 GTPase in ciliogenesis. These results are consistent with a role for this 

protein in mediating Fuz function.

Our bioinformatic approach successfully revealed novel aspects of the molecular network in 

which Fuz functions, so we extended this approach to investigate the cell biological function 

of the novel protein encoded by the Fuz gene. We turned to mouseFUNC, a large-scale 

community effort to systematically predict mouse gene function using the consensus of 

diverse computational approaches19. MouseFUNC predicted a central role in vesicle 

trafficking for Fuz (Supp. Fig. 3A). This suggestion was supported by results of iterative 

BLAST searches (PSIBLAST), which identified modest similarity between Fuz and the 

yeast vacuolar fusion protein Mon1 (data not shown).

We next used homology modeling20, 21 to predict the structure of the Fuz protein. Using 

mGENTHREADER (see Supplemental Methods), we predicted that the C-terminus of the 

Xenopus Fuz protein should fold into a series of five β-sheets flanked by α-helices (Fig. 3A, 

B; Supp. Fig. 3C, D). This structure, known as a longin-domain22, is consistent with a 

vesicle trafficking function for Fuz. Indeed, the longin-domain is present in the structure of 

SEDL, a subunit of the vesicle-tethering TRAPP complex that is associated with skeletal 

dysmorphogenesis23, 24. Moreover, the longin-domain is shared by several other vesicle 

trafficking proteins, including subunits of the AP clathrin adaptor complexes25 and the 

membrane-fusing SNARE proteins, sec22b, VAMP7, and Ytk6p (Refs. 22, 26).

These longin-domain containing proteins are all tightly linked to one another in probabilistic 

networks of human, mouse, and yeast genes, and this node within the gene networks is 

tightly linked to other core vesicle-trafficking proteins (Supp. Fig. 4; and see Supplemental 

Methods). However, the scale of these linkages was too large to generate easily testable 

hypotheses. We therefore returned to the physical interactome data, looking this time for 

relationships between longin-domain containing proteins with structural similarity to the Fuz 

C-terminus. We found that the longin-domain proteins AP2σ, AP1σ, and SEDL were all 

linked by physical associations to the PCP protein Dvl2 (Fig. 3C), which interacts 

genetically with Fuz5, 6. More importantly, AP2σ, AP1σ, SEDL and Dvl2 were all linked 

by physical association to the CaLponin Homology and Microtubule-associated Protein 

(CLAMP, also called spef1; Fig. 3C), a microtubule-bundling protein that is a known 

component of cilia and flagella7, 27,28.

Since Fuz is essential for ciliogenesis, we asked if Fuz may play a role in CLAMP 

localization. In living Xenopus embryos, CLAMP-GFP labeled the axonemes of cilia in 

multi-ciliated cells (Fig. 3D, left), as has been reported previously for sperm flagella28. In 

addition to the axonemal labeling, however, we also observed an obvious enrichment at the 

apical tips of cilia (Fig. 3D, left). To test the effect of Fuz knockdown, we used targeted 

Gray et al. Page 4

Nat Cell Biol. Author manuscript; available in PMC 2010 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



injection to generate in vivo mosaic epidermis, where control and morphant cells are 

intermingled. In these mosaics, the morphant cells are indicated specifically by co-injected 

mRNA encoding histone 2B-RFP (nucRFP; Fig. 3D, inset). In nucRFP-positive Fuz 

morphant cells, CLAMP-GFP was visible in the shortened and dysmorphic cilia, but the 

normal accumulation of CLAMP-GFP at the apical tips was entirely absent (Fig. 3D, right).

This role for Fuz in CLAMP localization was of particular interest because we previously 

found that CLAMP also co-localizes with Dvl2 in the vicinity of the ciliary rootlet7, which 

is a known nexus for vesicle trafficking to cilia7, 29, 30. In control embryos, CLAMP-GFP 

is restricted to the apical cell surface, where it formed a well-defined, linear structure 

adjacent to the apically-docked basal bodies indicated by co-expressed centrin-RFP (Fig. 

4A, a′, a″ and see Refs. 7, 18). In contrast to controls, the CLAMP-GFP signal in Fuz 

morphant embryos was present in larger, irregularly-shaped foci. Z-projections revealed that 

many of these irregular foci were well below the apical cell surface (Fig. 4B, b′, b″), though 

centrin-RFP formed an even line at the apical surface of these cells. This result indicates that 

Fuz, unlike Dvl (Ref. 6), is not essential for apical docking of basal bodies, but is essential 

for apical trafficking of CLAMP. The dual localization of CLAMP-GFP at the basal 

apparatus and at the apical tip is reminiscent of IFT88 and IFT52 in mammalian cells31, and 

our data suggest that Fuz is required for accumulation of CLAMP at both sites.

Because the RSG1 GTPase binds to Fuz and is essential for ciliogenesis, we predicted 

interference with RSG1 function would elicit a similar CLAMP trafficking phenotype. 

Indeed, in mosaic embryos, nucRFP-positive RSG1 morphant cells displayed defects in the 

trafficking of CLAMP-GFP to the apical cell surface, while nearby control cells displayed 

no such defects (Fig. 4C, D). In addition, expression of RSG1T65N also severely disrupted 

apical trafficking of CLAMP-GFP, while expression of wild-type RSG1 had little effect 

(Supp. Fig. 5). Finally, RSG1 knockdown also eliminated the accumulation of CLAMP-GFP 

to the apical tips of cilia in multi-ciliated cells (Fig. 4E).

Our data thus demonstrate that Fuz and RSG1 act to regulate trafficking during ciliogenesis. 

Because longin-domain proteins participate in many fundamental vesicle trafficking 

events22, we next asked if Fuz might play a broader role in trafficking than is reflected by 

the phenotype in multi-ciliated cells. We examined the mucus-secreting goblet cells that 

surround the multi-ciliated cells in the Xenopus epidermis18. Scanning electron microscopy 

(SEM) demonstrated that the apical surface of the goblet cells in controls were decorated 

with numerous open exocytic vesicles, many of which were actively releasing mucus 

granules (Fig. 5A). By contrast, open exocytic vesicles were extremely rare and few mucus 

granules were visible on goblet cells in Fuz morphants (Fig. 5B). We also observed that 

either knockdown of RSG1 or overexpression of RSG1T65N elicited defects in exocytosis in 

mucus-secreting cells (Fig. 2C, F), suggesting that this GTPase is a key effector of Fuz 

function in multiple cell types.

To confirm the failure of secretion in Fuz morphant goblet cells, we turned again to mosaic 

epidermis where we examined immunostaining for Intelectin2, a major component of the 

secreted Xenopus epidermal mucus18, 32. In control cells of these mosaics (indicated by an 

absence of membrane-RFP co-injected with the MO), Intelectin2 in exocytosing mucus 
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granules was visible as discrete foci, at or above the apical surface (Fig. 5D, d′). By contrast, 

Intelectin2 signal was present only below the apical cell surface in neighboring morphant 

cells (indicated by the presence of co-injected membrane-RFP in Fig. 5D, d′). The failure of 

exocytosis in morphant cells in these mosaic epithelia was also confirmed by SEM (Fig. 

5C).

The joining of membrane compartments proceeds through discrete steps of transport, 

tethering, and fusion33. Our bioinformatic analyses suggested a possible relationship 

between Fuz and either vesicle tethering or membrane fusion processes (Supp. Fig. 4), and 

electron microscopy of Fuz morphants supports the latter relationship. TEM revealed that 

morphant goblet cells often were decorated by large apical membrane blebs atop putative 

exocytic vesicles (Fig. 5F, green arrowhead) and this phenotype was obvious in SEM (Fig. 

5B, green arrowheads). Such apical membrane blebs were also apparent in RSG1 morphants 

(Fig. 2B, C). Many mucus-filled vesicles in Fuz morphants appeared to be tethered to the 

apical plasma membrane, though very few had fused (Fig. 5F).

The finding that mucus-filled vesicles in Fuz morphant cells tether to, but fail to fuse with, 

the apical plasma membrane might suggest a general role for Fuz in governing vesicle 

fusion. However, secretion in Xenopus goblet cells can proceed by compound exocytosis, in 

which secretory vesicles fuse with one another as they approach the plasma membrane3, 34–

36. We also observed such homotypic fusion of mucus-containing vesicles in Fuz 

morphants, despite the failure of nearby, apparently tethered, vesicles to fuse with the 

plasma membrane (Fig. 5F, red arrow; Supp. Fig. 6B, C). In some cases, vesicles were 

observed that had fused to one another, but had not yet tethered to the apical plasma 

membrane (Supp. Fig. 6B, arrows). These data demonstrate that Fuz is essential for 

mediating only a specific subset of membrane fusion events.

The PCP signaling cascade is broadly required for development of vertebrate embryos. 

However, studies to date have focused on only a small number of the known PCP genes, 

such as Dvl and Vangl2 (Refs. 2, 7–9). Here, we have demonstrated that the largely un-

studied PCP effector protein Fuz is fundamentally necessary for embryonic development in 

vertebrates. Our data suggest a central role for Fuz in regulating targeted membrane fusion 

events, and this cellular function can explain the phenotype of embryos lacking Fuz 

function.

First, vesicle trafficking to the basal body and within axonemes is essential for ciliogenesis 

(e.g. Refs. 7, 29–31), and the phenotypes observed in Xenopus or mouse embryos lacking 

Fuz function reflect those observed in mice lacking key ciliogenesis factors, such as the BBS 

or IFT proteins10, 11. A key role of the cilium in development is thought to be the 

transduction of Hedgehog signaling10, so it is relevant that Hedgehog target gene expression 

is lost in Fuz morphant Xenopus embryos6 and in Fuz mutant mice (Fig. 1). Secondly, 

defective secretion in cells lacking Fuz function may also contribute to the embryonic 

phenotype. We observed severe skeletal defects in vertebrate embryos lacking Fuz function 

(Fig. 1 and Ref 6); skeletal defects are likewise observed in humans or zebrafish with 

mutations in Sec23A, a subunit of the COPII complex37, 38 and in humans with mutations 

in the TRAPP complex subunit, SEDL (Ref. 24).
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Our data therefore place Fuz and the interacting GTPase RSG1 at the interface of 

developmental regulatory systems (e.g. PCP signaling) and fundamental cell biological 

processes (e.g. ciliogenesis, secretion). In combination with the finding that Dvl mediates 

vesicle association with basal bodies in ciliated cells7, the data here suggest that 

coordination of vesicle trafficking may be a unifying mechanism by which PCP signaling 

can control so many diverse cellular behaviors during embryonic development.

Materials and Methods

The Materials and Methods used in this work are described in the Supplemental 

Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mice lacking a functional Fuz gene display multiple developmental defects. (a) Control 

mouse, E18.5 and (b) Fuzgt/gt mouse. Skeletal preparation of (c) control hindlimb and (d) 
Fuzgt/gt hindlimb. Inset shows a paw with extreme polydactyly from a Fuzgt/gt mouse. (e, f) 
Sternum preparations from control and Fuzgt/gt mouse. (g, h) Confocal projections of 

Meckels’ cartilage stained with acetylated tubulin (red) and DAPI (blue) exhibits diminished 

primary cilia in Fuzgt/gt mouse sections. Scale bars = 5μm. Mean cilia length +/− SEM = 

1.73+/−0.06μm in WT (n=70) and 0.87 +/−0.04μm in Fuzgt/gt (n=52); p<0.001. (i) Dissected 

heart from a control mouse, arrows indicate outflow tracts. (j) Dissected heart from a 

Fuzgt/gt mouse, arrowhead indicates single outflow tract. (k, l) Expression of Nkx2.2 (green) 

in the ventral neural tube is diminished in Fuzgt/gt mice (red arrowhead). (m, n) Expression 

of FoxA2 (green) in the ventral neural tube is lost in Fuzgt/gt mice (red arrowhead).
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Figure 2. 
RSG1 controls ciliogenesis and secretion. (a) SEM of intact, control Xenopus ciliated 

epidermis reveals multi-ciliated cells and surrounding mucous secreting cells (b) RSG1 

morphants display defects in ciliogenesis and absence of mucous granules and exocytic pits. 

(c) Higher-magnification view of RSG1 morphant ciliated epidermis displaying diminished 

cilia numbers and lengths and a decrease in exocytic pits in neighboring secretory cells. (d) 
Fuz morphants also display diminished cilia numbers and lengths and a decrease in exocytic 

pits in secretory cells. (e, f) Epidermal targeted over-expression of RSG1T65N, but not wild 

type RSG1, results in defects in ciliogenesis as well as decreases in mucous granules and 
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exocytic pits in secretory cells. (g, h) GFP-RSG1 (low-level expression) localizes to the 

basal body region of multi-ciliated cells, whereas GFP-RSG1T65N (low-level expression) in 

multi-ciliated cells is diffuse and not tightly associated with basal bodies. Observations of 

fluorescence levels following expression of GFP-RSG1 and GFP-RSG1T65N mRNA were 

comparable, suggesting similar rates of translation for the two proteins.
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Figure 3. 
Homology modeling, network predictions, and experimental validation suggest a trafficking 

function for Fuz. (a, b) Rendered protein models (Open-Source PyMOL 0.99rc6 software). 

(a) Sedl N-terminal domain (pdb:1H3Q). (b) 1H3Q based homology threaded model of the 

C- terminal -aa(s) 287–419 - of Xenopus Fuz protein. (c) Illustration of experimentally-

derived protein-protein interactions (see Supplemental Methods) linking Dvl2 with longin-

domain proteins AP1s, AP2s, and SedlP as well as CLAMP. (d) Mosaic imaging of live 

embryo expressing CLAMP-GFP, which localizes to ciliary axonemes and apical tips. A 

nucRFP marks the nuclei, serving as a lineage tracer for co-injected Fuz MO. The confocal 
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slice reveals a loss of apical localized CLAMP-GFP at ciliary tips in FUZMO cells (inset 

shows merge of (e) and a more basal slice to display nucRFP signal). Scale bar in (e) = 

10uM.
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Figure 4. 
Fuzzy and RSG1 control trafficking to basal bodies as well as to the tips of cilia. (a, b) Fuz 

knockdown disrupts localization of CLAMP-GFP to the ciliary rootlet. Confocal stacks of 

formaldehyde fixed Xenopus epidermis expressing centrin-RFP and CLAMP-GFP mRNAs. 

(a) Multi-ciliated cell in x-y view from an uninjected control embryo exhibits elongated 

CLAMP-GFP signal extending from relatively evenly spaced basal bodies (centrin-RFP). (a
′) Higher magnification view of the x-y section from [a]. (a″) X-Z projection of the stack 

shown in [a′] displays apical co-localization of centrin-RFP and CLAMP-GFP. (b) Ciliated 

cell in an x-y view of the apical surface in a Fuz morphant reveals defects in the spacing of 

centrin-RFP signal and defects in elongated CLAMP-GFP signal. Additionally CLAMP-
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GFP signal is not faithfully co-localized with centrin-RFP signal in many cases. (b′) Higher 

magnification view of the x-y section from [b]. (b″) X-Z-projection of the stack shown in [b
′] reveals apical alignment of the centrin-RFP signal however in many cases the CLAMP-

GFP signal is below the apical surface in large punctae. (c–e) Mosaic imaging of live 

agarose embedded embryo. CLAMP-GFP highlights a variety of epidermal structures. RFP-

Histone 2B (nuc-RFP) serves as a lineage tracer for morpholino-injected cells. (c, d) 3D 

projections (x-z). RSG1 MO (+ nucRFP cells) display defects in normal CLAMP-GFP 

localization along the apical surface. (e) Confocal slice (x-y) exhibiting a loss of apical 

localized CLAMP-GFP to ciliary tips in RSG1 MO cells (inset shows merge of (e) and more 

basal slice to display nucRFP signal). Scale bars in (c, d) are 3uM; scale bar in (e) is 10μm.
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Figure 5. 
Knockdown of Fuz disrupts exocytosis in mucus-secreting cells. (a) Wild type multi-ciliated 

cell (left) flanked by secretory cells in Xenopus mucociliary epidermis. Control cells have an 

average of over 90 open exocytic pits per cell. (b) Fuz morphants display defects in 

ciliogenesis in multi-ciliated cell (left) and failure of exocytosis in mucus-secreting cells 

(note the absence of exocytic pits indicated by white arrowheads in [a]). Green arrowheads 

indicate apical membrane blebs (see also panel F, below). In a representative experiment, 

Fuz morphant cells had fewer than 5 exocytc pits per cell on average (difference from 

control is significant by the Mann-Whitney U-test; p<0.0001). Scale bars in A, B = 5μm (c) 
Mosaic epidermal tissue, with morphant cells outlined in red. Scale bar = 10μm (d) Confocal 

section (x-y) of mosaic embryo in which membrane-RFP (memRFP, red) mRNA was co-

injected with Fuz morpholino and processed for Xeel (interlectin-2) antibody (green). Cell 
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expressing a high level memRFP (right) lacks apical Xeel antibody staining comparable to 

the neighboring cell (right). (d′) Confocal projection (x-z) of [d] illustrates the loss of apical 

Xeel staining (green) in the Fuz morphant cell correlated with apical memRFP expression 

(right). Scale bars in D, d′ = 3μm (e) TEM of section of control Xenopus epidermis shows 

empty and mucus granule-containing vesicles docked at the apical surface, whereas Fuz 

morphants (f) display a defect of vesicle fusion with the plasma membrane release, as 

illustrated by large membrane protrusions (green arrows in [b, f]). Additionally, frequent 

homotypic vesicle fusion events were observed in secretory cells of Fuz morphants (red 

arrow). Scale bar in E = 500nm; Scale bar in F= 100nm.
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