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Single-cell RNA sequencing (scRNA-seq) is a high-throughput sequencing technology that quantifies gene 
expression profiles of specific cell populations at the single-cell level, providing a foundation for studying cellular 
heterogeneity and patient pathological characteristics. It is effective for developmental, fertility, and disease 
studies. However, the cell-gene expression matrix of single-cell sequencing data is often sparse and contains 
numerous zero values. Some of the zero values derive from noise, where dropout noise has a large impact on 
downstream analysis. In this paper, we propose a method named scIALM for imputation recovery of sparse 
single-cell RNA data expression matrices, which employs the Inexact Augmented Lagrange Multiplier method to 
use sparse but clean (accurate) data to recover unknown entries in the matrix. We perform experimental analysis 
on four datasets, calling the expression matrix after Quality Control (QC) as the original matrix, and comparing 
the performance of scIALM with six other methods using mean squared error (MSE), mean absolute error (MAE), 
Pearson correlation coefficient (PCC), and cosine similarity (CS). Our results demonstrate that scIALM accurately 
recovers the original data of the matrix with an error of 10e-4, and the mean value of the four metrics reaches 
4.5072 (MSE), 0.765 (MAE), 0.8701 (PCC), 0.8896 (CS). In addition, at 10%-50% random masking noise, scIALM 
is the least sensitive to the masking ratio. For downstream analysis, this study uses adjusted rand index (ARI) and 
normalized mutual information (NMI) to evaluate the clustering effect, and the results are improved on three 
datasets containing real cluster labels.
1. Introduction

Single-cell sequencing technology [1] is an improvement based on 
next-generation sequencing technology [2] (also known as second-

generation sequencing technology), which focuses on researching the 
genome [3], transcriptome [4], epigenome [5], and proteome [6] of 
individual cells. Single-cell RNA sequencing is one of its mainstream 
technologies, alongside extensive research on single-cell multi-omics 
analysis [7]. Single-cell transcriptome sequencing has also gradually 
entered the high-throughput era. In comparison to traditional sequenc-

ing technologies, scRNA-seq can process tens of thousands of single-cell 
data at the same time, which makes the gene sequencing analysis from 
macroscopic to microscopic and provides a foundation for further re-

search on cellular heterogeneity [8,9]. It can also be used to analyze

cell developmental trajectories as well as the study of diseases [10–12].

Although scRNA-seq provides gene expression at the single cell level, 
its expression matrix often contains a significant amount of zero-value 
noise, resulting in the sparse expression matrix, which is often referred 

* Corresponding authors.

to as “zero expression” [13]. Zero expression can arise from two main 
factors [14]: 1. biological phenomenon, where certain genes are indeed 
not expressed in the corresponding cells; 2. technical reasons, caus-

ing low-expression genes are not detected, known as dropout events 
[15]. Dropout events may occur due to low sequencing depth or unsuc-

cessful reverse transcription of certain genes. Single-cell transcriptome 
data contain a variety of noise, and a particularly prominent source 
is dropout events. These dropout events can significantly impact the 
downstream analysis of the cells, including dimensionality reduction 
and clustering [16], developmental trajectory [17], gene differential 
expression [18], and gene regulatory network inference [19].

In recent years, many methods have emerged to recover dropout 
events in scRNA-seq data. DCA [20] (deep count autoencoder network) 
is a notable approach, which employs a zero-inflated negative bino-

mial distribution model (ZINB) and an autoencoder to denoise the data. 
MAGIC [21] utilizes a Markov affinity-based cell graph, which shares 
information between similar cells through data diffusion to eliminate 
dropout noise. In addition, scVI [22], scImpute [23], SAVER [24] and 
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Fig. 1. The framework of scIALM.
ALRA [25] are also prominent imputation methods currently in the 
field. scVI also uses a deep learning approach. scImpute is a statisti-

cal method that learns the dropout probability of each gene in each 
cell based on a mixed model and then imputes it with information from 
the same gene in other similar cells. SAVER is an expression recovery 
method for scRNA-seq data based on the Unique Molecular Index (UMI) 
[26]. ALRA uses an adaptive threshold low-rank approximation, which 
takes advantage of the non-negativity and low-rank structure of the ex-

pression matrix to selectively impute technical zeros. These methods 
may introduce new biases into the real data, relying on similarities in 
cell or gene expression that may lose some of the global information. We 
analyzed scRNA-seq data, leaving aside the bioinformatics background, 
which is essentially a matrix completion problem [27]. In addition, the 
matrix has the characteristics of sparsity, so we have to recover un-

known entries in the matrix using few real data.

The concept of sparsity originates from compressed sensing theory 
[28], which was applied in image processing initially, such as image 
denoising [29,30] and medical image MRI [31,32], and gradually ex-

tended to many fields other than images. Compressed sensing theory 
proposes that a one-dimensional signal 𝑦 can be reconstructed from far 
fewer samples than the traditional sampling theorem (Nyquist Sampling 
Theorem). It means that the original data can be reconstructed with 
high probability using a small number of observations [33]. The three 
core issues of compressed sensing theory are sparse representation of 
signals [34,35], design of observation matrices, and reconstruction al-

gorithms. In many practical problems, the data are two-dimensional 
matrices. In such cases, the low rank of the matrix space (i.e., the singu-

lar value of the matrix is sparse) is considered as sparsity of the vector 
space, and the theory of compressed sensing can be extended to the ma-

trix completion theory. Matrix completion theory focuses on recovering 
the entire matrix from partially known elements. The problem of imput-

ing dropout events in scRAN-seq data aligns with the theory of matrix 
completion. It assumes that the original matrix is low-rank [25,36], 
and its three core issues are the low-rank property of the matrix, in-
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coherent characteristics, and reconstruction algorithms. At present, the 
reconstruction algorithms for compressed sensing and matrix comple-

tion have been extensively studied and we can transform this problem 
into convex optimization problems to solve. The augmented Lagrange 
multiplier (ALM) has been shown to converge more accurately and 
efficiently than the singular value threshold (SVT) algorithm and the 
accelerated proximal gradient (APG) algorithm [37].

The key of scIALM is to make a reasonable assumption that the 
expression matrix of scRNA-seq is low-rank. The critical step of the al-

gorithm is to calculate the leading singular values and singular value 
vectors of the matrix through singular value decomposition (SVD) [38]

to obtain a low-rank approximate representation of the matrix. By aug-

mented Lagrange multiplier method, we can transform the imputation 
of the expression matrix into a convex optimization problem. This paper 
improves an inexact augmented Lagrange multiplier algorithm (IALM) 
[36]: 1. No longer uniformly sample the sparse original matrix, but di-

rectly use the non-uniform matrix as input data; 2. By calculating the 
ratio between continuous singular values (𝑠𝑣𝑑𝑖∕𝑠𝑣𝑑𝑖 + 1) in the matrix, 
we can determine the upper bound of the prediction dimension by di-

viding the singular values into two groups. The singular values of the 
scRNA-seq matrix are not grouped, so this ratio is no longer used as the 
basis for updating matrix rank. These improvements make IALM suit-

able for scRNA-seq, and scIALM can reconstruct the original data with 
a high probability and effectively recover unknown data from dropout 
events. The framework of scIALM is shown in Fig. 1.

2. Materials and methods

The data of scRNA-seq can be converted into a cell-gene expression 
matrix after quality control and mapping. By mapping the position of 
each read in the file (SAM/BAM file), we obtain the expression of genes. 
The preprocessed expression matrix, which is numerical, serves as the 
input data for this method (scIALM) [39]. Although we cannot defini-

tively verify the low-rank nature of the gene expression matrix, we can 
reasonably assume that the matrix to be recovered is low-rank [25]. 

One of the central issues in matrix completion is low rank, and scIALM 
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will recover the original matrix with the lowest possible rank. Under 
this assumption, the rank of the matrix is predicted by iteration, and 
the purpose of iteration is to impute unknown entries without introduc-

ing new biases.

2.1. Basic knowledge

When dealing with high-dimensional data, it is commonly assumed 
that the data lies in proximity to a low-dimensional linear subspace. We 
usually use principal component analysis (PCA) to estimate this low-

dimensional subspace, i.e., dimension reduction [40]. Given a matrix 
𝐷 ∈ 𝑅𝑚∗𝑛 with 𝐷 = 𝐴 +𝐸, the mathematical model for estimating the 
low-dimensional subspace is described as finding a low-rank matrix 𝐴
and a noise matrix 𝐸 such that the difference between 𝐴 and 𝐷 is 
minimized.

However, when the noise within the data is large and sparse, clas-

sical PCA is no longer suitable. In such instances, the problem can be 
solved by modeling the following convex optimization problem:

𝑚𝑖𝑛
𝐴,𝐸

||𝐴||∗ + 𝜆||𝐸||1, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷 =𝐴+𝐸 (1)

where || ⋅ ||∗ is the kernel norm of the matrix, || ⋅ ||1 is the sum of the 
absolute values of the matrix terms, and 𝜆 is a positive weighted pa-

rameter. The method for solving such an optimization problem is called 
Robust PCA (RPCA) [41], which has been applied in problems such as 
background modeling and image recovery. Subsequently, the applica-

tion of iterative thresholding (IT) to solve the optimization problem (1)

overcame its limitations in practical applications, and the accelerated 
proximal gradient (APG) algorithm further improved the speed of iter-

ation [42,43].

2.2. Augmented Lagrange multiplier

In general, the Lagrange multiplier method is commonly used to 
solve constrained optimization problems of the following type:

𝑚𝑖𝑛 𝑓 (𝑋), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑋) = 0 (2)

where 𝑓 ∶ 𝑅𝑛 → 𝑅, ℎ ∶ 𝑅𝑛 → 𝑅𝑚. For the above optimization problem 
with equality constraints, the Lagrange multiplier method can be used 
to transform it into an unconstrained optimization problem, and the 
main idea is to introduce the Lagrange multiplier 𝑌 and transform it 
into the following problem to solve:

𝐿(𝑋,𝑌 ) = 𝑓 (𝑋)+ < 𝑌 ,ℎ(𝑥) > (3)

where < ⋅, ⋅ > is the inner product of a matrix or a vector. On the basis 
of the Lagrange multiplier method, we add the penalty term 𝜇, and the 
convergence speed of the algorithm will increase. According to [19] its 
augmented Lagrange function is defined as follows:

𝐿(𝑋,𝑌 ,𝜇) = 𝑓 (𝑋)+ < 𝑌 ,ℎ(𝑥) > +𝜇

2
||ℎ(𝑋)||2

𝐹
(4)

where 𝜇 is a positive scalar, called the penalty parameter, 𝜇2 ||ℎ(𝑋)||2
𝐹

is 
the penalty term, and || ⋅||𝐹 is the Frobenius norm. Under general condi-

tions, when {𝜇𝑘} is an increasing sequence and 𝑓 and ℎ are continuous 
differentiable functions, it has been proven in [44] that the Lagrange 
multiplier 𝑌𝑘 converges linearly to the optimal solution. Therefore, the 
above optimization problem (2) can be solved by the augmented La-

grange multiplier method, and the general approach is summarized in 
Algorithm 1.

For equation (1), we apply the Lagrange multiplier method to 
solve the RPCA, which is transformed into the following equation (5). 
The solving process is called the exact augmented Lagrange multiplier 
method (EALM), and the general method is outlined in Algorithm 2.

𝐿(𝐴,𝐸,𝑌 ,𝜇) = ||𝐴||∗ + 𝜆||𝐸||1+ < 𝑌 ,𝐷 −𝐴−𝐸 > +𝜇

2
||𝐷 −𝐴−𝐸||2

𝐹
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(5)
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Algorithm 1 General Method of Augmented Lagrange Multiplier

1: 𝜌 ≥ 1.

2: while 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do

3: 𝑋𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

𝐿(𝑋, 𝑌𝑘, 𝜇𝑘);
4: 𝑌𝑘+1 = 𝑌𝑘 + 𝜇𝑘ℎ(𝑋𝑘+1);
5: 𝜇𝑘+1 = 𝜌𝜇𝑘 .

6: end while

Output: 𝑋𝑘 .

Algorithm 2 requires solving the sub-problem (𝐴∗
𝑘+1, 𝐸

∗
𝑘+1 =

𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴,𝐸

𝐿(𝐴, 𝐸, 𝑌 ∗
𝑘
, 𝜇𝑘), which is a slower convergence process. It turns 

out that we don’t have to solve the sub-problem exactly, but just up-

dating 𝐴𝑘 and 𝐸𝑘 once is sufficient, and it is the inexact ALM method 
(IALM).

Algorithm 2 Exact Augmented Lagrange Multiplier (EALM)

Input: 𝐷 ∈𝑅𝑚∗𝑛, 𝜆.

1: 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 ∶ 𝑌 ∗
0 ; 𝜇0 > 0; 𝜌 > 1; 𝑘 = 0

2: while 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do

3: (𝐴∗
𝑘+1 , 𝐸∗

𝑘+1) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴,𝐸

𝐿(𝐴, 𝐸, 𝑌 ∗
𝑘
, 𝜇𝑘);

4: 𝑌 ∗
𝑘+1 = 𝑌 ∗

𝑘
+ 𝜇𝑘(𝐷 −𝐴∗

𝑘+1 −𝐸∗
𝑘+1);

5: 𝜇𝑘+1 = 𝜌𝜇𝑘 ;

6: 𝑘 ← 𝑘 + 1.

7: end while

Output: (𝐴∗
𝑘
, 𝐸∗

𝑘
).

For low-rank matrix recovery [45], there is the following formula-

tion: given an 𝑚 ∗ 𝑛 matrix 𝑀 ,

𝑚𝑖𝑛
𝑥

𝑟𝑎𝑛𝑘(𝑋), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋𝑖,𝑗 =𝑀𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ Ω (6)

where Ω is the index set of the matrix 𝑀 , 𝑖, 𝑗 are the index coordi-

nates, and the resulting matrix 𝑋 (called the completion of 𝑀) has a 
rank no more than the prescribed integer. The optimization problem in 
(6) is non-convex, and a common method is to use the kernel norm to 
approximate the rank of the matrix. The literature [46] shows that the 
kernel norm is the optimal convex relaxation of rank in a certain sense. 
Thus, the minimized rank problem (𝑚𝑖𝑛

𝑥
𝑟𝑎𝑛𝑘(𝑋)) can be transformed 

into a minimized matrix kernel norm (𝑚𝑖𝑛
𝐴

||𝐴||∗).

For scRNA-seq data with dropout noise, using sparse but clean (accu-

rate) known data to recover the rest of the matrix entries, we formulate 
this MC problem as follows:

𝑚𝑖𝑛
𝐴

||𝐴||∗, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴+𝐸 =𝐷, 𝜋Ω(𝐸) = 0 (7)

where 𝜋Ω ∶𝑅𝑚∗𝑛 →𝑅𝑚∗𝑛, Ω is the index set of matrix entries in 𝐷. 𝐷 is 
the input matrix, i.e., the preprocessed cell-gene expression matrix, and 
its unknown entry data is 0. 𝐴 is the output matrix, and 𝐸 represents 
noise.

There is an equality constraint in (7), so according to (2) and (4), its 
augmented Lagrangian function is:

𝐿(𝐴,𝐸,𝑌 ,𝜇) = ||𝐴||∗+ < 𝑌 ,𝐷 −𝐴−𝐸 > +𝜇

2
||𝐷 −𝐴−𝐸||2

𝐹
(8)

For MC problems, the inexact augmented Lagrange multiplier 
method is described in Algorithm 3. The flowsheet of scIALM is shown 
in Fig. 2. The code of scIALM has been given in Github: https://

github .com /lxh07 /scIALM.

Where 𝜌 is the hyperparameter associated with the 𝜇 update, and 
their initialization is not the focus of this study. 𝜇 is a positive number, 
and the value of 𝜌 makes {𝜇𝑘} an increasing sequence. 𝑠𝑣 is the pre-

dicted rank of the matrix 𝐴, and 𝑅 is the increasing value of 𝑠𝑣 during 
each iteration. The convergence criterion is ||𝐷−𝐴𝑘−𝐸𝑘||𝐹||𝐷||𝐹 < 𝜀.

Since there is an equality constraint in this problem: 𝐷−𝐴 −𝐸 = 0, 
this paper uses the augmented Lagrange multiplier method to trans-

form it into an unconstrained problem and finally outputs a low-rank 

matrix. This low-rank matrix does not have an exact rank but arrives at 

https://github.com/lxh07/scIALM
https://github.com/lxh07/scIALM
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Fig. 2. The flowsheet of scIALM.
Algorithm 3 Inexact Augmented Lagrange Multiplier (IALM) for MC

Input: 𝐷 ∈𝑅𝑚∗𝑛 .

1: 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞 ∶ 𝑌 ∗
0 ; 𝐸; 𝜇0 > 0; 𝜌 > 1; 𝑘 = 0; 𝑠𝑣0; 𝑅

2: while 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 do

3: ∕∕𝐿𝑖𝑛𝑒𝑠 4 − 6 𝑠𝑜𝑙𝑣𝑒 𝐴𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐴

𝐿(𝐴, 𝐸𝑘, 𝑌𝑘, 𝜇𝑘).
4: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑣𝑘 ;

5: (𝑈, 𝑆, 𝑉 ) = 𝑠𝑣𝑑(𝐷 −𝐸𝑘 + 𝜇−1
𝑘
𝑌𝑘);

6: 𝐴𝑘+1 =𝑈𝑆𝜇−1
𝑘
[𝑆]𝑉 𝑇 .

7: ∕∕𝐿𝑖𝑛𝑒𝑠 8 𝑠𝑜𝑙𝑣𝑒 𝐸𝑘+1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜋Ω(𝐸)=0

𝐿(𝐴𝑘+1 , 𝐸, 𝑌𝑘, 𝜇𝑘).

8: 𝐸𝑘+1 = 𝜋Ω̄(𝐷 −𝐴𝑘+1 + 𝜇−1
𝑘
𝑌𝑘).

9: 𝑌𝑘+1 = 𝑌𝑘 + 𝜇𝑘(𝐷 −𝐴𝑘+1 −𝐸𝑘+1).
10: 𝜇𝑘+1 = 𝜌𝜇𝑘 .

11: 𝑘 ← 𝑘 + 1.

12: end while

Output: (𝐴𝑘, 𝐸𝑘).

the lowest possible rank by prediction. The only condition for the algo-

rithm to stop iteration is that the original data in matrix 𝐷 is accurately 
recovered (the recovery error 𝜀 is set to 1e-4). The unknown items are 
imputed during the original data recovery process.

The descriptions and values of the parameters and formulas in Fig. 2

are shown in Table 1.

2.3. Metrics

Due to the random and unpredictable occurrence of dropout events, 
it is impossible to provide a real data benchmark. So to evaluate the 
experimental effect, we randomly mask (using standard normal distri-

bution) the expression matrix at different ratios to simulate dropout 
events. This paper uses the following four metrics to evaluate the impu-

tation effect of the masking position:

① Mean square error (MSE):

1
𝑛∑

2
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𝑀𝑆𝐸 =
𝑁

𝑖=1
(𝑥𝑖 − 𝑦𝑖) (9)
Table 1

The items in Fig. 2.

Item Description Value

𝑌 Lagrange multiplier 𝑌0=zero matrix

𝐸 Noise matrix 𝐸0=zero matrix

𝜇 Parameter of the penalty 
item

𝜇0 =
0.3

𝑚𝑎𝑥(𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒𝑠)

𝜌𝑠 Non-zero ratio of the matrix Computation

𝜌 𝜇𝑘+1 = 𝜌𝜇𝑘 𝜌 = 1.1 + 2.5𝜌𝑠
𝑠𝑣𝑝𝑘 Number of singular values 

greater than 𝜇−1
𝑘

Computation

𝑠𝑣𝑘 Predicted rank of 𝐴 𝑠𝑣0=5

𝑅 Increasing value of 𝑠𝑣 200

𝑑 Dimension of 𝐷 -

𝜀 Stopcriterion 1e-4

𝑠𝑣𝑑(𝐷 −𝐸𝑘 + 𝜇−1
𝑘
𝑌𝑘, 𝑠𝑣𝑘) Calculate the first 𝑠𝑣𝑘

singular values

-

𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑣𝑑 > 𝜇−1
𝑘
) Calculate 𝑠𝑣𝑝𝑘 -

② Mean absolute error (MAE):

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|𝑥𝑖 − 𝑦𝑖| (10)

③ Pearson correlation coefficient (PCC):

𝑟 =
∑𝑁

𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)√∑𝑁

𝑖=1 (𝑥𝑖 − �̄�)2
∑𝑁

𝑖=1 (𝑦𝑖 − �̄�)2
(11)

④ Cosine similarity (CS):

𝑐𝑜𝑠(𝜃) = 𝐴 ∙𝐵||𝐴||||𝐵|| =
∑𝑁

𝑖=1𝐴𝑖 ×𝐵𝑖√∑𝑁

𝑖=1 (𝐴𝑖)2 ×
√∑𝑁

𝑖=1 (𝐵𝑖)2
(12)

where 𝑥𝑖 represents the data after imputing by scIALM, 𝑦𝑖 represents 

the real data in the expression matrix (i.e., the original data of the 
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Fig. 3. (a) shows the mitochondrial gene counts and total expression counts of the PBMC dataset. (b) shows the gene counts and total expression counts of the PBMC 

dataset. The red boxes indicate outliers.

masking position); �̄� and �̄� represent the corresponding mean values, 
respectively; 𝐴 and 𝐵 represent the gene expression profile after imput-

ing and the real gene expression profile, both of them are vectors, and 
𝐴𝑖 and 𝐵𝑖 represent the corresponding i-th values. MSE and MAE reflect 
whether the gene expression value is the same before and after imputa-

tion, the value of both ranges between [0, +∞], the smaller the value is, 
the closer the expression value is. MSE and MAE are auxiliary evalua-

tion indicators. The former reflects the degree of difference between the 
real and the imputed value but is sensitive to anomalies (outliers). The 
latter better reflects the reality of the errors. PCC and CS are used to 
measure whether the data expression trend is the same before and after 
imputation, the value of both ranges between [−1, 1], and the closer to 
1, the more consistent the expression trend. PCC and CS are the primary 
evaluation metrics.

In downstream analysis, we use the adjusted rand index (ARI) and 
normalized mutual information (NMI) to measure clustering results.

2.4. Datasets

The expression matrix is a 𝑚𝐶𝑒𝑙𝑙𝑠 ∗ 𝑛𝐺𝑒𝑛𝑒𝑠 scale. Each row repre-

sents different cells, and each column represents different genes. Due 
to the presence of numerous zero values, the expression matrix exhibits 
sparsity, some of which originate from dropout events.

In this paper, we use the following four different real datasets for 
experiments, and the number of cells and genes contained before qual-

ity control was indicated.

(1) Human Frozen Peripheral Blood Mononuclear Cells (PBMCs) from 
10X GENOMICS, containing 2900 cells and 32738 genes.

(2) MOUSE embryo cell analysis published by Klein (GSE6-5525), con-

taining 2717 cells and 24021 genes. [47]

(3) MOUSE Brain cells published by Chen (GSE87544). It analyzes the 
mouse hypothalamic cell diversity, containing 14437 cells and 23284 
genes. [48]

(4) Mouse Brain cells published by Campbell (GSE93374). It uses Drop-

seq technology to perform single-cell analysis on adult mouse brain 
cells, containing 21,086 cells and 26,774 genes. [49]

2.5. Data preprocessing

The cell-gene expression matrix is very sparse, which means that it 
contains a significant number of zero values. To facilitate subsequent 
analysis, we have to perform Quality Control (QC) on the expression 
matrix [50]. There are three primary QC metrics [51]: the total number 
of transcript molecules measured, the total number of measured genes, 
and the percentage of transcripts originating from mitochondrial genes. 
The purpose of QC is to identify abnormal peaks in the matrix and set 
a threshold to remove them. Such peaks may correspond to dead cells, 
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cells with broken cell membranes, or doublets (defined as the situation 
Table 2

Datasets size before and after QC.

Dataset Before After

PBMC 2900 cells*32738 genes 2843 cells*13003 genes

Klein 2717 cells*24021 genes 2713 cells*24021 genes

Chen 14437 cells*23284 genes 14197 cells*17752 genes

Campbell 21086 cells*26774 genes 11316 cells*21417 genes

where a single droplet contains two or more cells during single-cell 
sequencing).

QC focuses on filtering cells and genes with low counts, filtering 
genes with over-expressed mitochondria, filtering doublet cells with 
over-expressed counts, and ultimately normalizing the expression ma-

trix to reduce the batch effect so that each row in the expression matrix 
has the same total expression values. In this paper, we use Scanpy [52]

for QC: cells with an expression value of less than 200 and genes with an 
expression value of less than three are filtered out. In the case of PBMC, 
cells with a mitochondrial gene ratio of more than 5% and a total gene 
count exceeding 2000 are filtered (as shown in Fig. 3), and finally nor-

malized. Table 2 shows the number of genes and cells contained in the 
four datasets before and after QC.

3. Results

3.1. Matrix dimensions prediction

Algorithm 3 involves singular value decomposition (SVD), and the 
singular values are arranged from largest to smallest. In many cases, we 
can approximate the matrix with the front singular values and the cor-

responding left and right singular value vectors. For a given matrix 𝐷, 
we do not have to calculate all the singular values each time but instead 
predict the matrix dimension (𝑠𝑣 in Algorithm 3) incrementally. In this 
paper, Algorithm 3 adopts a fixed incremental value of 𝑅 for updates. 
The experimental results show that: 1. A small 𝑅 also recovers the origi-

nal data of the matrix, but the large value has a certain improvement on 
the imputation performance of unknown entries. 2. 𝑠𝑣 determines the 
number of singular values that are retained during SVD calculation, but 
the later singular values are very small, which does not improve the ex-

perimental performance much. Therefore, it is worth investigating the 
choice of an appropriate 𝑅-value.

We use the Klein dataset with a 10% masking ratio, the Klein dataset 
with a 50% masking ratio, the PBMC dataset with a 10% masking ratio 
and the Chen dataset with a 10% masking ratio for experimental anal-

ysis to investigate the influence of the 𝑅-value on the four evaluation 
metrics. The corresponding results are shown in Fig. 4a-d, respectively. 
We use different 𝑅 (𝑅0 = 10, 𝑅1 = 50, and then incremented by 50, 
with a maximum value of 400) on these four datasets. The left figure in 

Fig. 4a-d shows the curves of MSE and MAE with 𝑅, and the right fig-
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Fig. 4. (a) represents the curves of MSE (left), MAE (left), PCC (right), and CS (right) (dataset=Klein, mask=10%). (b) shows the curves of MSE (left), MAE (left), 
PCC (right), and CS (right) (dataset=Klein, mask=50%). (c) shows the curves of MSE (left), MAE (left), PCC (right), and CS (right) (dataset=PBMC, mask=10%). 
(d) represents the curves of MSE (left), MAE (left), PCC (right), and CS (right) (dataset=Chen, mask=10%).
ure shows the curves of PCC and CS with 𝑅. Fig. 4a and b use Klein, and 
we can observe that after 𝑅 = 250, the trend of the curve slows down. 
This suggests that after 𝑅 increases to a certain value, the experimen-

tal results are less affected by it. Comparing the two figures, it can be 
seen that on the same dataset, the changing trend of the four metrics 
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with 𝑅 is less affected by masking ratios, and they can finally obtain 
stable results. Fig. 4c shows that on PBMC, the curves tend to be sta-

ble after 𝑅 = 100, or even almost a straight line, which is mainly due to 
the small size of PBMC. For the larger dataset Chen, the experimental 
results (as shown in Fig. 4d) show a similar trend. 𝑅 is a parameter di-

rectly related to predicting dimension, further determining the number 

of singular values retained by SVD. For the k-th iteration, a larger 𝑅-
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Fig. 5. (a) represents the MSE of gene expression values before and after imputation with different methods. (b) represents the MAE of gene expression values before 
and after imputation with different methods. (c) shows the PCC of gene expression values before and after imputation with different methods. (d) represents the CS 
of gene expression values before and after imputation with different methods.
value means that more singular values can be obtained in this iteration, 
which makes the rank of the matrix converge faster. So the experimen-

tal performance is significantly improved when 𝑅 increases from 50 to 
250. The singular value is decreasing, and the sum of the previous val-

ues usually accounts for 99% or more of the sum of all singular values. 
The later singular values are small and have little effect on the results, 
so the improvement of experimental performance is not obvious after 
𝑅 = 250.

Based on the above results, combined with the running time, and 
datasets with different sizes and sparsity, we all select the parameter 
𝑅 = 200 as the increasing value of rank during each iteration for Al-

gorithm 3, but it is an adjustable parameter. For most datasets, we 
recommend starting from 𝑅 = 200. We find the rank tends to fluctu-

ate during iteration and does not always increase by a fixed value. To 
prevent large deviations, we update the parameter 𝑠𝑣 in the following 
strategy similar to that in [43]: 𝑠𝑣𝑝 denotes the number of singular val-

ues greater than 𝜇𝑘−1. If 𝑠𝑣𝑝𝑘 is smaller than 𝑠𝑣𝑘 after iteration, 𝑠𝑣𝑘+1
is updated to 𝑠𝑣𝑝𝑘 + 1, otherwise it is incremented by 𝑅, as shown in 
equation (13):

𝑠𝑣𝑘+1 =

{
𝑠𝑣𝑝𝑘 + 1 𝑖𝑓 𝑠𝑣𝑝𝑘 < 𝑠𝑣𝑘

𝑚𝑖𝑛(𝑠𝑣𝑝𝑘 +𝑅, 𝑑) 𝑖𝑓 𝑠𝑣𝑝𝑘 = 𝑠𝑣𝑘
(13)

where 𝑑 =𝑚𝑖𝑛(𝑚, 𝑛), 𝑠𝑣0 = 5.

3.2. Results of different methods

In this paper, we compare the imputation performance of scIALM 
with six mainstream methods for experiments on four real datasets: 
DCA, MAGIC, scVI, scImpute, SAVER and ALRA. The specific experi-

mental parameters employed in this paper are as follows: 𝜀 = 0.0001, 
𝜇 = 0.3∕𝑑_𝑛𝑜𝑟𝑚, 𝜌 = 1.1 +2.5𝜌𝑠, 𝑑_𝑛𝑜𝑟𝑚 is the maximum singular value 
of the input matrix 𝐷, and 𝜌𝑠 is the non-zero ratio of the data, which 
is calculated. In this section, the masking ratio of four datasets is 10%. 
In Fig. 5, a-d represent MSE, MAE, PCC, and CS in turn, and we can 
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see scIALM has improved on MSE and MAE. For PCC, scIALM improved 
by 3.2% on PBMC, 2.1% on Klein, and performed flat on the Camp-

bell compared to DCA. For CS, compared to DCA, scIALM improves 
3.5% and 6.78% in PBMC and Klein, respectively, and Campbell results 
are close. Overall, the results of MAGIC, scVI, SAVER, and scImpute 
are not stable, varying widely across different datasets. For example, 
the MSE of scImpute is 32.9176 on PBMC but as high as 288.8302 on 
Klein. PCC of SAVER is 0.7768 on PBMC but as low as 0.3389 on Camp-

bell. Whereas scIALM does not show such a large difference on different 
datasets. MSE and MAE of ALRA improve on large-scale datasets (Chen 
and Campbell), but PCC and CS decrease significantly.

In addition to PBMC, the other three datasets provided cluster la-

bels, with Klein containing 4 clusters, Chen containing 47 clusters, and 
Campbell containing 21 clusters. We use ARI and NMI to assess the clus-

tering effect of different methods. In Fig. 6, a and b represent ARI and 
NMI, respectively. Among the above four indicators, DCA is sometimes 
better than scIALM, and in terms of clustering effect, scIALM performs 
better than DCA on the three datasets. For datasets with many cluster la-

bels, the clustering effectiveness of each method needs to be improved. 
The imputation principle of ALRA is also based on the low-rank of the 
matrix, and its clustering performance is slightly better than scIALM. 
Both of them use SVD to compute a low-rank approximation of a ma-

trix, and the matrix resulting from this low-rank approximation contains 
very few zeros. The final step of the ALRA is to recover the biologi-

cal zeros in the matrix by thresholding its entries, which leads to an 
increase in its performance. But scIALM does not have this step. Klein 
analyzed mouse embryonic stem cells, revealing in detail the population 
structure and the heterogeneous onset of differentiation after leukemia 
inhibitory factor (LIF) withdrawal. The cluster labels are determined by 
the intervals of LIF withdrawal (d0, d2, d4, d7 days). The uniform man-

ifold approximation and projection (UMAP) algorithm used to reduce 
the dimension of the expression matrix. And it can realize the visual 
analysis of clustering. In Fig. 6c, we show the figures of the raw matrix, 
noised matrix and the imputed matrix after scIALM. The expression ma-

trix imputed by scIALM can make the same clusters tighter and different 

clusters more spread.
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Fig. 6. (a) shows the ARI of different methods. (b) shows the NMI of different methods. (c) shows the visualizations of the raw matrix, masked matrix and imputed 
matrix after scIALM.

Fig. 7. (a) shows the MSE, MAE, PCC and CS of seven methods at different masking ratios from left to right. (dataset=PBMC) (b) shows the MSE, MAE, PCC and CS 
of seven methods at different masking ratios from left to right. (dataset=Klein).
3.3. Results under different masking ratios

To compare the results of scIALM and the other six methods under 
different masking ratios, we randomly mask the data with 10%, 20%, 
30%, 40%, and 50% on PBMC and Klein to simulate different dropout 
rates. Draw a line chart based on the experimental results to analyze

the effects of distinct methods, as shown in Fig. 7.

Fig. 7a shows the MSE, MAE, PCC, and CS of different methods on 
PBMC, and Fig. 7b shows the results on Klein. The values of the dashed 
lines in Fig. 7 are on the right axis of the corresponding subplots. We 
can see that scIALM is not sensitive to the masking rates, and the four 
metrics are more stable than the other six methods. Fig. 7a shows that 
DCA and scVI perform closely, followed by MAGIC and SAVER. As the 
masking ratio increases, the MSE and MAE of SAVER rise the fastest. 
Although MSE and MAE of scImpute show a downward trend, their val-

ues are always higher than other methods. The PCC and CS of scVI and 
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SAVER decrease rapidly with the increase of masking rate, indicating 
that they are sensitive to masking rate. The indicators of ALRA are fluc-

tuating, and it is difficult to assess the impact of masking ratios on it. 
The overall performance of other methods is: as the masking rate in-

creased, the performance decreased. In Fig. 7b, we can see that scIALM 
is superior to other methods in two ways: 1. scIALM is almost the best 
in four metrics; 2. the performance degradation of scIALM is minimized

as the masking ratio increases. The amount of data affects the model ef-

fect to some extent, so when the masking rate rises, the DCA and scVI 
performance decreases. The other methods used the expression of indi-

vidual cells and individual genes for imputation. But scIALM does not 
rely on a single row or column information, the specific masking posi-

tion has less impact on it, making the method robust.

4. Discussion

Single-cell RNA sequencing can provide gene expression at the 

single-cell level, allowing the study of cellular heterogeneity. However, 
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the expression matrix contains many zero values, which complicates 
scRNA-seq data analysis. Therefore, how to identify and impute false 
zero values becomes one of the research in this field. The emergence 
of compressed sensing breaks through the traditional Nyquist sampling 
theorem and the original signal can be recovered by sparse signal. 
scRNA-seq possesses the natural sparsity and carries out the low-rank 
assumption. Therefore, this paper proposes scIALM to impute the ma-

trix, and the dropout events are effectively recovered.

scIALM uses an inexact augmented Lagrange multiplier method to 
impute the gene expression matrix, assuming that the matrix is low-

rank. The original data is recovered accurately with the lowest possible 
rank while imputing unknown entries. Compared with MAGIC, scVI, 
SAVER, scImpute and ALRA, scIALM has a significant improvement in 
four metrics. From the results, on Chen, the PCC and CS of scIALM 
are slightly worse than DCA, which may be due to the fact that Chen 
contains 14197𝑔𝑒𝑛𝑒𝑠 ∗ 17752𝑐𝑒𝑙𝑙𝑠, and the whole matrix only contains 
8.34% of non-zero values, which has relatively little global information. 
We admit that the dataset and the amount of data are not the only rea-

sons that affect the results, but it is also one of the main reasons, and the 
experimental results are also affected by the characteristics of dataset 
itself. Another possible reason is that DCA uses ZINB as the loss func-

tion, and there has been extensive work demonstrating that negative 
binomial distributions can characterize scRNA-seq data well. Compared 
to other datasets, Chen can be better characterized and therefore per-

forms better on DCA than scIALM. We will further explore and verify 
this conjecture in the future.

It is worth noting that scIALM does not need to learn any parameters 
during iteration, and can achieve better experimental results by calcu-

lation. In contrast to other methods, this method focuses on preserving 
the global information of the matrix, which is achieved by calculating 
the singular values. From Fig. 7, we can see that when we mask half of 
the real data, scIALM performs better and has the lowest performance 
degradation rate compared to 𝑚𝑎𝑠𝑘𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = 10%, which suggests that 
it can better cope with less amount of data and large noise.

For the choice of 𝑅-value, according to Fig. 4a, it can be seen that on 
Klein, there is still a decreasing trend in MSE and MAE and an increasing 
trend in PCC and CS after 𝑅 = 200. The reason for this is that Klein 
contains 2713𝑔𝑒𝑛𝑒𝑠 ∗ 24021𝑐𝑒𝑙𝑙𝑠, and 34.39% non-zero values, which 
is a larger amount of real data than other datasets. Thus, for datasets 
with fewer cells and genes and low sparsity, we can start iterating with 
a larger 𝑅-value to achieve the best results as quickly as possible.

The problem with scIALM at this stage is that the rank of the ma-

trix is updated with a value of 1 or a fixed value of 𝑅, which lacks 
flexibility. Future research focuses on finding more flexible strategies 
for updating the rank, perhaps combining singular values or expression 
matrices, with the aim of better adapting to the characteristics of differ-

ent datasets. In addition, inspired by ALRA, further research will focus 
on how to recover the true biological zeros in the expression matrix to 
improve the downstream analysis. In the future, it may be possible to 
combine with deep neural networks to better learn the similar expres-

sion information between genes to further improve the experimental 
results.

5. Conclusion

scRNA-seq provides gene expression profiles at the single-cell level, 
which makes the gene sequencing analysis from macroscopic to micro-

scopic, and provides a basis for studying cellular heterogeneity.

Considering one of the main characteristics of scRAN-seq — spar-

sity, this paper uses an inexact augmented Lagrange multiplier (IALM) 
method to fill the sparse single-cell RNA sequencing expression ma-

trix and recover unknown entries based on sparse but clean (accurate) 
data. The original data in the expression matrix were recovered with 
an error of 0.0001, and the masking data were evaluated using four 
indicators: MSE, MAE, PCC, and CS. Through experiments, we found 
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scIALM improved on different datasets and was insensitive to sparsity 
Computational and Structural Biotechnology Journal 23 (2024) 549–558

changes, achieving better results than other methods even if it contains 
50% noise. For downstream analysis, this paper uses ARI and NMI for 
evaluation, and there are improvements on scIALM compared to other 
methods. Furthermore, we investigated the impact of the 𝑠𝑣 parame-

ter on the experimental results and provided a strategy for updating 
𝑠𝑣-value according to the results, speeding up the convergence of the 
algorithm.

In this paper, we applied the augmented Lagrange multiplier method 
to single-cell data for the first time, which effectively recovered the 
dropout noise and was better able to cope with large noise. Since 
scRNA-seq data are numerical, we can apply mathematical methods 
to the field of bioinformatics, focusing on interpreting bioinformatics 
problems from a mathematical point of view, which provides new re-

search ideas in the field. We will explore more flexible strategies to 
update 𝑠𝑣 to better fit different datasets and investigate methods to re-

cover real biological zeros in the matrix to further improve downstream 
analysis results.
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