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Abstract: Sparse Bayesian learning (SBL) is applied to the coprime array for underdetermined
wideband direction of arrival (DOA) estimation. Using the augmented covariance matrix, the coprime
array can achieve a higher number of degrees of freedom (DOFs) to resolve more sources than the
number of physical sensors. The sparse-based DOA estimation can deteriorate the detection and
estimation performance because the sources may be off the search grid no matter how fine the grid is.
This dictionary mismatch problem can be well resolved by the SBL using fixed point updates. The SBL
can automatically choose sparsity and approximately resolve the non-convex optimizaton problem.
Numerical simulations are conducted to validate the effectiveness of the underdetermined wideband
DOA estimation via SBL based on coprime array. It is clear that SBL can obtain good performance
in detection and estimation compared to least absolute shrinkage and selection operator (LASSO),
simultaneous orthogonal matching pursuit least squares (SOMP-LS) , simultaneous orthogonal
matching pursuit total least squares (SOMP-TLS) and off-grid sparse Bayesian inference (OGSBI).

Keywords: coprime array; direction of arrival estimation; degrees of freedom; Sparse Bayesian learning;
sparse signal representation; off-grid sources

1. Introduction

Wideband direction of arrival (DOA) estimation using sensor arrays is an active research topic
since it has broad applications requiring estimation the so-called angular spectrum, for example,
in radar, sonar, wireless communication and localization, to name a few [1]. Because the DOA
estimation accuracy is determined by the degrees of freedom (DOFs) of the sensor array, uniform spaced
arrays need to increase the number of sensors to attain the high number of DOFs, and then raise
the manufacturing cost as well as the difficulty of array calibration. Sparse arrays, i.e., nested array
and coprime array [2,3], can obtain the higher number of DOFs to resolve more sources than the
number of physical sensors using nonuniform sensor positions. Furthermore, for the sparse arrays the
increased number of DOFs is achieved by exploiting the extended difference coarray, whose virtual
sensor positions are determined by the consecutive and non-consecutive lag differences among the
physical sensors.

Among sparse arrays, the coprime array has attracted considerable interest to the application of
DOA estimation [4–7] because of the simplicity of the array configuration and the ability to detect
more signals than the number of physical sensors. In [8], utilizing multiple frequencies to fill the
missing coarray elements, the coprime array can effectively attain all of the offered DOFs for high
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resolution DOA estimation. Exploiting the sparse sparsity in the array signal model, the techniques
of sparse signal representation [9–11] facilitate the progress of DOA estimation. These sparse signal
representation based algorithms not only discretize the range of interest into a grid of spatial angles,
but also assume that the true signal DOAs must fall on the predefined grid. However, in practical
situations no matter how dense the grid is, the true DOAs may not necessarily lie on the exact sampling
grid. This off-grid sources can cause the dictionary mismatch problem which not only violates the
sparsity conditions but also deteriorates the performance [12]. In [13], the underdetermined wideband
DOA estimation using group sparsity of two-step approach for off-grid sources is proposed to provide
improved performance over the existing group sparsity based methods with the same search grid.
In order to solve the problem that joint sparsity fails to capture the true structure of the signals, a novel
wideband DOA estimation algorithm within the sparse Bayesian framework is proposed to allow
a much more flexible occupation of the spectrum band, and automatically determine the underlying
band occupation by imposing a Dirichlet process prior on the latent parametric space in [14].

Sparse Bayesian learning (SBL), as an alternative compressive sensing (CS) implementation,
offers to relief the shortcoming that several sparse solutions might correspond to a single source
when jointly processing multiple frequencies and multiple snapshots in order to localize one or
more sources [15–17]. Being a probabilistic approach, SBL computes the posterior distribution of the
sparse weight vectors and then provides estimations of their covariance along with the mean [18].
The idea of SBL applied to the single measurement vector (SMV) model for sparse signal recovery
is to find the posterior probability p (x | y; Θ) via the Bayesian rule, where Θ indicates the set of all
the hyperparameters [19–21]. The hyperparameters are estimated from data by marginalizing over
x and then performing evidence maximization or Type-II Maximum likelihood [22]. The charm of
SBL is that its global minima are always the sparest one [23], while the popular l1 − norm based
optimization algorithms [24] are not globally convergent. Therefore, the SBL based algorithms
significantly outperform the traditional l1 − norm based optimization algorithms.

In this paper, we focus on the underdetermined wideband DOA estimation for off-grid sources
based on the coprime array using SBL algorithm. The coprime array, using minimal sparse
rulers to reconstruct the spatial covariance matrix, enable nonuniform sampling approach which
advocates the acquisition of a small number of samples to avoid aliasing for wideband signals.
Vectorizing the covariance matrix and using kronecker product to the virtual manifold matrix from the
coprime array, the DOA estimation for wideband signals can be obtained using the SBL algorithm.
The SBL algorithm, developed within the sparse Bayesian framework, can approximately resolve the
non-convex optimization problem and automatically determine sparsity using fixed point updates.
The SBL scheme for wideband DOA estimation can provide processing advantages especially at low
signal-to-noise ratio (SNR) under the acquisition of a small number of samples.

The remained of the paper is organized as follows. In Section 2 the signal model with coprime
array is illustrated for wideband signals. In Section 3 the wideband DOA estimation of SBL for off-grid
sources is introduced to the coprime array. No matter how fine the grid is, the true DOAs may be off
the search grid. This off-grid problem can be well solved within sparse Bayesian framework. Section 4
presents numerical simulations showing that the DOA estimation for wideband signals using SBL has
good performance in detection and estimation compared to least absolute shrinkage and selection
operator (LASSO), SOMP-LS, SOMP-TLS and off-grid sparse Bayesian inference (OGSBI) based on
coprime array. Section 5 concludes this paper.

2. Wideband Signal Model for Coprime Array

Consider a coprime array which is comprised of two uniform linear arrays (ULAs) with N and
2M sensors, as shown in Figure 1a, where the inter-element spacing of the first subarray is Mλ/2 and
that of the second subarray is Nλ/2 with λ as the center wavelength of the signal. Assume that K
far-field wideband sources sk (t) , k = 1, . . . , K, impinge on the coprime array with incident angles
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Θ = [θ1, . . . , θK]. Therefore, the signal observed at the n-th sensor of the coprime array can be
expressed as

xn (t) =
K

∑
k=1

sk (t− τn (θk)) + nn (t) (1)

where 0 ≤ n ≤ 2M + N − 1, sk (t) is the kth signal, nn (t) is the additive Gaussian white noise vector
with the mean and variance equal to zero and σ2 at the corresponding sensor and τn (θk) represents
the time delay of the k-th impinging signal with the angle θk arriving at the n-th sensor of the coprime
array. Then the L-point discrete Fourier transform (DFT) is applied to the observed sensor signal and
in frequency domain the data vector received at the n-th sensor can be expressed as

Xn(l) =
L−1

∑
i=0

xn (i) e−j2πil/L =
K

∑
k=1

Sk (l) e−j2π fsτn(θk)l/L + Nn (l) (2)

where Sk (l) =
L−1
∑

i=1
sk (t) e−j2πil/L is the DFT of the k-th impinging signal sk (t) and Nn (l) is the DFT

of the discrete time noise at n-th sensor of the coprime array. l = 1, . . . , L, L ≥ K and fs denotes the
sampling frequency. The output signal model in the DFT domain can be written into

X(l) = A(l, θ)S(l) + N(l) (3)

where A(l, θ) = [a (l, θ1) , . . . , a (l, θK)] is the steering matrix.
The covariance matrix of data vector can be obtained as

Rl = E
{

X (l) · XH (l)
}
=

K

∑
k=1

σ2
k (l) a (l, θk) aH (l, θk) + σ2

n (l) I2M+N−1 (4)

where E {·} is the expection operator and {·}H is the Hermitian transpose operator. σ2
k (l) denotes the

power of the k-th impinging signal, while σ2
n (l) denotes the corresponding noise power. In practical

situations, the theoretical covariance matrix Rl is unavailable and the sample covariance matrix R̂l can
be estimated using the T available segments (frequency snapshots) as

Rl ≈ R̂l =
1
T

T

∑
t=1

X (l, p) · XH (l, p) (5)

Then vectorizing Rl in column and using kronecker product to obtain the following virtual
array model

zl = vec (Rl) = Blul + σ2
n (l) I(2M+N−1)2 (6)

where Bl = [b (l, θ1) , . . . , b (l, θK)] with b (l, θk) = a∗ (l, θk) ⊗ a (l, θk), ul =
[
σ2

1 (l) , . . . , σ2
K (l)

]
and

I(2M+N−1)2 = vec (I2M+N−1) in which the symbol ′∗′ denotes complex conjugation, the symbol ′⊗′
denotes the Kronecker product and vec (·) denotes the vectorization operation.

The locations of the sensors from the matrix Bl , regarded as the manifold matrix of a larger virtual
array, are in the self-difference set

Ls = {ls | ls = Nm, 1 ≤ m ≤ 2M− 1} ∪ {ls | ls = Mn, 0 ≤ n ≤ N − 1}

cross-difference set

Lc = {(Mn− Nm) , 0 ≤ n ≤ N − 1, 1 ≤ m ≤ 2M− 1}

the corresponding mirrored self-difference set L−s = {−ls | ls ∈ Ls} and the corresponding mirrored
cross-difference set L−c = {−lc | lc ∈ Lc} [25]. Therefore, the full set of lags from the larger virtual array
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is Lp = Ls ∪ L−s ∪ Lc ∪ L−c . As a example of the coprime array with M = 3 and N = 4, Figure 1b shows
the self-difference and cross-difference sets, while Figure 1c illustrates the full set of lags. Using the
full set of lags, the resulting coarray can offer the higher number of DOFs to resolve more sources than
the number of physical sensors.

Figure 1. A coprime array configuration. (a) ULAs with sensor spacings related to a coprime array.
(b) The sets Ls and Lc with M = 3 and N = 4. (c) The lags positions in full set Lp with M = 3 and
N = 4.

3. Sparse Bayesian Learning with Off-Grid Sources

3.1. Off-Grid Formulation

It is assumed that there are Q ≤ L DFT frequency bins indexed by lq, q = 1, . . . , Q, which may or
may not occupy the consecutive frequency bands within the bandwidth of signals. Then the manifold
matrix Bl corresponding to the Q frequency bins is Bl =

[
Bl1 , . . . , BlQ

]
. Sampling the potential spatial

domain with D-element grid θg with fixed spacing rg = θ
g
l+1 − θ

g
l , 1 ≤ l ≤ D and discretizing the grid

interval as θ
g
1 , θ

g
2 , . . . , θ

g
D, D � K, the virtual array model (6) can be written into

zl = Bo
l uo

l + σ2
n (l) I(2M+N−1)2 (7)

where zl =
[
zl1 , . . . , zlQ

]
, Bo

l =
[
b
(

l, θ
g
1

)
, . . . , b

(
l, θ

g
D

)]
with b

(
l, θ

g
l

)
= a∗

(
l, θ

g
l

)
⊗ a

(
l, θ

g
l

)
and

uo
l =

[
σ2

1 (l) , . . . , σ2
D (l)

]T which is a sparse vector, whose elements are all zeros except those
corresponding to the true DOAs. No matter how fine the grid is, the true DOAs θk, denoted as
θk = θ

g
l + ∆l where θ

g
l ∈ θg denotes the nearest grid corresponding to the θk and ∆l ∈

[
− rg

2
rg

2

]
is the

grid offset, may be off the dense search grid θg. The steering vector a
(

l, θ
g
l + ∆l

)
at the actual angle θk

can be approximately expressed as

a
(

l, θ
g
l + ∆l

)
= a

(
l, θ

g
l

)
� c (l, ∆l)

where c (l, ∆l) =

[
1, e

−j2π fl Mλ cos(∆l)
2c , . . . , e

−j2π fl Nλ(2M−1) cos(∆l)
2c

]T
. Then the equivalent steering vector

b
(

l, θ
g
l + ∆l

)
at the actual angle θk can be expressed as

b
(

l, θ
g
l + ∆l

)
= a∗

(
l, θ

g
l + ∆l

)
⊗ a

(
l, θ

g
l + ∆l

)
=
(

a
(

l, θ
g
l

)
� c (l, ∆l)

)∗
⊗
(

a
(

l, θ
g
l

)
� c (l,4l)

)
=
(

a∗
(

l, θ
g
l

)
⊗ a

(
l, θ

g
l

))
� (c∗ (l,4l)⊗ c (l,4l))

(8)
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Denote the collection of D steering vectors as B̃l =
[
b
(

l, θ
g
1 +41

)
, . . . , b

(
l, θ

g
D + ∆D

)]
,

the off-grid virtual array model can be given as

zl = B̃luo
l + vl

where vl denotes the vector comprising of all zeros except its k-th entry corresponding to the variance
of the k-th element of the nn (t).

3.2. Sparse Bayesian Learning Algorithm

Due to the noise being Gaussian, the likelihood can be expressed as

p
(

zlq | uo
lq ; B̃lq

)
= CN

(
zlq | B̃lq uo

lq , σ2
n̄ I
)

(9)

Since uo
lq is real and nonnegative, Equation (9) can be converted to be the following real-valued

likelihood form
p
(

ylq | uo
lq ; B̃lq

)
= CN

(
ylq | B̃lq uo

lq , σ2
n I
)

(10)

where ylq
4
=
[

Re
(

zT
lq

)
, Im

(
zT

lq

)]T
and B̃lq

4
=
[

Re
(

B̃T
lq

)
, Im

(
B̃T

lq

)]T
[26]. Using the Gaussian

distribution, the prior for uo
lq can be expressed as

p
(

uo
lq ; γlq

)
= CN

(
uo

lq | 0, Γlq

)
= CN

(
uo

lq | 0, diag
(

γlq

))
=

D

∏
m=1
CN

(
uo

lq ,m | 0, γlq ,m

)

where Γlq = diag
(

γlq ,1, . . . , γlq ,D

)
= diag

(
γlq

)
is the diagonal covariance of the source amplitudes

with the vector γlq as the source power in each range-depth cell θ.

Let Ylq =
[
y1q , . . . , yLq

]
denote the collection of T snapshots and the corresponding collection

of source variance vectors be denoted as Uo
lq , respectively. Using Equation (10), the multi snapshot

likelihood can be expressed as

p
(

Ylq | Uo
lq

)
=

T

∏
t=1

p
(

ylq ,t | uo
lq ,t

)
The multi frequency likelihood can be expressed as

p
(

Yl1:Q | Uo
l1:Q

)
=

Q

∏
q=1

T

∏
t=1

p
(

ylq ,t | uo
lq ,t

)

The evidence p
(

Ylq

)
can be obtained by averaging over all realizations of Uo

lq as

p
(

Ylq

)
=
∫

p
(

Ylq | Uo
lq

)
p
(

Uo
lq

)
dUo

lq =
∫ T

∏
t=1
CN

(
ylq ,t; B̃lq uo

lq ,t, σ2
n̄ I
)
CN

(
uo

lq ,t; 0, Γlq

)
=

T

∏
t=1
CN

(
ylq ,t; 0, σ2

n̄ I + B̃lq Γlq B̃H
lq

)
=

T

∏
t=1
CN

(
ylq ,t; 0, Σylq

) (11)

where Σylq
= σ2

n̄ I + B̃lq Γlq B̃H
lq . To estimate γlq which denotes γ̂lq , we maximize the joint evidence

γ̂l1:Q =arg max p
(

Yl1:Q

)
=

γl1:Q

arg min
γl1:Q

{
Q

∑
q=1

T log | Σylq
| +Tr

(
YH

lq Σ−1
ylq

Ylq

)}
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where Tr() denotes the trace of a matrix and | · | denotes the determinant of a matrix. To get the
minimum of this objection function, we equate the derivative of the objection function to zero

∂

∂γlq ,m

{
Q

∑
q=1

T log | Σylq
| +Tr

(
YH

lq Σ−1
ylq

Ylq

)}
= 0

γ̂new
m = γ̂old

m

Q
∑

q=1
‖ YH

lq Σ−1
ylq

b̃
(
lq, m

)
‖2

2

T
Q
∑

q=1
b̃H
(
lq, m

)
Σ−1

ylq
b̃
(
lq, m

) (12)

where b̃
(
lq, m

)
=
[
Re
(
bT (lq, m

))
, Im

(
bT (lq, m

))]T . If the sparsity is the same with different
frequencies, the estimate of γ̂lq correspond to the source variance at the q-th frequency bin. Denote B̃M
the matrix formed by K columns of B̃ indexed byM, where the setM signifies the location of the
non-zero entries of γ with cardinality | M |= K. The variance of noise σ2

n̄ can be expressed as

σ2
n =

1
D− K

Tr
((

ID − B̃l,MB̃+
l,M

)
R̃l

)
(13)

where B̃+
M denotes the Moore-Penrose pseudo-inverse of the matrix B̃M and R̃l = RT

l ⊗ Rl/T [17].
In short, the SBL algorithm can be summarized as follows:

Step 1. Initialization: ε = 10−4, γold
m = 1, σ2

n̄ = 0.1, Nt = 1
Step 2. Input yl with yl =

[
yl1 , . . . , ylQ

]
and B̃l with B̃l =

[
B̃l1 , . . . , B̃lQ

]
, then compute

∑yl
= σ2

n̄ I + B̃lΓl B̃H
l

Step 3. Update γnew
m according to Equation (12)

Step 4. Update σ2
n̄ according to Equation (13)

Step 5. If ‖γ
new−γold‖1
‖γnew‖1

< ε, stop
Step 6. let γold = γnew and Nt = Nt + 1
Step 7. If Nt < 1000, go to step 2; otherwise stop.

4. Simulation Result

In this section, we carry out simulations to illustrate the performance of SBL with the coprime array
for wideband DOA estimation, and also compare it with other state-of-the-art algorithms, including
LASSO, SOMP-LS, SOMP-TLS [27] and OGSBI [28]. In the simulations, the fractional bandwidth,
which is the ratio of bandwidth divided by the center frequency, is 2/3 for signals. The sampling
frequency is three times the highest frequency. In other words, the signals have a normalized frequency
range from (1/3)π to (2/3)π, where the normalized frequency can be defined as ω = 2 f

fs
π with

f being the frequency of interest. Considering the signals at each frequency bin sharing the same
distribution, i.e., the amplitude being a Rayleigh random variable and the phase being uniformly
distributed on [−π, π]. L = 128-point DFT is applied and the frequency band of interest covers Q = 26
frequency bins. Assume that an example of K = 12 signals with their off-grid impinging angles
uniformly distributed between −π/3 and π/3. The coprime array consists of a pair of sparse ULAs
with M = 3 and N = 4, and in total there are 9 physical sensors considered with the position set
S = [0, 3, 4, 6, 8, 9, 12, 16, 20] λ/2. A search grid of Kg = 2π

r potential angles corresponding to a step size
r = 1 is generated with the full angle range from −π

2 to π
2 .

First, we compare the detection performance of SBL with that of LASSO, SOMP-TLS and OGSBI.
Within the entire frequency band of interest the signal power and the noise power are used to calculate
the SNR. Assume that K = 12 wideband signals impinge on the coprime array with M = 3 and N = 4,
the number of snapshots is 100 and the input SNR is fixed to be 0 dB. In Figure 2, the solid lines
represent the estimation of DOAs, while the dotted lines represent the actual incident angles of source
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signals. As shown in Figure 2, all wideband signals (more than the number of physical sensors) can
be distinguished successfully by LASSO, SOMP-TLS, OGSBI and SBL. However, LASSO and OGSBI
may generate some spurious peaks for sources. There is no spurious peaks with the performance of
SOMP-TLS compared to the other methods, even SBL has one spurious peak at 0.5 rad. Also, for some
angles SOMP-TLS provides closer DOA estimates to the true values compared to SBL, whereas SBL
gives better accuracy for the other angles. Therefore, the estimation performance using SBL and
SOMP-TLS methods are comparable and provide the best detection among the other methods.

Figure 2. Normalized spectra for least absolute shrinkage and selection operator (LASSO),
simultaneous orthogonal matching pursuit total least squares (SOMP-TLS), off-grid sparse
Bayesian inference (OGSBI) and Sparse Bayesian learning (SBL) with T = 100 and
signal-to-noise ratio (SNR)= 0 dB.

Next, we compare the separation ability of SBL with that of LASSO, SOMP-LS, SOMP-TLS and
OGSBI in the statistical sense for SNR. For each angle separation of the signals, the separation ability
of all algorithms are derived from 200 trials. Assume ∆θ = 0.0952 rad as half of the two closely
incident signals, successful separation of LASSO, SOMP-LS, SOMP-TLS, OGSBI and SBL is defined
if the estimated DOA of each signal satisfies θk − ∆θ ≤ θ̂k ≤ θk + ∆θ. In other words, we carry out
the criteria, the DOA estimation biases of each signal do not exceed ∆θ, for separation evaluation.
Assume that K = 12 wideband signals as in the first experiment impinge on the coprime array with
M = 3 and N = 4, the number of snapshots is fixed to be 200 and the SNR is varied from −20 dB to
20 dB for each trial. Figure 3 illustrates the separation performance based on the coprime array for
LASSO, SOMP-LS, SOMP-TLS and OGSBI. It is evident that SBL performs best compared to LASSO,
SOMP-LS, SOMP-TLS and OGSBI.
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Figure 3. Separation probabilities vs. SNR with T = 200 based on coprime array.

Finally, the estimation performance of SBL is conducted to evaluate the estimation accuracy in
comparison with that of LASSO, SOMP-LS, SOMP-TLS and OGSBI in terms of the root mean square

error (RMSE). The empirical RMSE of the estimated DOAs, defined as RMSE =

√
W
∑

i=1

K
∑

k=1

(
θ̂k (i)− θk

)2
,

where W is the number of independent Monte Carlo trials and θ̂k (i) is the estimate of θk in the ith
Monte Carlo trial, is used to evaluate the simulation performance. Here each testing point is based on
an average of results by 200 iterations of Monte Carlo simulations. Assume that K = 12 wideband
signals as in the first experiment impinge on the coprime array with M = 3 and N = 4 for each
iteration. Crame-Rao lower bound (CRLB) [29–33], which offers a lower bound on the variances of
estimation accuracy, is also used to indicate the ideal estimation.

Figure 4a depicts the RMSE of LASSO, SOMP-LS, SOMP-TLS, OGSBI and SBL versus SNR for
wideband signals based on coprime array with the number of snapshots T = 200. It is clear that
the DOA estimation performance is improved with the increase of SNR for all algorithms. Note that
the RMSE of the SBL is the lowest compared to that of LASSO, SOMP-LS, SOMP-TLS and OGSBI.
Therefore, the performance of SBL outperforms LASSO, SOMP-LS, SOMP-TLS and OGSBI when SNR
is varied from −20 dB to 20 dB. The reason is that the all-on-grid assumption severely degrades the
performance of LASSO, but SBL can efficiently alleviate the off-grid mismatch problem.

Figure 4b plots the RMSE of LASSO, SOMP-LS, SOMP-TLS, OGSBI and SBL versus the number
of snapshots for wideband signals based on coprime array with SNR = 0 dB. Due to the rate of
successful detection using SOMP-LS and SOMP-TLS be 27% when T = 10, their RMSE values are
considered from T = 20. It can be readily observed that the estimation performance is to be increased
as the number of snapshots is increasing for all algorithms. As shown in Figure 4b, SBL can obtain
more accurate estimation performance by increasing the number of snapshots in comparison with
LASSO, SOMP-LS, SOMP-TLS and OGSBI. Therefore, the superiority of the off-grid mismatch for SBL
is demonstrated.
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Figure 4. Estimation accuracy for 12 wideband signals based on coprime array. (a) RMSE vs. input
SNR with T = 200 snapshots. (b) RMSE vs. the number of snapshots with SNR = 0 dB.

5. Conclusions

In this paper, by exploiting SBL for the underdetermined DOA estimation of wideband signals
based on the coprime array, we find that the SBL can achieve superior detection performance
and estimation accuracy in comparison to LASSO, SOMP-LS, SOMP-TLS and OGSBI. The SBL
can accommodate the increased DOFs provided by the coprime array to perform the effective
underdetermined wideband DOA estimation for off-grid sources. The SBL employs fixed point
updates to give global convergence properities for wideband DOA estimation. Numerical experiments
are used to demonstrate the superiority of the SBL in detection and estimation performance with the
coprime array for underdetermined wideband DOA estimation.



Sensors 2018, 18, 253 10 of 11

Acknowledgments: The authors would like to thank the anonymous reviewers for their many insightful
comments and suggestions, which help improve the quality and readability of this paper.

Author Contributions: All the authors make contribution to this work. Yanhua Qin proposed the idea, conceived
and wrote the manuscript, performed the experiments; Yumin Liu, Jianyi Liu and Zhongyuan Yu provided
significant editorial comments and revised the manuscript.

Conflicts of Interest: The authors declare that they have no competing interests.

References

1. Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal
Process. Mag. 1996, 13, 67–94.

2. Pal, P.; Vaidyanathan, P.P. Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees
of Freedom. IEEE Trans. Signal Process. 2010, 58, 4973–4973.

3. Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process.
2011, 59, 573–587.

4. Vaidyanathan, P.P.; Pal, P. Why does direct-MUSIC on sparse-arrays work? In Proceedings of the 2013
Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2013;
pp. 2007–2011.

5. Tan, Z.; Nehorai, A. Sparse Direction of Arrival Estimation Using Co-Prime Arrays with Off-Grid Targets.
IEEE Signal Process. Lett. 2014, 21, 26–29.

6. Zhao, T.; Eldar, Y.C.; Nehorai, A. Direction of arrival estimation using co-prime arrays: A super resolution
viewpoint. IEEE Trans. Signal Process. 2014, 62, 5565–5576.

7. Shen, Q.; Liu, W.; Cui, W. Low-Complexity Direction-of-Arrival Estimation Based on Wideband Co-Prime
Arrays. IEEE Trans. Audio Speech Lang. Process. 2015, 23, 1445–1456.

8. BouDaher, E.; Jia, Y.; Ahmad, F.; Amin, M.G. Multi-Frequency Co-Prime Arrays for High-Resolution
Direction-of-Arrival Estimation. IEEE Trans. Signal Process. 2015, 64, 3797–3808.

9. Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization
with sensor arrays. IEEE Trans. Signal Process. 2005, 53, 3010–3022.

10. Liu, Z.M.; Huang, Z.T.; Zhou, Y.Y. An Efficient Maximum Likelihood Method for Direction-of-Arrival
Estimation via Sparse Bayesian Learning. IEEE Trans. Wirel. Commun. 2012, 11, 1–11.

11. Hu, N.; Ye, Z.F.; Xu, X.; Bao, M. DOA Estimation for Sparse Array via Sparse Signal Reconstruction.
IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 760–773.

12. Chi, Y.; Scharf, L.L.; Pezeshki, A.; Calderbank, A.R. Sensitivity to Basis Mismatch in Compressed Sensing.
IEEE Trans. Signal Process. 2011, 59, 2182–2195.

13. Shen, Q.; Cui, W.; Liu, W.; Wu, S.; Zhang, Y.D.; Amin, M.G. Underdetermined wideband DOA estimation of
off-grid sources employing the difference co-array concept. Signal Process. 2017, 130, 299–304.

14. Wang, L.; Zhao, L.; Bi, G.; Wan, C.; Zhang, L.; Zhang, H. Novel Wideband DOA Estimation Based on Sparse
Bayesian Learning With Dirichlet Process Priors. IEEE Trans. Signal Process. 2016, 64, 275–289.

15. Gerstoft, P.; Xenaki, A.; Mecklenbräuker, C.F.; Zochmann, E. Multiple snapshot compressive beamforming.
In Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, 8–11 November 2015; pp. 1774–1778.

16. Gerstoft, P.; Mecklenbräuker, C.F.; Xenaki, A.; Nannuru, S. Multisnapshot Sparse Bayesian Learning for
DOA. IEEE Signal Process. Lett. 2016, 23, 1469–1473.

17. Kay, L.G.; Santosh, N.; Gerstoft, P.; William, S.H. Multi-frequency sparse Bayesian learning for robust
matched field processing. J. Acoust. Soc. Am. 2017, 141, 3411–3420.

18. Nannuru, S.; Gemba, K.L.; Gerstoft, P.; Mecklenbräuker, C.F. Multi-frequency sparse Bayesian learning with
uncertainty models. arXiv 2017, arXiv:1704.00436.

19. Zhang, Z.L.; Rao, B.D. Sparse signal recovery in the presence of correlated multiple measurement vectors.
In Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas,
TX, USA, 14–19 March 2010; pp. 3986–3989.

20. Zhang, Z.L.; Rao, B.D. Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse
Bayesian Learning. IEEE J. Sel. Top. Signal Process. 2011, 5, 912–926.



Sensors 2018, 18, 253 11 of 11

21. Zhang, Z.L.; Rao, B.D. Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-Block
Correlation. IEEE Trans. Signal Process. 2013, 61, 2009–2015.

22. Tipping, M.E. Sparse Bayesian Learning and the Relevance Vector Machine. J. Mach. Learn. Res. 2001,
1, 211–244.

23. Wipf, D.P.; Rao, B.D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 2004,
52, 2153–2164.

24. Robert, T. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1994, 58, 267–288.
25. Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized Coprime Array Configurations for Direction-of-Arrival

Estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390.
26. Hu, N.; Sun, B.; Zhang, Y.; Dai, J.S.; Wang, J.J.; Chang, C. Underdetermined DOA Estimation Method

for Wideband Signals Using Joint Nonnegative Sparse Bayesian Learning. IEEE Signal Process. Lett. 2017,
24, 535–539.

27. Gretsistas, A.; Plumbley, M.D. An alternating descent algorithm for the off-grid DOA estimation problem
with sparsity constraints. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO),
Bucharest, Romania, 27–31 Auguest 2012; pp. 874–878.

28. Yang, Z.; Xie, L.H.; Zhang, C.S. Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference.
IEEE Trans. Signal Process. 2013, 61, 38–43.

29. Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation.
IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795.

30. Trees, H.L.V. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley &
Sons: New York, NY, USA, 2002.

31. Shaghaghi, M.; Vorobyov, S.A. Cramer-Rao Bound for Sparse Signals Fitting the Low-Rank Model with
Small Number of Parameters. IEEE Signal Process. Lett. 2015, 22, 1497–1501.

32. Liu, C.L.; Vaidyanathan, P.P. Cramer-Rao bounds for coprime and other sparse arrays, which find more
sources than sensors. Digit. Signal Process. 2017, 61, 43–61.

33. Wang, M.; Nehorai, A. Coarrays, MUSIC, and the Cramer-Rao Bound. IEEE Trans. Signal Process. 2017,
65, 933–946.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Wideband Signal Model for Coprime Array
	Sparse Bayesian Learning with Off-Grid Sources
	Off-Grid Formulation
	Sparse Bayesian Learning Algorithm

	Simulation Result
	Conclusions

