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Transcriptional profiling is a powerful tool commonly used to

benchmark stem cells and their differentiated progeny. As the

wealth of stem cell data builds in public repositories, we highlight

common data traps, and review approaches to combine and mine

this data for new cell classification and cell prediction tools. We

touch on future trends for stem cell profiling, such as single-cell

profiling, long-read sequencing, and improved methods for

measuring molecular modifications on chromatin and RNA that

bring new challenges and opportunities for stem cell analysis.

In vitro culturing and differentiation are necessary steps in

the derivation and study of human stem cells. A funda-

mental challenge with this study design is that stem and

progenitor cells propagated in vitro suffer from an identity

crisis: to meet the definitions of a stem cell––the capacity

to self-renew and the capacity to differentiate to appro-

priate cell and tissue lineages––researchers must alter the

state of that cell by differentiating it. In-vitro-derived cells

and structures rely on a variety of tests to assess their equiv-

alency to developmental or tissue structures. Integration

into tissues and organs may be the gold standard for func-

tion, but this is neither possible nor desirable as a routine

assay for human stem cell lines. Molecular assays rely on

comparative benchmarking of in-vitro- and in-vivo-derived

cells as a functional surrogate: this is where transcriptional

profiling is most commonly adopted. These studies aim to

compare and contrast the in vitro cells with their in vivo

counterparts, find key transcriptional drivers of a cell

type, and sometimes make predictions about cell fates.

Unfortunately, this is also an area where we observe

frequent misuses of data.

Molecular profiling is an informative companion for

functional pluripotency or differentiation assays (e.g.,

Polanco et al., 2013), and the most commonly profiled

molecule is RNA. This is largely driven by the scalability

and reliability of sequencing technologies (Figure 1), and

the availability of reference genomes to annotate a frag-

ment of expressed sequence to a gene. RNA sequencing

(RNA-seq) is inexpensive and quantitative across a large

linear range. By providing a catalog of genes active in a

cell, RNA-seq also infers the proteins and pathways avail-

able to a cell (Kolle et al., 2011; Tonge et al., 2014). Similar

systems-scale methods have been developed for proteomic

profiling (Rigbolt et al., 2011). Chromatin history via pro-

tein binding or histone modifications have been measured
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using chromatin immunoprecipitation, and chromatin

accessibility with the assay for transposase accessible chro-

matin sequencing (Knaupp et al., 2017; Lee et al., 2014).

Even subsets ofmolecules, such as noncoding ormicroRNA

have been used to benchmark stem-like properties of cells

(Clancy et al., 2014; De Rie et al., 2017).

There is, however, a disturbing trend in the use of systems-

scale data in the stem cell sciences: studies that benchmark a

stem cell-derived phenotype against an in vivo counterpart

often draw on a small number of public exemplars, with

little attention paid to how well the cells that are being

used as the standard have been characterized. Despite broad

adoption, big-data studies of stem cells can lack reproduc-

ibility between laboratories, requiring computational inter-

ventions to harmonize data (Volpato et al., 2018): these

frequently rely on ‘‘black box’’ methods or third-party ana-

lyses, and consequently interpretability of ‘omics data can

be poor (Figure 2). Data transformation can be co-opted

into proving a hypothesis before the comparison is even

made. Equally problematic is using profiling experiments

as a check-box exercise to reinforce cell type similarity rather

than genuinely evaluate the quality of the derived material.

A lack of adequate benchmarking leads to iterative science, a

missed opportunity to evaluate gaps in developmental

patterning or other factors that might otherwise lead to

improvements in derivation protocols.

Poor data husbandry is demonstrated by the high fail rate

of public stem cell data that is curated by the Stemformatics

resource. Stemformatics is a web-based platform that hosts

>450 curated public stem cell datasets (>14,000 samples)

using FAIR data principles to allow the rapid review of

genes and cell types by the stem cell community (Choi

et al., 2018; Wells et al., 2013). Stemformatics fails >30%

of published data, most commonly because of confounded

experimental design or poor data quality, but in over 8% of

reviewed studies the underlying primary dataweremissing,

and this was frequently associated with partial data deposi-

tion (e.g., control samples only) to obtain an accession

number. Failure to provide primary data, obscured sample

annotations, poor experimental design, and inappropriate

data transformation all contribute to poor reproducibility

between studies and increase suspicion of the underlying

methodologies. It also highlights a serious problem in the

way the sector reviews systems-scale data.
ports j Vol. 13 j 237–246 j August 13, 2019 j ª 2019 The Author(s). 237
C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1352

mailto:wells.c@unimelb.edu.au
https://doi.org/10.1016/j.stemcr.2019.07.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2019.07.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Future Platforms for Molecular Profiling of Stem Cells
(A and B) Current platforms for stem cell profiling include (A) assays of chromatin modifications using chromatin immunoprecipitation
(ChIP) and chromatin accessibility using the assay for transposase accessible chromatin sequyencing (ATAC). Future modifications (B) will
involve real-time measurements of the dynamics of protein phosphorylation during transcriptional programs.
(C and D) (C) Transcription start sites (TSS) are currently measured by capped analysis of gene expression (CAGE), which relies on capture of
the methyl-G mRNA cap. Future platforms (D) in single cells will allow discrimination of allelic differences in transcription initiation.
(E and F) (E) Alternate splicing is currently predicted by computational alignment of short sequencing reads across exon boundaries, but
these are poor at resolving unique transcripts and commonly result in consensus transcripts. Long-read sequencing, stretching over 1 kb or
more are now evolving to explore transcript isoforms. The next iteration of alternate splicing (F) will be computational, moving from gene-
centric to isoform-centric interaction networks and enabling the annotation of higher-resolution stem cell pathways.
(G and H) (G) Short-read RNA-seq is the most widely adopted method of measuring transcriptional activity from a locus. Future applications
of RNA-seq (H) will be the compilation of gold standard transcriptional atlases that allow users to upload and benchmark their own data.
(I) Current methods for measuring nucleotide modifications involve bisulfite DNA sequencing to convert unmethylated-cytosine to uracil,
or antibody-based immunoprecipitation methods that bind methylated adenosine or variants of methylated cytosine on RNA (RNA
immunoprecipitation [RIP]) or DNA (ChIP).
(J) Future methods will expand the repertoire of metabolites capable of modifying chromatin proteins or RNA, building more immediate
linkages between the cell transcriptome and metabolome.
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Curated transcriptome atlases such as Stemformatics,

and EBI’s Expression Atlas (Papatheodorou et al., 2018)

therefore offer an important resource––providing user-

friendly platforms for stem cell researchers to interrogate
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relevant studies, a review process that promotes confidence

in the underlying data and themeans for authors to unam-

biguously share results with reviewers and readers. These

efforts are more than a catalog––important insights for
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stem cell identity, pluripotency, or reprogramming have

come from analysis of integrated expression datasets (e.g.,

Hussein et al., 2014; Liu et al., 2017), of sufficient size for

the application of machine-learning algorithms to build

cell-type classifiers (Nguyen et al., 2018), and predictive

reprogramming tools (e.g., Rackham et al., 2016).

Integrated Expression Atlases for Categorization of

Cell Types

Machine-learning methods for cell classification require

much bigger sample sizes than are available from most in-

dividual experimental series. Instead, classification tools

build on data integration of multiple datasets to train and

test the classification model. Examples include Plurinet

(Müller et al., 2008) or the Rohart test (Rohart et al.,

2016), used to classify specific cell classes, and others that

identify stem cell-derived lineages include CellNet (Cahan

et al., 2014), KeyGenes (Roost et al., 2015), and CellScore
Figure 2. Seven Deadly Sins of Data Analysis
1. Replication. Technical replication measures the reliability of the pl
group differences. These statistical tests broadly assess whether th
variance expected within that group. Therefore, well-designed studies
In a stem cell context, this would include profiling of multiple stem ce
scRNA-seq studies dissipates, and the cost of running the experiments
considered sufficient replication of a model. 2. Experimental design: c
separate experimental variable from biological variable if biological g
this way biological signal can be confounded by experimental variab
even sequencing date. This accounts for >10% of datasets reviewed an
that predetermine group membership before testing group differen
strategies that preassign groups that are ‘‘similar’’ or ‘‘different’’ will ad
particularly problematic if the study design is unbalanced (for examp
samples from an external dataset). This can result in a self-fulfillin
expression (for example, group close to one another on a principal-co
normalization strategy. Likewise, differences between the groups shou
of signature genes to prove cell identity. Stem cell researchers may be
individual genes in a cell, particularly as methods such as flow cytomet
gates. There is an entire literature that spuriously claims that stromal
cultured cells (Warthemann et al., 2012; Xu et al., 2015). However, co
The output of a machine-learning classifier is a vector of gene express
able to substitute for the whole. These types of classifiers cannot be v
but rather require application of the whole signature for accurate class
new datasets, and continuous assessment of the stability of the signa
new data. 5. Gene set enrichment: few genes drive many pathways. R
care, because it is easy to find many gene sets being enriched with l
multiple sets (Mar et al., 2011). This can lead to a false interpretation t
in another process, which confounds the analysis (Venet et al., 2011).
of transcriptome data generation is the importance of metadata man
occur without being detected at all, leading to potentially erroneous
databases, in which samples have been clearly assigned to an incorrec
issue from the beginning of the experimental design phase. 7. Missing
where some of the crucial raw data are missing from the public reposit
partial information (e.g., control samples only) to obtain an accession
reviewed and rejected by the Stemformatics platform. Regardless of th
serious flaw in the current system of reviews carried out by journals.
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(Mah et al., 2018). By taking an integrated approach, these

resources form part of a useful toolkit for profiling pluripo-

tent or tissue-resident cells.

The first, Plurinet, profiled �150 cell lines on a single

microarray platform. The Loring laboratory obtained

pluripotent stem cell samples from dozens of laboratories,

comparing these with stromal cell or differentiating popu-

lations (Müller et al., 2008). A comparative clustering

approach allowed the team to develop a manually curated

protein-protein interaction map of approximately 300

genes that included key pluripotency transcription factors

POU5F1, SOX2, LIN28, and DNMT3B. PluriTest has since

been iterated using non-negative matrix factorization to

categorize samples into ‘‘pluripotent’’ or ‘‘novel’’ categories

(Müller et al., 2011). PluriTest has had widespread uptake

in the last decade, not least because of an enabling,

community-focused interface that allows users to easily

upload and benchmark their own data with the PluriTest
atform but are not informative in a statistical analysis of biological
e variance in expression between two groups is greater than the
provide enough replication to properly assess biological variability.
ll lines, rather than the same line multiple times. As the novelty of
decrease, a group of cells from a single individual will no longer be
onfounding ‘‘batch’’ and ‘‘biology.’’ There is no bioinformatic way to
roups have been ‘‘batched’’ separately. When groups are batched in
les such as RNA kit, amplification method, platform differences, or
d failed by the Stemformatics pipeline. 3. Normalization strategies
ces. Data integration needs careful consideration. Normalization
just expression values to harmonize members of a group, and this is
le, if a study is comparing in-house data with a subset of exemplar
g prophecy that samples expected to be similar share patterns of
mponent analysis), because those similarities are enforced by the
ld be expected to be exaggerated (Nygaard et al., 2016). 4. Misuse
most comfortable when using antibodies to visualize expression of
ry allow us to classify cells based on positive and negative molecular
cells are pluripotent because of an anti-OCT4 antibody signal in the
mputational predictors of cell identity do not work in the same way.
ion, in which the presence or absence of any single molecule is not
alidated using single-gene PCR measurements or antibody staining,
ification. Validation of these signatures rely on their application to
ture, and the false-positive/false-negative rates as it is applied to
esults of a gene set enrichment analysis should be interpreted with
ow p values due to a small number of the same genes occurring in
hat many gene sets drive a process, whereas they may be passengers
6. Metadata mismanagement. A crucial yet often overlooked aspect
agement. Mislabeled samples or errors in data entry can commonly
conclusions on the data. ‘‘Sample swaps’’ are common in the public
t group. It is thus very important to give due consideration to this
data. Unfortunately, it is not uncommon to find published studies
ories where they should reside. A frequent scenario is deposition of
number. This accounts for more than one-third of the publications
e underlying intension behind such missing data, this highlights a

2



Stem Cell Reports
Review
algorithm, with a report that is easy for a user to interpret.

However, PluriTest is not equivalent to a pluripotency

pathway, and a number of genes included in the classifica-

tion matrix remain functionally unannotated. These have

not yet had a role in pluripotency described aside from

correlated expression in pluripotent stem cells. This is

most problematic if isolated expression of any PluriTest

gene is used as evidence of pluripotency (see Figure 2).

Related, but for stromal cell populations, the mixOmics

and Stemformatics teams developed a robust transcrip-

tional classifier to address the vexed question of how

similarmesenchymal stromal cells (MSCs) are to other stro-

mal cell types, including fibroblasts. They also addressed

whether MSCs from different tissues share any comment

attributes (Rohart et al., 2016, 2017). By curating hundreds

of public stromal cell microarray datasets they identified a

16-gene classifier that discriminates MSCs from dozens of

other cell types, including adult stem/progenitor cells,

and terminally differentiated muscle, blood, neural, and

vascular cell types and fibroblasts. The classifier includes

several genes commonly used to phenotype or prospec-

tively enrich for MSCs by flow cytometry, including

VCAM1, PDGFRB, ITGA11, and CCDC80, but also identi-

fied a number of genes involved in modification of the

extracellular matrix via proteoglycan synthesis and catabo-

lism. Aweb interface allows users to explore the underlying

data and benchmark their own data using the classifier

(Choi et al., 2018).

Similarly, this user-friendliness for the stem cell commu-

nity has been a key part of the successful CellNet model. A

lineage predictor for cell differentiation/reprogramming

studies, CellNet initially integrated data from public micro-

array studies (Cahan et al., 2014). The platform focused on

transcription factors that form tissue-specific gene regula-

tory networks (GRNs). Its original implementation allowed

users to upload microarray data via a web interface, but

recent upgrades to the underlying CellNet data to RNA-

seq platforms means that potential users need to imple-

ment the code themselves (Radley et al., 2017). KeyGenes

(Roost et al., 2015) and CellScore (Mah et al., 2018) also

provide algorithms to benchmark transcriptome data

against an atlas of human fetal tissues (KeyGenes) or a re-

programming score that accounts for distance between

parental and final cell types (CellScore). Like CellNet, these

require the user to implement code locally, which may

represent a major barrier to small stem cell laboratories.

Each of these classification tools takes descriptive expres-

sion data to build reproducible classifiers that predict the

identity of the cell or tissue being profiled. These are all

excellent benchmarking tools that deserve to be more

widely adopted but are nevertheless limited in their scope.

They are constrained by the parameters of the original

model––a pluripotency test, for example, may reliably pre-
STEMCR
dict a pluripotent phenotype, but not discriminate be-

tween different pluripotent states, and so would not be

applicable to test naive pluripotent stem cells.

Nor can PluriTest predict whether a cell type is capable

of commitment to a specific lineage. The Stemformatics

MSC test cannot predict whether the profiled MSCs

have any clinical efficacy, and CellNet, KeyGenes, and

CellScore are not designed to predict which factors will

drive the reprogramming process, although these are

the forerunners to curated networks that will more

completely identify factors required for differentiated

states (Kinney et al., 2019).

Moving from Descriptive to Predictive Methods

Moving from descriptive to predictive analyses requires

transcriptome platforms to fulfill their promise of being

an engine for hypothesis generation. This, in turn, requires

careful experimental design and a focus on mechanism

driven by specific sets of molecules. An example is the

use of temporal profiling to predict that differences in

HOXA patterning during early mesoderm commitment is

a key step in the derivation of mature CD34+ progenitor

cells from pluripotent stem cells (Ng et al., 2016). Targeted

transcriptome analysis developed a hypothesis that was

non-obvious by looking at purely descriptive differences

between the end-stage cells and relied on a working knowl-

edge of embryonic hematopoiesis. The hypothesis was

tested by manipulation of WNT signals in early differentia-

tion stages to reinstate HOXA9 expression, successfully

resolving a missing step in the derivation of blood progen-

itors from pluripotent stem cells. Approaching ‘omics

data with a knowledge-based framework is key for such

hypothesis generation, and this is not easily outsourced

to a bioinformatics pipeline, but requires close collabora-

tion between data analysts and biological specialists.

Mathematical models can successfully theorize and test

some aspects of cell signaling, but these are generally con-

strained by scale to interactions between a small number of

genes. For example, Booleanmodels that transform expres-

sion information into binary values (on or off: 0 or 1) have

successfully recapitulated the oscillating relationship be-

tween pluripotency factors POU5F1 andNANOG (Chickar-

mane et al., 2006) (reviewed by Herberg and Roeder, 2015).

In small-scale studies, the correlation of gene expression

with one another or with key experimental variables can

build useful gene-phenotype relationships (Langfelder

and Horvath, 2008). By abstracting key relationships,

such as coexpression into Boolean values, a summary of

the network is possible––such as early literature-based

networks of key pluripotent transcription factors that can

predict stem cell responses to experimental perturbation,

including the conditions that support reprogramming to

naive pluripotent states (Dunn et al., 2014, 2019).
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Cell Mogrify offers an early proof-of-principle of the pos-

sibilities of predictive frameworks for stem cell research

(Rackham et al., 2016). The hypothesis tested by the Mog-

rify team was that the transcriptional regulators necessary

for cell reprogramming or transdifferentiation could be

predicted by comparing GRNs of starting and desired cell

populations. Mogrify exploited the increased resolution

of proximal promoters and enhancers afforded by capped

analysis of gene expression in the FANTOM5 promoter

atlas to footprint lineage transcription factors and build

highly specific GRNs (Forrest et al., 2014; Rackham et al.,

2016). An online tool draws on the FANTOM promoter

atlas to provide users with a set of transcription factors pre-

dicted to reprogram one cell type to another.

What are the lessons for curators of pluripotency or

lineage transcriptome atlases looking to transition from

descriptive classification of cell types to predictive models?

Straightforward and accessible methods that assist stem

cell researchers benchmark cells and assays must be a prior-

ity. Curation efforts to refine stem cell and developmental

pathways are also needed. This will enhance computational

predictions of the drivers of cell lineage, or cell function to

fuel the hypothesis generation by the stem cell community.

Single-Cell Profiling: The Collision between Predictive

and Descriptive Bioinformatics

Molecular profiles of individual cells offer an exciting

opportunity to find new cell types or stage differentiation

trajectories. We gain new insights into molecular heteroge-

neity by profiling thousands of cells in a tissue or a dish and

using this to infer phenotypic heterogeneity. The scale of

these new methods turns the analysis pipeline on its

head––instead of predefining biological classes to compare,

cell identity becomes a post hoc analysis challenge. The op-

portunity to derive molecular networks at the resolution of

a single cell has the potential to transform predictive

computational methodology. There are, however, a few

caveats to consider when interpreting single-cell transcrip-

tome data (scRNA-seq).

The first, is that the data are necessarily sparse. This is a

consequence of limitations of RNA capture in the initial

cDNA library construction steps, which create gaps in

the transcriptome that cannot be resolved with more

sequencing reads. It also reflects the labile nature of

mRNA, an intermediate that necessarily has a half-life in

a cell, depending on rates of transcription, and catabolic

steps associated with translation or degradation.

In combination, these factors mean that absence of a

transcript in any single-cell library does not mean that

the gene is not active in that cell. Rather, examination of

changes in the turnover of RNA present new insights into

transcriptional regulation in different cell types, or even

across transitioning cell states. For example, RNA Velocity
242 Stem Cell Reports j Vol. 13 j 237–246 j August 13, 2019
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(LaManno et al., 2018) exploits changes in RNA processing

to predict the next stage of cell differentiation and order

single cells into developmental trajectories. Similarly, the

assessment of parameters such as transcriptional regulators

offers new opportunities to build predictive models from

single-cell data. The relationships between groups of cells

can be constructed from the transcription factors that regu-

late coexpressed genes, as for example implemented in

SCENIC (van den Oord et al., 2017). Different components

of the same GRNmight be represented in discrete RNA-seq

datasets, such that relationships are revealed not by the

genes that are common, but by inferred GRNmembership.

Single-cell profiling does offer new perspectives on the

dynamic range of gene expression, by sheer force of

numbers capturing all possible transcriptional states for a

given gene. This can be inferred from the distribution of

gene expression across groups of cells, rather than absolute

or average expression values. This approach provides

valuable additional information to the more traditional

Boolean GRNs: populations of cells can be examined

for steady-state transcriptional dynamics, such as that

observed in pluripotent cells under expected cell-cycle

flux. In contrast, transcriptional heterogeneity might be

associated with exit from pluripotency. Narrow distribu-

tions versus broad distributions are here interpreted as

kinetic values in gene expression––representing ‘‘slow,’’

‘‘intermediate,’’ or ‘‘fast-switching’’ groups (Lin et al.,

2018b). Indeed, this expectation that two cells may share

a cell identity but be in different molecular states reflects

a new level of sophistication in the interpretation of

scRNA-seq data. Cell identity may be stable under different

environmental conditions, whereas cell state may be ex-

pected to fluctuate even under homeostatic conditions.

Indeed, assigning each cell an identity is the second chal-

lenge of scRNA-seq methodologies. Even if profiling rela-

tively well-defined cell populations, for example peripheral

blood mononuclear cells, the clustering and classifying of

cell classes can be unreliable. In the absence of a ‘‘ground

truth,’’ for example, when profiling in-vitro-derived cells

and tissues, even understanding how many discrete cell

types, or cell states, should be present is a computational

challenge. Different clustering methods derive different

cell groups from the same data (Freytag et al., 2018),

providing a note of caution for those relying on clustering

methods tomap expected cell types, or define new cell clas-

ses. Nevertheless, this also provides an opportunity for

improved cell classification methods that will benefit not

only single-cell data series, but also more traditional tran-

scriptome methods implemented in an atlas context.

A relevant example is the landmark study by Petropoulos

et al. (2016), which profiled 1,500+ individual cells

isolated fromhuman preimplantation embryos. The result-

ing data showed divergence of trophectoderm, primitive
2
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endoderm, and epiblast lineages at a broad level, but also

showed that it was difficult to obtain a finer scale of differ-

entiation. This highlights the basic problem of obtaining

samples at sufficient resolution from the embryonic stages

that might be equivalent to propagated stem cells, leading

to a lack of data that can serve as benchmarks for new stem

cell types. Reanalysis of the Petropoulos data using previ-

ous knowledge of trophectoderm genes has resulted in

reannotation of a large number of cells to extraembryonic

tissues (Stirparo et al., 2018). Attempts to combine addi-

tional embryonic datasets (Boroviak et al., 2018; Stirparo

et al., 2018) have also resulted in the reclassification of

individual cells; however, rare and transitioning cell types

remain difficult to unambiguously identify, and a surpris-

ingly high proportion of cells remain unclassified.

Integration of scRNA-seq libraries comes with a new set of

technical challenges to overcome. Substantivemethodolog-

ical and analytical improvements are needed to accurately

identify libraries that result from two cells not one, or

genuine differences in transcriptome depth between cell

types versus technical differences in library capture and

sequencedepth.Geneticdifferencesandexperimentalbatch

are unavoidably confounded. Harmonization methods

inevitably reward large groups of cells and penalise rare cell

types that are seen in one experiment but not the other.

Nevertheless, we remain optimistic that with increased

depth of data, biological signal will be the overriding emer-

gent property of combined datasets, providing new insights

into the bounds of cell identity, cell activation, homeostatic

flux, and cell state transitions.

Future Opportunities and Challenges

As the data generated by the stem cell community become

more sophisticated, and increasingly at a higher cell or mo-

lecular resolution, we expect that the approaches for bench-

marking and analyzing in-vitro-derived cell types will also

improve. We anticipate increased reliance on exemplar

atlases, improvedmethods for data integration and compar-

ison, and, in doing so, moving from anecdotal comparisons

to generalizable and reproducible observations. The era of

single-cell profiling has just begun, and it is already clear

that new methods for lineage tracing (Biddy et al., 2018;

Lin et al., 2018a), as well as integrated perturbation, chro-

matin profiling, and scRNA-seq (Dixit et al., 2016), will

addressmany questions about themolecular programof dif-

ferentiation, reprogramming, or other cell state transitions.

We predict that future methods that allow for explora-

tion of single-molecule modifications will drive new

relationships between the metabolites of a cell and the

metabolic modification of RNA or chromatin proteins.

While riboswitches––interactions between metabolites

and RNA that control stability, splicing, and translation

have been described in lower eukaryotes (Caron et al.,
STEMCR
2012; Donovan et al., 2018)––the metabolite-transcrip-

tome axis in higher eukaryotes has focused on modifica-

tion of proteins that regulate RNA stability and splicing

(Galván-Peña et al., 2019). Likewise, histone deacetylases

have dual roles in the modification of metabolic pathways,

such as glycolysis (reviewed in Shakespear et al., 2018).

More recently, observations of metabolites such as seroto-

nin acting on histone proteins indicate a role for metabolic

processes to impact on chromatin and, concomitantly, on

gene expression (Farrelly et al., 2019). New methods for

rapid profiling of the phosphoproteome offer opportu-

nities to measure temporally sensitive phosphorylation

on chromatin, and the impact of these on transcription fac-

tor stabilization and turnover, as well as transcription elon-

gation and termination (Engholm-Keller et al., 2019).

These preliminary studies foreshadow opportunities to

target the role of specific metabolites as short- and long-

term modifiers of transcriptional programs.

Improvements to long-read sequencing will lead to

improved molecular resolution in stem cell and develop-

mental pathways––moving from generic to specific iso-

forms, interactions, and cell partitions (reviewed in Arzal-

luz-Luque Á and Conesa, 2018). Computationally, data

integration will increasingly use variable-selection meth-

odologies to identify key molecular features, rather than

brute-force data merges (Singh et al., 2019); gene-centric

analysis methods will need to become isoform-centric;

data curation will remain a key component of the stem

cell atlas, and pathway curation will become an increas-

ingly important area of research. The type of data obtained

frommulti-omic profiling at the single-cell level will neces-

sarily drive new analytical approaches beyond classical

linear regression models, allowing for nonlinear relation-

ships between chromatin, transcriptome, proteome, and

metabolome; and the connectome (Boisset et al., 2018)––

the partnership between cells in a niche––will become an

important future focus.
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