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A novel technology to integrate 
imaging and clinical markers 
for non‑invasive diagnosis of lung 
cancer
Ahmed Shaffie1, Ahmed Soliman1, Xiao‑An Fu2, Michael Nantz3, Guruprasad Giridharan1, 
Victor van Berkel4, Hadil Abu Khalifeh5, Mohammed Ghazal6, Adel Elmaghraby7 & 
Ayman El‑baz1*

This study presents a non-invasive, automated, clinical diagnostic system for early diagnosis of lung 
cancer that integrates imaging data from a single computed tomography scan and breath bio-markers 
obtained from a single exhaled breath to quickly and accurately classify lung nodules. CT imaging 
and breath volatile organic compounds data were collected from 47 patients. Spherical Harmonics-
based shape features to quantify the shape complexity of the pulmonary nodules, 7th-Order Markov 
Gibbs Random Field based appearance model to describe the spatial non-homogeneities in the 
pulmonary nodule, and volumetric features (size) of pulmonary nodules were calculated from CT 
images. 27 VOCs in exhaled breath were captured by a micro-reactor approach and quantied using 
mass spectrometry. CT and breath markers were input into a deep-learning autoencoder classifier with 
a leave-one-subject-out cross validation for nodule classification. To mitigate the limitation of a small 
sample size and validate the methodology for individual markers, retrospective CT scans from 467 
patients with 727 pulmonary nodules, and breath samples from 504 patients were analyzed. The CAD 
system achieved 97.8% accuracy, 97.3% sensitivity, 100% specificity, and 99.1% area under curve in 
classifying pulmonary nodules.

In 2019, there were approximately 234, 030 new cases of lung cancer and 154, 050 related deaths1. Early diagnosis 
of lung cancer significantly improves the effectiveness of treatment and increases the five-year survival rate from 
17.7% to 55.2% 2–4. Further, it has been demonstrated that patients with smaller, early stage tumors have a much 
higher survival rate than patients with larger than T1 tumors3,5. Current lung cancer screening methodologies 
can reduce lung cancer mortality by up to 20% if implemented appropriately, but currently, only 32% of patients 
diagnosed with lung cancer are at an early stage (Stage I or II)1. Non-invasive diagnosis of lung cancer is currently 
accomplished through imaging techniques.

Imaging markers.  The advent of CT scanning has enabled large-scale screening for lung cancer. The 
National Lung Screening Trial (2011) detected a high proportion of early cancers ( 49% stage IA) using CT 
scans, allowing for intervention with curable intent, which resulted in a 20% reduction in lung cancer mortality6. 
However, while only 1.1% of the patients were found to have a malignancy in the screening arm, 27% of patients 
had a positive finding on their screening CT scan. These false positive cases were primarily benign pulmonary 
nodules that required further investigations including serial CT scanning, positron emission tomography (PET), 
bronchoscopy, percutaneous biopsy or surgical intervention for the correct diagnosis. Sequential CT examining 
to watch growth, or texture changing is commonly utilized for sub-centimeter nodules, which takes up to two 
years of follow-up for lung cancer detection. The prolonged follow-up period may reduce patient compliance, 
delay diagnosis and delay treatment, which increases treatment costs and decreases lung cancer survival rate. 
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For nodules that are larger than 8 mm, PET scans of chest may be utilized to predict the likelihood of its malig-
nancy. The main disadvantages of the PET scans is its high false positive specially for juxtapleural pulmonary 
nodules. These factors were the real reason behind expanding the clinical diagnosis suspicion of lung cancer and 
increasing the need for surgical examination through biopsies to set aside the malignancy. Bronchoscopy and 
percutaneous biopsies are still the most reliable way for diagnosis but there is a real need to eliminate the risk 
associated with this surgical procedure, especially when the malignancy likelihood is not high, as the surgical 
interaction for the benign nodule is considered a clinical failure because the benign nodules do not have any risk 
or cause any harm to the patient. The prohibitive costs associated with repeated radiographic scans and the mor-
bidity due to unnecessary invasive procedures for benign nodules necessitate the development of new diagnostic 
modality that can detect malignant pulmonary nodules (lung cancer). In an imaging-based CAD system, nodule 
detection and nodule classification are distinct but essential components. Nodule detection only detects and 
segments the nodule and provides no information on the malignancy of nodules7–9. Automatic nodule detection 
and segmentation techniques have been previously described and implemented by several groups, including our 
group7–11. Accurate nodule classification determines if the nodule is malignant or benign, which is challenging 
but essential for cancer diagnosis. The primary focus of this manuscript is the nodule classification using data 
from a single CT scan and an inexpensive breath test. Currently, various computational methods exist for clas-
sification of lung nodules detected in multiple, serial CT scans12–17. However, despite requiring multiple serial 
CT scans for indeterminant pulmonary nodules over two years, these methods have a low classification accuracy 
for early diagnoses of lung cancer because they: (1) do not account for large deformations in lung tissue due to 
breathing and beating of the native heart; and (2) do not use the 3D shape and appearance of detected nodules 
in conjunction with estimated nodule growth rate. Importantly, these methods are unsuitable for certain types 
of lung nodules (e.g. cavities and ground glass nodules), and are difficult for clinical practitioners to use as it 
requires significant graphic interaction.

Clinical bio‑markers.  Detection of lung cancer bio-markers from saliva, urine, blood, and exhaled breath 
of patients is a developing modality for non-invasive diagnosis. Li et al.18 demonstrated that genetic deletions of 
HYAL2, FHIT, and SFTP in saliva can be used as diagnostic markers for non-small cell lung cancer (NSCLC). 
LRG1 has been proposed as a candidate bio-marker for diagnosis of NSCLC in urine18. Oxidative stress pro-
duced by the variable redox environment within cancer is thought to increase the production of various volatile 
organic compounds (VOCs). Hanai et al.19 used the urinary VOCs to potentially identify lung cancer. Begum 
et al.20 identified six genes (APC, CDH1, MGMT, DCC, RASSF1A, and AIM1) in blood which could be used as 
a bio-marker for lung cancer diagnosis. Antibodies in patient blood has also been proposed as a bio-marker for 
lung cancer in an early stage21. Early diagnosis of lung cancer using quantitative analysis of carbonyl VOCs in 
exhaled breath has been recently reported22–26. Analysis of bio-markers is usually quantitative and inexpensive. 
However, despite three decades of research and thousands of reports of bio-markers, very few bio-markers have 
established clinical utility. The diagnostic usefulness of imaging modalities and bio-markers remain limited as 
the accuracy, sensitivity, and specificity of these bio-markers typically do not exceed 80% , which is lower than 
thresholds required for reliable diagnosis (> 95%) . Thus, the objective of this study is to develop and test a clini-
cal diagnostic tool that integrates patient breath bio-marker data with novel image-based CT markers to improve 
accuracy and speed of lung cancer diagnosis. To the best of our knowledge, our approach is the first to combine 
both breath test bio-markers and imaging markers for early diagnosis of lung cancer. The proposed CAD system 
is non-invasive, requiring only a single CT scan and a breath test to rapidly and accurately diagnose lung cancer 
(a few days compared to two years), with the potential to greatly reduce lung cancer diagnosis costs and increase 
the patient survival rate.

Materials and methods
Patients.  CT and breath analysis data were both collected on the same day for every patient from 47 patients 
in the period from 2016 to 2018 (Tables 1,2). Our collaborators at the university of Louisville hospital recruited 
patients with age ranges from 40 to 90 years and collected both a CT scan and a breath test (the diagnosis 
for most of these patients is biopsy confirmed). Retrospective analyses have an inherent risk of selection bias, 
despite our inclusion criteria not having any demographic filters that might introduce bias. The research proto-
col was approved by the Institutional Review Board (IRB) at the University of Louisville and all methods were 
performed in accordance with the relevant guidelines and regulations. After the patient informed consent was 
obtained, one liter of mixed tidal and alveolar breath sample was collected into a non-reactive Tedlar bag (Sigma 
Aldrich, St Louis, Mo) from a single exhalation from each participant23. The CT data was collected from the 
same 47 patients after obtaining the patient informed consent also with a slice thickness of 2.5 mm reconstructed 
every 1.5 mm, KV 140, MA 100, and F.O.V 36 cm. The ground truth for nodule detection and segmentation was 

Table 1.   Demographics and nodule size of the patients ( n = 47 patients). D = nodule diameter.

Subject Male Female Nodule size

Malignant
20 3 17 4mm ≤ D ≤ 20mm

17 9 8 20mm ≤ D ≤ 60mm

Benign
5 1 4 4mm ≤ D ≤ 20mm

5 5 0 20mm ≤ D ≤ 34mm
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obtained by the union of the masks of nodules that were manually segmented by three radiologists that have the 
same level of knowledge (greater than 10 years’ experience) and there was no questionable difference between 
their final decisions. Patient selection was blinded but included patients with both benign and malignant small 
lung nodules (4 to 20 mm) and large nodules ( > 20mm ). The patient diagnostic conclusions from the radiolo-
gists were blinded from the data analysis team for lung cancer diagnosis using both breath test and CT markers. 
The patients were either biopsied for diagnostic conclusion (these patients do not need follow-up) or followed 
for up to two years until a final lung cancer diagnosis could be determined based on current clinical approaches 
(serial CT scans every 6 months and/or biopsy/bronchoscopy). If there was no change in the CT scan over two 
years, the nodule was considered benign. The accuracy, sensitivity, and specificity of the proposed CAD system 
were determined based on the final lung cancer diagnosis using conventional clinical methods (ground truth).

The sample size of patients with both breath and imaging data was limited. To mitigate this limitation and 
validate the classification methodology, we used retrospective CT scans from 467 patients with 727 nodules 
( benign = 413 , malignant = 314 ) from the Lung Image Database Consortium (LIDC) database27. The nodules 
were detected, delineated, and diagnosed by four radiologists, where each of them assigned a malignancy score 
on scale of 1 to 5 (1 represents benign and 5 represents malignant). Although the LIDC database contains 1018 
patients, we used only 727 nodules which had a high degree of confidence and agreement between the four 
radiologists. Specifically, only nodules that received an average score of 3.5 or greater (deemed malignant) and 
nodules with an average score of 1.5 or lower (deemed benign), were included in this study. For breath analysis, 
samples from 504 patients were collected ( benign = 252 , malignant = 252 ) and analyzed. The malignant nodules 
were confirmed by pathological diagnosis and the benign ones were confirmed by tissue diagnosis or repeated 
CT scans with no discernible change or decrease in size for ≥ 2 years.

Computer aided diagnostic system for nodule classification.  The CAD system integrates data from 
a single CT scan for computed tomography markers and a single breath test for cancer bio-markers for classifi-
cation of lung nodules. The methodology of obtaining imaging markers, breath bio-markers, and integration of 
breath and imaging markers are presented next (see Fig. 1 for the framework).

Imaging markers from CT data.  Size, three-dimensional (3D) shape, and 3D appearance analyses were 
performed on the CT images from the clinical data ( n = 47).

Size analysis.  Larger sized nodules tend to be malignant28. Classification based on nodule size, while straight-
forward, does not lend itself to high levels of classification accuracy for smaller sized nodules. A basic K-NN 
classifier was fed with the nodules’ size data and was used to give an initial malignancy probability for each 
pulmonary nodule.

Shape analysis.  Malignant nodules grow faster than benign nodules and thus have a more complex shape and 
surface. Surface shape complexity was quantified using spherical harmonic (SH) decomposition29. Malignant 
nodules with complex surfaces require more SHs than the smoother benign nodules, enabling classification 
between malignant and benign nodules. Briefly, a spectral SH analysis was used to model the pulmonary nod-
ules, by considering its surface as a linear combination of particular basis functions. After the triangulated 3D 
mesh is built, it is mapped to the unit sphere for the SH decomposition. A new mapping approach, the Attrac-
tion-Repulsion Algorithm, was developed to ensure that: (i) the distance from the center of the nodule to any 
node as unity, and (ii) each node is equidistant to all its neighbors.

Let I refer to the number of mesh nodes, the cycle iterator, and Cα,i the coordinates of node i at cycle number 
α . Let J represent the number of neighbors for the mesh node and dα,ij denote the Euclidean distance between i 
and j at cycle number α , where j = 1, ..., J . Let dα,ij = Cα,j − Cα,i denote the displacement between the nodes j 
and i at cycle number α . Let CA,1 , CA,2 , CR be the constants controlling the displacement for each surface node. The 
attraction step adjusts the location for each node Ci to be centered with respect to its neighbors and is given by:

Table 2.   Clinical characteristics of the patients.

All patients ( N = 47) Male ( N = 18) Female ( N = 29)

Age (years) 48–93 59–93 48–88

Malignant 37 12 25

White race 30 11 19

Height (cm) 152–188 170–188 152–180

Weight (Kg) 39–168 61–156 39–168

Active smoker 21 10 11

Previous smoker 20 7 13

Lifelong non-smoker 6 1 5

Personal history of lung cancer 7 3 4

Personal history of any cancer 19 8 11
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The nearer nodes are pushed further from each other, while CA,2 keeps the nodes from collapsing. Thus, the entire 
mesh is inated in the repulsion step by pushing every node outward to preserve the equidistant condition after 
their last back-projection onto the unit sphere along the rays from the sphere’s centroid. In the repulsion step, 
every node is pushed outward to maintain the equidistant condition after their last back-projection onto the unit 
sphere along the rays from the sphere’s centroid. To avoid overlap or crossing over of nodes during shifting, the 
location for each Ci is updated after the back-projection as:

where CR is the repulsion constant. After the mapping process, the nodule surface was approximated by a linear 
combination of SHs. Lower-order harmonics will be adequate to approximate a more uniform shape (benign 
nodules), compared to higher-order harmonics for more complex shapes (malignant nodules), Fig. 2. The SHs 
coecients from up to 70 harmonics were subsequently used to reconstruct the original pulmonary nodule.

Appearance analysis.  Malignant nodules, due to their high growth rate, have a non-uniform density (spatial 
non-homogeneity) compared to benign nodules, which is reflected as varying Hounsfield units (HU) in the CT 
scan. Hounsfield units are a unit of measure that represents the different density levels of tissues as visualized 
in the CT images. The Appearance analysis is modeled for the 3D nodule volumes in a way that the differences 
between the HU of a voxel and its 7 nearest neighbors is represented as Gibb’s energy using a 7th order Markov 
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Figure 1.   Lung nodule classification framework.The framework was generated by Microsoft PowerPoint 2019 
(https​://www.micro​soft.com/zh-cn/micro​soft-365/power​point​).

https://www.microsoft.com/zh-cn/microsoft-365/powerpoint
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Gibbs Random Field (MGRF). This model tackles the inherited challenges within the CT images that stem from 
partial volume effect, different acquisition parameters, and scanner types while preserving ordinal signal rela-
tions to keep the visual appearance. Besides, the 7th-order MGRF model uses the partial ordinal interaction 
instead of the complete ordinal ones to reduce the cardinality and makes the model more computationally fea-
sible. Grayscale patterns of the nodules are considered as samples of a trainable translation- and contrast-oset-
invariant 7th-order MGRF.

This model relates the relation between the Gibbs energy, E7(g) , voxel-wise HU, g(r), and an image texture, 
g = (g(r) : r ∈ R) in a general-case exponential family distribution as follows:

Where the Gibbs energy E7(g) =
∑

ca:r∈Ca
Va(g(r

′) : r′ ∈ ca:r), and the function Z normalizes the distribution 
over the parent population Z =

∑

g∈G exp (−E(g)) , and the interaction structure is a system, C , of A,A ≥ 1 , 
clique families, Ca . The origin voxel, r ∈ R and a K-variant Gibbs potential function Va(g(r

′) : r′ ∈ ca:r) depends 
on the ordinal relationships between the origin voxel and the 7 neighbours, r′ ∈ ca:r; r

′
�= r.

The signal interactions are modeled between each voxel and the 7 neighbors at a distance, ρ , from that voxel. 
The Gibbs potentials of the 7-voxel subsets, are learned from the training nodules, g◦ , to be used in computing the 
energy E7(g) . The learning process uses the maximum likelihood estimates (MLE) that generalize the analytical 
approximations of the 2nd-order MGRF potentials in30:

Here, β is a coded contrast-offset-invariant relation between the seven signals; B7 denotes the set of codes for the 
possible ordinal 7-signal relations; F7:ρ

(

go
)

 is an empirical marginal probability of the code β ; β ∈ B7 , over all 
the 7-voxel congurations with the center-to-voxel distance ρ in go , and F7:ρ:core(β) is the like probability for the 
core distribution. The computed energy is used as a descriptive feature to discriminate between the malignant 
and benign nodules (Fig. 3).

The training nodules, go , are used to learn both the potentials and the distance ρ between the central voxel 
and its neighbors. The output features from the MGRF appearance model is a vector of size 1000 describing the 
histogram bins of the Gibbs energy for each nodule.

Breath bio‑markers.  Quantification of carbonyl VOCs: The exhaled breath collected in 1-L Tedlar bags 
were drawn through a proprietary microreactor chip by applying a vacuum (Fig. 4). The surfaces of micropillars 
of the microreactor chip are coated by 2-(aminooxy)-N, N, N-trimethylethanammonium (ATM) iodide22. ATM 
chemoselectively traps carbonyl compounds in exhaled breath by means of oximation reactions. After the breath 
sample was completely evacuated from the Tedlar bag, ATM adducts in the microreactor chip were eluted with 
100 mL of methanol from a slightly pressurized small vial. The eluted solution was analyzed directly by Fourier 
transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS)22. FT-ICR-MS is a hybrid linear ion trap 
MS (Finnigan LTQ FT, Thermo Electron, Bremen, Germany) equipped with a TriVersaNanoMate ion source 
(AdvionBioSciences, Ithaca, NY) with an electrospray chip (nozzle inner diameter 5.5 mm) that was used to 
analyze all breath samples using the eluted solution. A known amount of deuterated acetone completely reacted 
with ATM (ATM-acetone-d6) in methanol was added to the eluted solution as internal reference for quantifica-
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Figure 2.   Shape approximation for malignant and benign nodules.The figure was created in MATLAB R2018B 
(https​://www.mathw​orks.com/produ​cts/matla​b.html).

https://www.mathworks.com/products/matlab.html
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Figure 3.   A sample of benign (rst) and malignant (second-row) nodules (a), their 3D visualization of HU 
values (b), and their Gibbs energy which shows high energy for (brighter) for benign and less energy for 
malignant (darker) (c). The figure was created in MATLAB R2018B (https​://www.mathw​orks.com/produ​cts/
matla​b.html).

Figure 4.   (a) Schematic setup for capture of carbonyl VOCs in exhaled breath, (b) photo of the breath 
collection system, (c) A microfabricated microchip with fused silica tubes attached to inlet and outlet ports; 
(d) optical picture of the microchip created by DRIE; (e) SEM micrograph of the micropillar array within the 
preconcentrator.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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tion of ATM adducts. The concentrations of all 27 carbonyl VOCs detected in exhaled breath were determined 
by comparison of the relative abundance with that of added ATMacetone-d6.

Nodule classification.  In order to diagnose the lung nodules, a deep neural network with stacked autoen-
coder (AE) was used. Three auto-encoder-based classifiers, one classier each for shape, appearance, and exhaled 
breath compounds, were utilized to give an initial estimation for probabilities of the classification, which are 
axed together with the probabilities of the k-NN classier for size. The axed probabilities were then input into 
the second stage auto-encoder to give the final classification of nodules (see Fig. 1 for more details). AE was 
utilized to decrease the dimensionality of the features with three-layered neural networks to identify the most 
distinguishable features by pre-training algorithm. All the hidden layers reduced the hidden shape descriptors 
from 70 (corresponding to 70 SHs) to 10, hidden appearance descriptors from 1000 (corresponding to 1000 
histogram bins for Gibb’s energy) to 100, and 27 hidden breath descriptors (corresponding to 27 VOCs) to 10. 
After the AE layers, a softmax layer was used to boost the diagnosis accuracy by limiting the overall loss of the 
labeled data during the training.

Briefly, for each AE, let W = {We
j ;W

d
i : j = 1, ..., s; i = 1, ..., n} refer to a set of weights column vectors for 

encoding, E, and decoding, D, layers, and let T denote vector transposition. The AE alters the n-dimensional 
column vector u = [u1, ..., un]

T into an s-dimensional column vector h = [h1, ..., hs]
T of level activators such that 

s < n by nonlinear uniform transformation of s weighted linear combinations of input as:
hj = σ((We

j )
Tu) , where σ(.) is a sigmoid function with values from [0,1]

The softmax layer calculates the classication probability through the following equation:

where C = 1, 2 ; denote the number of the class; Wo:c : is the class c weighting vector; h3 : are the output features 
from the last hidden layer, (third one), of the AE. In the last stage, the output probabilities of the shape, appear-
ance and breath analysis networks, were combined together with the probabilities of the k-NN classier, and input 
into a softmax layer to estimate the fused classication decision. A leave-one-subject-out (LOSO) cross validation 
to classify the nodules for the 47 patients with both breath and CT data.

The larger patient cohort (467 patients) with 727 samples (413 benign and 314 malignant) was used to test 
methodology and classification accuracy of each of the imaging markers. Similarly, the breath analysis data from 
504 patients were used to test the methodology and classification accuracy of using breath markers. Due to the 
large patient cohort, 75% of these CT and breath data was used for training the AE network and 25% data was 
used for validation. Classification accuracy using C4.5 algorithm, random forests, adaboost, SVM, and staked 
autoencoder with softmax were compared.

Experimental results
The classification accuracy, sensitivity, and specificity for each of the different features combinations for the 
47 patients is shown in Table 2. Nodule size had the least accuracy and sensitivity while shape and appearance 
features had the highest accuracy and sensitivity. For the patients for whom both breath and CT data were 
collected, the integration of all CT and breath markers using the CAD system resulted in accuracy, sensitivity, 
specificity, and AUC above 97%.

In the larger patient cohort ( breath = 504 patients, CT imaging = 467 patients), the accuracy, sensitivity, 
and specificity of size ( 79.84% , 75.63% , and 83.59% ), shape ( 89.91% , 96.77% , and 84.80% ), appearance ( 89.91% , 
93.55% , and 87.20% ), and breath ( 80.95% , 79.69% , and 82.26% ) markers were similar to the values obtained with 
the CAD system for individual markers with the smaller patient cohort (Table 3). The stacked AE with softmax 
had the highest classification accuracy, sensitivity, and specificity amongst all tested classifiers. Table 4 shows 
our performance metrics for each part of the framework and the fused framework after the combination process 
using the LIDC dataset for validation. It also compares our framework performance with other frameworks31–34.

Discussion
The results of this work demonstrates that combining both breath bio-marker and imaging data will significantly 
improve the accuracy, sensitivity, and specificity for clinical diagnosis of lung cancer. Currently, diagnosis of 
indeterminate pulmonary nodules requires documenting nodule growth for up to two years using multiple CT 
scans without percutaneous biopsy, which is cost prohibitive, increases patient radiation exposure, and delays 
final diagnosis. Definitive diagnosis of cancer is accomplished by invasive methods including needle biopsy or 
bronchoscopy. The primary innovation of the CAD system is that it integrates patient breath bio-marker data with 
image-based CT markers from a single CT scan and a single breath test to provide an accurate, robust, and more 
rapid diagnosis of small lung nodules. Additional innovations of the CAD system include identification and use of 
new image based markers (spherical harmonics and Gibbs energy). The shape and appearance analyses accounts 
for the prior growth rate of the nodule from a single CT scan and minimizes or obviates the need for serial CT 
scan to document growth or the use of invasive biopsies. In addition, the proposed approach will enable accu-
rate tracking of nodule recession or progression, which may significantly shorten the two-year window to track 
the impact of therapeutic regimens on the growth of malignant nodules, and may also lead to a more definitive 
determination of the best cancer treatment for each patient. Current “gold-standard” methods cannot provide this 
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quality of care in a cost-effective manner. Currently, patients are first assessed using X-rays, followed by CT scans 
due to insurance coverage limits. X-Rays cannot be used to diagnose early stage lung cancer. While CT scanning 
dramatically improved lung cancer detection and survival, it still has a 94% false positive rate and requires repeat 
scans to document nodule growth in order to diagnose lung cancer. Currently, only  35% of lung cancer patients 
are detected at an early stage (Stage IA). In literature, the accuracy, sensitivity and specificity of diagnosis using 
various features from CT scans are  85–90%12,14, which is not adequate for diagnosis. Thus, the current clinical 
standard is to document growth rate of nodules by serial CT scans or use biopsy. Our proposed CAD system and 
framework significantly improves on the accuracy, sensitivity, and specificity ( > 97% ) by integrating both breath 
and CT markers, which will enhance the early detection by shortening the time for diagnosis, and consequently 
the survival rate. Importantly, our breath analysis technology is cost effective ( 20$ per test) compared to X-Rays. 
Importantly, breath analysis alone offers  80% nodule classification accuracy. Moreover, among the other clinical 
bio-markers the breath test is chose to be integrated with the imaging markers as the organic compounds are 
volatile in nature, which make the concentration of these compounds higher in the breath compared to other 
markers (e.g., saliva, urine, and/or blood). In addition, the breath test gives an immediate result as the exhaled 
breath is collected directly to the bag where we used the mass spectrometry to analyze it. Most importantly, the 
breath analysis gives a local diagnosis for the lung compared to other bio-markers (e.g., the urine bio-markers 
will work better for detecting the tumors within the kidney). The CAD system framework is robust to loss of 
an individual marker, and is capable of integrating additional bio-marker data (eg. blood, saliva, urine etc.) to 
further improve accuracy. The CAD system currently considers 1098 features (1000 appearance features, 70 shape 
features, size, and 27 VOCs) for nodule classification. A three layered AE network was used to reduce it to 121 
features (100 appearance features, 10 shape features, size, and 10 VOCs) that provided the highest discrimina-
tion to minimize computational cost and enable rapid classification. The sample size of patients with both breath 
and CT imaging data was limited ( n = 47 ) and thus a LOSO validation method was used. However, individual 
markers yielded a similar classification accuracy, sensitivity, and specificity with the larger retrospective patient 
cohort with 75% training data set and 25% test data set, validating the classification methodology and framework. 

Table 3.   Diagnosis accuracy in terms of accuracy, sensitivity, and specificity for various features groups 
(sample size = 47 patients).

Performance measures

Accuracy (%) Sensitivity (%) Specificity (%)

Size 61.19 29.73 100.00

Shape 89.55 89.19 90.00

Appearance 86.57 91.86 80.00

Breath analysis 75.99 71.43 80.56

Shape + size 91.04 89.19 93.33

Appearance + size 89.55 91.89 86.67

Shape + appearance 91.04 94.59 86.67

Shape + breath 89.55 89.19 90.00

Appearance + breath 88.06 91.89 83.33

Size + breath 79.10 72.97 86.67

Shape + size + breath 92.54 91.89 93.33

Shape + appearance + breath 92.65 94.74 90.00

Size + appearance + breath 92.54 94.59 90.00

Imaging features only 94.03 91.89 96.67

Combined features 97.87 97.30 100.00

Table 4.   Performance comparison between the different imaging modules and their combination using LIDC 
dataset and different systems used the same dataset.

Performance measures

Accuracy (%) Sensitivity (%) Specificity (%)

Size 75.63 83.59 79.84

Shape 96.77 84.80 89.91

Appearance 93.55 87.20 89.91

Combined feature 93.55 91.20 92.20

Orozco et al.31 90.90 73.91 82.00

Wei et al.32 89.30 86.00 87.65

Costa et al.33 93.42 91.21 91.81

Xie et al.34 84.19 92.02 89.53
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The imaging markers of the CAD system were validated using data from 727 nodules from the LIDC database. 
While imaging data is available from other databases (eg. LUNA35, LUNGX36), the LIDC database was chosen 
specifically because it had a large patient cohort, and had a nodule malignancy score assigned by a team of radi-
ologists to validate nodule classification. The LUNA database did not have a malignancy score and cannot be used 
for validating nodule diagnosis and the LUNGX database only consisted of 70 patients. Currently, there are no 
databases with both breath and imaging data other than our small patient cohort ( n = 47 ). The limitation of the 
CAD system is that although it can accurately classify nodules as malignant or benign, it could not differentiate 
between the different categories in each type (e.g. Lymphoma, Carcinoid, Sarcoma, Metastatic tumors, etc.). A 
larger clinical study will be needed to validate the CAD system for Food and Drug Administration approval. 
Despite these limitations, the CAD system and framework demonstrated the feasibility of a CAD system and 
framework for highly accurate lung cancer diagnosis using a single, inexpensive breath test and a single CT scan.

Limitations.  As with the majority of CAD systems, the design of the this system is subject to limitations 
that could be addressed in future research. First, the patients are enrolled to the study as they came to the 
clinic, which make the study had an inherent risk of selection bias, despite our inclusion criteria not having any 
demographic filters that might introduce bias. Second, the sample size of the patients that had both CT scans 
and breath test is small, which needs additional study that recruits more individuals to ensure that there are no 
significant covariables that may be influencing the data.

Conclusion
This work presented a novel CAD system and framework for the diagnosis of pulmonary nodules by utilizing 
both imaging markers and breath bio-markers. The CAD system integrates patient breath bio-marker data with 
image-based CT markers obtained from a single CT scan and a single breath test to provide a highly accurate, 
rapid, cost-effective, and non-invasive diagnosis of small lung nodules.

Data availability
Materials, data, and associated protocols will be available to readers after the manuscript being accepted.
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