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A habenula-insular circuit encodes the willingness
to act
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The decision that it is worth doing something rather than nothing is a core yet understudied
feature of voluntary behaviour. Here we study “willingness to act”, the probability of making a
response given the context. Human volunteers encountered opportunities to make effortful
actions in order to receive rewards, while watching a movie inside a 7 T MRI scanner. Reward
and other context features determined willingness-to-act. Activity in the habenula tracked
trial-by-trial variation in participants’ willingness-to-act. The anterior insula encoded indivi-
dual environment features that determined this willingness. We identify a multi-layered
network in which contextual information is encoded in the anterior insula, converges on the
habenula, and is then transmitted to the supplementary motor area, where the decision is
made to either act or refrain from acting via the nigrostriatal pathway.
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hen performing a voluntary action, one has to decide

not only which action to choose but whether or not it

is worth initiating an action in the first place, given the
potential benefits of acting in a particular environment. Consider
someone weighing up whether to go to the trouble of filling out
an application for a job or continue watching Netflix in the
expectation that better job opportunities will eventually come
along. Motivation to act requires considering both the potential
reward(s) in the context of the distribution of other opportunities
in the environment and the cost of action. The person may decide
to act and make the application if the job is a particularly good
one, but they may do so also if other job opportunities are cur-
rently few and far between or if the application form is brief and
simple and requires little effort to complete. If the costs, benefits,
or environment are otherwise, however, then no action may be
initiated, and the would-be job seeker may remain inert and
inactive.

Whilst the neural mechanisms underlying decisions about
what to do and which action to select have been extensively
studied! -4, the processes underlying decisions about if and when
to start an action have attracted less attention®®. Given the
important role these kinds of decisions play in both human and
animal survival, understanding the underlying brain mechanisms
is essential for building a comprehensive picture of decision
making. In doing so, we can also seek to understand maladaptive
behaviours that potentially arise from dysfunction in this circuitry
such as the failure to adapt one’s willingness-to-act when an
environment deteriorates’-8. Such failures characterise apathy and
impulsivity, symptoms prevalent in a number of psychiatric and
neurological disorders®10.

Previous studies have emphasised the role of frontal cortical
brain regions in motivated behaviour—including ventromedial
prefrontal cortex (vimPFC)!1, anterior insula (AI), dorsal anterior
cingulate cortex (dACC), and subgenual anterior cingulate cortex
(sgACC)!2. Other studies have focussed on specific subcortical
structures that enhance motivational drive. Specifically, the
nucleus accumbens (NAc), laterodorsal tegmentum (LDT)!3,
ventral pallidum (VP)!4, ventral tegmental area (VTA), habenula
(HB), and pedunculopontine nucleus (PPN)!°>. However, it
remains unclear how these cortico-subcortical structures com-
municate across a distributed circuit to decide whether or not to
initiate a voluntary action, given the costs and benefits of a cur-
rent opportunity and the environment in which it occurs. Here,
we used ultra-high field imaging (7 T fMRI) to investigate how
one’s environmental context influences willingness to initiate a
volitional action and how it exerts this influence via brain circuits.

We have recently shown in humans that in addition to activity
in cortical regions such as the anterior cingulate cortex, the ear-
liest neural activity predicting the occurrence of a self-initiated
action appeared in a group of subcortical structures including the
dorsal and ventral striatum, substantia nigra (SN), basal forebrain
(BF), HB, and PPN, BF, in particular, mediated the influence of
environmental context on the emergence of a decision about
when to act!®17. In those studies, however, subjects had to make a
response at every trial and therefore we could not investigate how,
before deciding when to make an action, one decides whether or
not to initiate an action in the first place. Here, by using an
experimental design in which the key decision is whether to
execute an action or not (rather than when an action should be
executed), we set out to characterise the multi-layered circuit
recruited in a related decision: whether to execute or withhold an
action, given the potential benefit of acting in a particular
environment.

To answer this question, we designed a task in which partici-
pants were free simply to do nothing while inside a 7 T scanner;
they could simply lie still and watch a movie. However, they were

also given a series of opportunities for action and they could
decide whether they were willing to take these actions. If they did
then they engaged in an effortful task for a potential reward
(Fig. 1). Here, we show that cost and benefits of reward oppor-
tunities in a given environment influence participants’ willingness
to act and undertake effort in return for potential reward. Ultra-
high field functional imaging shows that BOLD activity in HB is
correlated with participants’ willingness-to-act. In parallel to HB,
anterior insula also tracks participants’ willingness-to-act, but in
addition encodes individual parameters of the environment that
determine this willingness. Finally, using psychophysiological
interaction analysis (PPI) and structural equation modelling
(SEM) we identify a cortico-subcortico-cortical circuit starting in
the anterior insula, converging in the habenula and ending in the
supplementary motor area (SMA) via the nigrostriatal pathway.

Results

Contextual factors influence participants’ willingness to act.
Participants (N = 25) watched a movie whilst inside a 7 T scanner
(one was later excluded from the behavioural and brain analysis
and two from brain analysis; see “Methods”). On each trial (as the
movie played), participants were presented with opportunities
(offers) to act in an effortful task in return for a potential reward.
Offers appeared on the screen, superimposed on the movie
(Fig. 1a). Participants could choose to act by pressing a button on
a response pad in order to receive the benefits of the opportunity
and incur its costs. If they made no response, then they simply
continued to do nothing. Offer stimuli consisted in centrally
presented vertical rectangles which contained small circular dots.
The colour and the number of dots represented the magnitude
and the probability of the potential reward, respectively (Fig. 1b).
The reward magnitude and reward probability varied from trial-
to-trial in a pseudorandomised order. In addition, the average
value of the environment changed every block of 36 trials. Rich
blocks contained a greater frequency of high reward magnitude
and high probability offers, and a lower frequency of low reward
and low probability offers compared to poor blocks (Fig. 1b).
Participants were explicitly told at the start of each block whether
they were entering a rich or a poor block (but were not told the
distribution of reward magnitudes and probabilities associated
with the offers in the respective blocks). In summary, we experi-
mentally manipulated three factors in order to alter participants’
environments and influence their decision: reward magnitude,
reward probability and block type. Our focus was on establishing
the factors that lead people to act and so we carefully quantified
those factors that would lead them to act such as the potential
reward benefits, probabilities and the costs. Importantly, at the
same time there was no relationship between movie scenes and the
task parameters and therefore interest in movie scenes could not
have any systematic influence on participants’ decisions (also see
Supplementary Fig. S1 for formal assessment of the relationship
between interest in movie scenes and participants’ decisions).

If participants chose to accept an offer, by making a response,
the movie was interrupted, and they performed a short effortful
task which involved exerting a bout of physical effort—
thresholded to their own grip strength—by squeezing a
dynamometer. After the effortful task, the movie resumed, and
the reward outcome was displayed on the screen. Participants
received a monetary reward with the probability and at the
magnitude determined by the accepted offer, if successful at
performing the effort-task. They received no reward if they
accepted an offer but were unsuccessful at completing the effort-
task, if they were unlucky in the lottery, or if they decided not to
make a response and continued watching the movie uninter-
rupted (see “Methods”).
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Fig. 1 Experimental task and the main behavioural results. a \While watching a movie, participants received a series of offers in the form of visual stimuli
that were superimposed upon the movie. Each offer appeared for 2's and could be accepted by button-pad response while it remained on-screen. Offer
stimuli consisted in centrally presented vertical rectangles which contained small circular dots. The colour of the offer represented reward-magnitude and
the number of dots indicated the reward-probability. If the participant made a response to accept an offer (action), the movie was interrupted, and the
participant needed to complete a short effort-task for a duration of 3—4 s. If the force was successfully exerted, the participant became eligible for a
monetary reward of the probability and magnitude indicated by the accepted offer. The movie resumed once the effort-task was completed, and feedback
about the reward outcome was superimposed on-screen for 2 s. If the offer was not accepted (no-action), participants continued to watch the movie
uninterrupted for a duration equivalent to the effort-task but would receive no monetary reward. The next offer appeared after an inter-trial-interval (ITI) of
4—5s. b We asked whether contextual factors in participants’ environments influenced their decisions to act (i.e., to accept an offer by making a response).
These factors included: (1) Offer reward magnitude with three levels: low (5p), medium (10p) or high (20p), indicated by red, green or blue (magnitude-to-
colour contingencies were counterbalanced across participants). (2) Reward probability, which increased linearly with the number of dots comprising the
stimulus. (3) Average value of the environment which was manipulated by changing the ratio of high magnitude and high probability offers within blocks. ¢
The distribution of response rate (act/no-act decisions). The red dashed line is the average response rate across participants. d—f Participants (n=24)
were more likely to act when offered a large magnitude reward (d), a high probability reward (e), and when they were in a poor compared to a rich block
(F). In panel (d) each ring represents one participant, and the columns illustrate the group mean. In panel (e) the black points and the error bars are mean
response rate and standard error of the mean at each discrete level of reward-probability, respectively, across participants. Panel (f) shows the difference
in acceptance rate of similar offers (medium magnitude and medium probability) between poor and rich blocks, for each participant. Source data are
provided as a Source Data file.

We first investigated whether the various contextual factors in  when offered higher magnitude rewards (f=2.07+0.26,

participants’ environments including reward magnitude, reward
probability, and block type influenced their decision to act (ie.,
accept an offer). On average, participants chose to act for
45.81£2.79% of the offers presented (Fig. 1c). A generalised
linear mixed-effect model (see “Methods”; also see Supplemen-
tary Table S1) showed that participants were more likely to act
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X2(1) =48.64, P<0.001; Fig. 1d), higher probability rewards
(B=3.53£0.26, X2(1) =167.46, P<0.001; Fig. le), and when
they were in a poor compared to a rich block (= —0.85+0.18,
X2(1) =16.33, P<0.001; Fig. 1f). In addition, we asked whether
the expected value (reward magnitude x probability) from the
previous trial and response history (act/no-act decisions on the
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previous trial) influenced participants’ responses on the current
trial. Participants were more likely to refrain from action the
greater the expected value of the offer on the previous trial
(B=—0.16 +0.08, X2(1) = 3.40, P =0.065). Although not statis-
tically significant, the direction of this effect is consistent with the
effect we observe for block type and suggests that participants
become more selective following evidence (via trial-to-trial
changes in the quality of offers presented) that their environment
is becoming richer and, by contrast, become less picky when the
environment gets poorer. We found no significant effect of
response history (= —0.06+0.17, P=0.70), suggesting that
fatigue from performing the effortful task on the previous trial did
not influence participants’ response on the current trial.

Overall, these findings suggest that participants took a variety
of contextual factors into account when deciding whether it was
worth acting in order to receive the potential reward given the
level of effort that was to be exerted and given the rate at which
reward opportunities occurred in a given environment. Next, we
used the combined effect of these contextual factors—separately
estimated for each individual participant—to infer participants’
“willingness to act” on each trial. Specifically, willingness-to-act
was defined as the probability of acting, predicted by the
combination of opportunity and environment in a given context
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(see “Methods” for full model specification). This trial-by-trial
variable was then used as a parametric regressor in the model-
based fMRI analyses.

Habenula tracks participants’ willingness to act. We previously
showed that activity in a subcortical network consisting of dorsal
striatum (DS; including caudate nucleus and putamen), NAc,
midbrain dopaminergic (MidD) system (including SN and VTA),
PPN, HB, and BF (including septal nuclei and diagonal band of
Broca), predicted the timing of voluntary actions (when to act)!©.
Here we selected the same set of structures as a priori regions of
interest (ROIs) to ask whether the same network is involved in
computing a key antecedent decision: whether to initiate an
action, in the first place.

First, we investigated whether any of these structures encoded
participants’ observed act/no-act decisions (i.e., whether or not
they acted to accept an offer; GLM2.1; Fig. 2). BOLD signals in
DS (one-sample ¢ test; #(21)=9.78, P<0.001, d=2.08; all
subsequent tests are corrected for multiple comparisons), MidD
(t21) = —3.52, P=0.008, d=0.75), PPN (#21)= —3.09,
P=0.01, d=0.66), HB (#(21) =3.16, P=0.01, d=0.67), and
BF (#(21) = —3.91, P=0.004, d=0.83) were correlated with

NAc 0.2

V257768
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-0.6-
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Fig. 2 A subset of subcortical structures encodes the act/no-act decision. a ROI time-course analysis of the a priori selected subcortical structures,
showing the relationship between BOLD and act/no-act decision. The panel next to each time-course shows the corresponding anatomical ROl overlaid on
averaged structural image of all subjects in standard space. The y axis is based on the FSL MNI152 standard brain in which y =0 is the dorsal posterior
corner of the anterior commissure (ac). The lines and shadings show the mean and standard error of the # weights across the participants, respectively.
Time zero is the trial onset (appearance of the offer). Note that the hemodynamic lag means that a BOLD signal change reflects neural activity
approximately 6 s earlier. DS dorsal striatum, NAc nucleus accumbens, MidD midbrain dopaminergic system, PPN pedunculopontine nucleus, HB habenula,
BF basal forebrain. b There was a significant relationship between BOLD activity and the act/no-act decision in DS (P=1.7E—08), MidD (P = 0.008), PPN
(P=0.017), HB (P =0.01), and BF (P =0.004). Each ring represents one participant (n = 22). The grey columns illustrate the group mean. Significance
testing on time-course data was performed by using a leave-one-out procedure on the group peak signal. Two-sided, one-sample t tests with Holm
—Bonferroni correction. a.u. arbitrary units. *P<0.05, **P <0.01, ***P < 0.001, n.s. not significant. See also Supplementary Fig. S2 for a related analysis.
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participants’ observed decisions (action vs. inaction). This was
not the case in a more ventral part of the striatum, NAc
(t(21) = —1.22, P =0.24) (Fig. 2). The same set of structures were
associated with the initiation of self-paced actions in a previous
study!6. Here, however, we found a negative relationship between
act/no-act decisions and BOLD activity in MidD (see Fig. 2a).
This might at first seem counterintuitive given that one would
expect MidD to positively encode the act/no-act decisions. The
key point to note, however, is that we are considering activity that
is time-locked to the stimulus onset rather than movement onset.
When, by contrast, we focus on activity time-locked to movement
onset and carefully examine activity in the two subsections of
MidD—the substantia nigra pars compacta (SNc) and the ventral
tegmental area (VT A)—we see clear evidence of activity related to
movement onset in SNc as might have been expected given that
many researchers!$, including ourselves!®, have previously
identified SNc with action initiation (Supplementary Fig. S2).

Next, we asked whether the same set of structures tracked trial-
by-trial variation in participants’ willingness-to-act—that is, the
probability of acting for a given opportunity in a given
environment—while controlling for participants’ actual observed
act/no-act decisions (GLM2.1). We found that trial-by-trial
variation in participants’ willingness-to-act explained BOLD
activity in HB (#(21) =4.26, P =0.002, d=0.90; corrected for
multiple comparisons) (Fig. 3; also see Supplementary Fig. S3 for
alternative HB mask). This relationship was not found in any
other ROI (all P>0.12; also see Supplementary Table S2 for
Bayesian analysis). This suggests that independent of the final
decision whether to act or not, HB tracks the trial-by-trial
variation in participants’ willingness-to-act given the combination
of opportunity and environment in a given context.

Here we showed a positive relationship between HB activity
and the willingness-to-act, as signalled by the combination of
contextual factors. Previous research, however, has shown a link
between HB and control of impulsive behaviour!®. To further
investigate these two (seemingly contradictory) findings, we
separately assessed the relationship between willingness-to-act
and HB BOLD signal on trials where participants made an action
and those in which they withheld an action in favour of
continuing to watch the movie (Supplementary Fig. S4). The
relationship between BOLD signal in HB and willingness-to-act
was stronger in the latter compared to the former (paired-sample
t test; #(21) = —4.93, P<0.001, d =1.05). This suggests that an
increase in willingness-to-act is associated with a strong HB
BOLD signal when participants received high value offers but
nevertheless decided not to act, consistent with a potential role of
HB in impulse control and suppression of action, when active,
and release of action when less active.

Anterior insula mediates the influence of contextual factors on
willingness to act. Selecting ROIs a priori, combined with ultra-
high field imaging, enabled us to examine neural correlates of
willingness-to-act in small subcortical structures that are difficult
to investigate using conventional neuroimaging methods. We
next ran a whole-brain analysis to identify other potential
structures—not limited to our a priori ROIs—that encoded
parametric variation in willingness-to-act whilst controlling for
the nature of the final decision (act or non-act) alongside other
potential confounds (see “Methods”, GLM1). This revealed two
significant clusters; the first located in the anterior insula (peak
Z=5.16, MNI: x =43, y =16, z=1; whole-brain cluster-based
correction, Z> 3.1, P <0.001; Fig. 4a), and the second located in
the SMA extending into the caudal part of the anterior cingulate
(peak Z=5.50, MNI: x = —6, y = —2, z= 54; whole-brain clus-
ter-based correction, Z>3.1, P<0.001; see Supplementary
Table S3 for the list of clusters).
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Fig. 3 HB encodes willingness-to-act. a RO| time-course analysis showing
the relationship between BOLD activity and willingness-to-act. Format as in
Fig. 2a. The lines and shadings show the mean and standard error of the
weights across the participants, respectively. Time zero is the trial onset
(appearance of the offer). Note that the hemodynamic lag means that a
BOLD signal change reflects neural activity approximately 6 s earlier. b
There was a significant relationship between BOLD activity in HB and
willingness-to-act (P =0.002). Each ring represents one participant
(n=22). Significance testing on time-course data was performed by using
a leave-one-out procedure on the group peak signal. Two-sided, one-
sample t tests with Holm—Bonferroni correction. Format as in Fig. 2b.
**P<0.01, n.s. not significant, a.u. arbitrary units. See also Supplementary
Fig. S3 and Supplementary Table S2.

Next, we searched for voxels in which activity was correlated
not with the participants’ willingness-to-act but with the
translation of this willingness into actual, binary decisions of
whether to act or not act (response contrast in GLM1). There was
a large and significant cluster at SMA extending into the caudal
part of the anterior cingulate, overlapping with the previously
observed cluster for willingness-to-act (Supplementary Fig. S5).
However, voxels located in the anterior insula were not correlated
with whether or not participants finally decided to act or refrain
from acting (compare Fig. 4a and Supplementary Fig. S5).

The whole-brain analysis thus showed a significant relationship
between activity in the anterior insula and willingness-to-act, but
the relationship between activity in SMA, willingness-to-act, and
participants’ observed act/no-act decisions is less clear. To better
understand this relationship we extracted the time course of the
BOLD signal from 14 mm? sphere ROIs centred on the centroid
of the anterior insula and SMA activation peaks and compared
the effect of willingness-to-act and the act/no-act decision on
their respective BOLD signals, using the same approach as in
previous time-course analysis (see “Methods”, GLM2.1; Fig. 4b,
c). In this approach, regressors are fit at each time step of the
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epoched data and are therefore better suited to dissociate the
effect of willingness-to-act from the act/no-act decision on SMA
and the anterior insula. Whilst willingness-to-act better explained
BOLD signal in the anterior insula compared to SMA (paired-
sample t-test on peak signal; #(21) =3.01, P=0.007, d=0.64;
Fig. 4b), participants’ act/no-act decisions better explained BOLD
signal in SMA compared to anterior insula (paired-sample ¢ test
on peak signal; #(21) = 10.42, P < 0.001, d = 2.22; Fig. 4c; two-way
repeated-measures ANOVA; F(1,21) =84.66, P<0.001, 11P2 =
0.80; Fig. 4d). This suggests that at the onset of the circuit,
anterior insula-in parallel to HB—encodes willingness-to-act
given the value of current opportunities in the current
environment, whilst SMA, translates the willingness-to-act into
an actual action at a later stage in the circuit (also note in Fig. 4
the later peak of the act/no-act effect on SMA compared to
willingness-to-act effect on anterior insula). This is consistent
with previous reports associating SMA with planning and
execution of voluntary actions?%:21.

Anterior insula tracks individual component features of the
environment. HB and anterior insula both encoded willingness-
to-act. The presence of such an activity pattern could be for one
of two reasons. It could arise because the area tracks each com-
ponent factor relating to the current opportunity in the current

Fig. 4 Act/no-act decisions and willingness-to-act are encoded
differently in SMA and anterior insula. a Whole-brain analysis showing
voxels where activity reflected parametric variation in willingness-to-act.
We focussed on two clusters; the first located in supplementary motor area
(SMA) extending into the caudal part of the anterior cingulate (left panel)
and the second in anterior insula (right panel). Whole-brain cluster-based
correction, Z> 3.1, overlaid on averaged structural image of all subjects in
standard space (see Supplementary Table S3 for the list of clusters). b ROI
time-course analysis of the SMA (left panel) and anterior insula (right
panel), showing the relationship between BOLD signal and willingness-to-
act. ¢ ROl time-course analysis of the SMA (left panel) and anterior insula
(right panel), showing the relationship between BOLD signal and the act/
no-act decision. Time zero is the response time. Note that the
hemodynamic lag means that a BOLD signal change reflects neural activity
approximately 6 s earlier. In (b) and (c) the lines and shadings show the
mean and standard error of the  weights across the participants,
respectively. d BOLD signal in anterior insula had a stronger positive
correlation with willingness-to-act (blue boxes) compared to act/no-act
decisions (red boxes; P=0.0004). BOLD signal in SMA had a stronger
positive correlation with act/no-act decisions compared to willingness-to-
act (P=2.29E—-08; interaction effect: P=8.15E—09). In box plots, the
central line indicates the median and the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. Whiskers extend to the
most extreme data points not considered outliers. n = 22 participants.
Significance testing on time-course data was performed by using a leave-
one-out procedure on the group peak signal. Two-way repeated-measures
ANOVA followed by paired-samples t test. ***P < 0.001. a.u. arbitrary units.

environment such as the reward magnitude, reward probability,
whether the current block is rich or poor, and other aspects of
recent experience. Alternatively, it could arise because each
individual component factor is encoded elsewhere and only their
integrated impact on willingness-to-act is encoded in the brain
area. To arbitrate between these hypotheses, we used a new model
to investigate the distinct effect of each contextual factor—reward
magnitude, reward probability, block-type, and the expected value
of the previous trial—on BOLD signal (GLM2.2; Fig. 5a). Trial-
by-trial variation in each component factor was correlated with
BOLD signal in the anterior insula (Fig. 5b). Interestingly, the
direction of the impact of each component factor on anterior
insula activity paralleled the impact that each component factor
had on behaviour (except for the expected value): positive
deflection in BOLD signal was associated with higher magnitude
rewards (one-sample ¢ test; #(21) =2.83, P=0.03, d=0.60; all
subsequent tests are corrected for multiple comparisons), higher
probability rewards (#(21) = 6.02, P <0.001, d = 1.28), being in a
poor compared to a rich block (#(21) =2.83, P=0.03, d = 0.60),
and greater expected value of the offer on the previous trial
(#(21) =2.73, P=0.02, d = 0.58). This was not the case in HB, in
which reward magnitude was the only component factor that,
even by itself, correlated with BOLD signal (#(21)=3.71,
P =0.005, d=0.79). This shows that the reward features of the
current environment that determine willingness-to-act are also
associated with variation in activity in the neural structures that
encode willingness-to-act. While HB encodes a simple and
directly cued feature of the reward environment—the reward
opportunity potentially available right now—the cortical com-
ponent of the circuit—anterior insula—encodes features of the
reward environment in a more complex way—it encodes not just
the reward opportunity available right now but in addition it
encodes the sparseness/richness of the environment in which that
opportunity occurs. However, given that both HB and anterior
insula eventually come to encode willingness-to-act, this suggests
that contextual information may subsequently be passed to HB to
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Fig. 5 Anterior insula tracks individual component features of the
environment. a ROl time-course analysis showing the relationship between
BOLD activity in habenula (HB) (left side panels) and anterior insula (right
side panels) with reward magnitude, reward probability and block type
(poor vs. rich) on the current trial, and the expected value (EV) of the offer
on the previous trial. Format as in Fig. 2a. The lines and shadings show the
mean and standard error of the # weights across the participants,
respectively. Time zero is the trial onset (appearance of the offer). Note
that the hemodynamic lag means that a BOLD signal change reflects neural
activity approximately 6 s earlier. b There was a significant relationship
between BOLD activity in insula (blue boxes) and all four contextual factors
(Reward, P = 0.03; Probability, P=2.25E—05; Block, P=0.03; EV,
P=0.02). In HB (green boxes) reward magnitude was the only component
factor that correlated with BOLD signal (P = 0.005). Each ring represents
one participant (n = 22). Significance testing on time-course data was
performed by using a leave-one-out procedure on the group peak signal.
Two-sided, one-sample t tests with Holm—Bonferroni correction. *P < 0.05,
**P<0.01, **P<0.001, n.s. not significant, a.u. arbitrary units.

guide the decision about whether or not to act. We test this
hypothesis in the next section.

Willingness to act is constructed across a multi-layered net-
work. Our results so far suggest that willingness-to-act is con-
structed within an anterior insula-HB circuit, in which individual
component determinants of willingness-to-act are tracked by
anterior insula, integrated and may then be passed to HB. This
implies a functional coupling between the two structures, driven
by the parametric variation in willingness-to-act. To test this
hypothesis, we performed a PPI analysis between HB and anterior
insula BOLD signals with willingness-to-act as the psychological
factor (see “Methods”; GLM2.3). As predicted, parametric var-
iation in willingness-to-act influenced the relationship between
HB and anterior insula (one-sample ¢ test; #(21)= —2.29,
P=0.03, d=0.49). This was not the case for the functional

connection between HB and SMA (P = 0.61). This suggests that
the anterior insula is functionally connected with HB and that
this connection is moderated by participants’ willingness-to-act.

However, for a response to happen, the willingness to initiate
an action needs to be translated into actual action. HB sends
direct projections to dopaminergic midbrain (MidD)!%2223, and
the role of MidD, particularly the substantial nigra pars compacta
(SNc) in action initiation per se was highlighted in our earlier
analyses (Fig. 2 and Supplementary Fig. S2a) and in previous
studies>1%18, We therefore asked whether the interaction between
willingness-to-act and the act/no-act decision influenced the
relationship between HB and MidD. PPI analysis (see “Methods”;
GLM2.4) showed that this was the case; BOLD signal in HB was
correlated with BOLD signal in MidD and this correlation was
moderated by the interaction of willingness-to-act and the act/no-
act decision (#(21) = —2.09, P=10.049, d =0.44). As previously
(Supplementary Fig. S2), we next considered the possibility that
MidD subdivisions, SNc or VTA may make different contribu-
tions to the translation from willingness-to-act to actual action
initiation. We therefore, once again, used the VTA and SNc
specific ROIs2# to perform this analysis. The same PPI effect was
significant between HB and SNc (#(21)=—-2.56, P=0.018,
d=0.55) but not between HB and VTA (#(21)=1.49,
P =0.15), and, moreover, this relationship was stronger in the
former compared to the latter pathway (paired-sample ¢ test;
#(21) =3.36, P=0.003, d=0.72). In summary, the results
discussed here and in Fig. 3 and Supplementary Fig. S2 reveal
that HB encodes willingness-to-act at the time that an action cue
first appears although SNc does not. However, activity coupling
begins to occur between HB and SNc as a function of willingness
to act, and then an activity increase occurs in SNc that is time-
locked to the moment of movement onset.

More generally, the findings from the various PPI analyses are
suggestive of a cortico-subcortical-cortical functional network in
which willingness-to-act emerges within an anterior insula-HB
circuit and is passed on to dopaminergic midbrain to influence
the actual act/no-act decision via the nigrostriatal pathway. These
observations suggest a functional model (Fig. 6a) in which
anterior insula influenced HB, in line with the results of our first
PPI analysis. The model reflected the observation in the second
PPI analysis that HB influenced MidD. The model also
incorporated our previous finding that activity in other
structures—BF and PPN—also influence SNc!®, although both
that previous study and the current one suggest that they convey
a distinct type of information to SNc. The model is also
concordant with the anatomical projections from BF, PPN, and
HB to MidD that have been reported?>-28. Finally, we assumed
projections back into the cortex (SMA) via the nigrostriatal
pathway (Fig. 6a). Anatomical connections projecting from MidD
to ventral and dorsal striatum and the influence MidD exerts on
them are well-known?®. To formally test the plausibility of this
model we used structural equation modelling (SEM). SEM—a
well-established method for analysing functional and effective
connectivity! %3031 __probes the direction and strength of con-
nections between our ROIs, rather than activity within individual
ROIs (see “Methods”).

First, we estimated the path coefficients to determine whether
the interrelationship between the BOLD signals of our ROIs fit
the proposed model. As predicted, all specified path coefficients
in the hypothesised model were significantly different from zero
(Supplementary Table S4). Next, we asked how well the
hypothesised model (Model 1) described the data relative to
alternative but plausible models of similar complexity. Model 2
was similar to Model 1 but with opposite direction of information
flow (Fig. 6b). Model 3 was similar to Model 1 but assumed the
opposite pattern of key cortico-subcortical links; it assumed that
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Fig. 6 Willingness-to-act emerges across a multi-layered network. a The
hypothesised functional model in which activity in the supplementary
motor area (SMA) is influenced by dorsal striatum (DS) and nucleus
accumbens (NAc). Activity in DS and NAc is, in turn, influenced by
dopaminergic midbrain (MidD). Activity in MidD is influenced by basal
forebrain (BF), pedunculopontine nucleus (PPN) and habenula (HB); and
anterior insula (Al) influences HB (for estimates of path coefficients, see
Supplementary Table S4). b—d Alternative models. The hypothesis-driven
model (Model 1) fits the data better than the alternative models

(Models 2—4).

Model 2

SMA, rather than anterior insula, influenced HB and that anterior
insula, rather than SMA, was influenced by the nigrostriatal
pathway (Fig. 6¢). Finally, Model 4 was similar to Model 3 but
with opposite direction of information flow (Fig. 6d). Model
comparison showed that the hypothesised model (Model 1)
performed better than all alternative models (AIC; Model
1=376,817; Model 2=534,500; Model 3 =377,651; Model
4=534,141). This suggests that decisions about whether or not
to initiate an action emerge within a cortico-subcortical-cortical
functional network, starting in an anterior insula-HB pathway
and ending in SMA via the nigrostriatal pathway.

Discussion

An important aspect of decision-making is deciding whether it is
worth initiating a voluntary action as opposed to doing nothing at
all. While such decisions are ubiquitous in everyday human and
animal life, and easily observed (although not always studied) in
the animal laboratory, they are difficult to investigate in experi-
ments with humans. Typically, social demand characteristics of
the experimental setting make it unlikely that a participant will
decide not to bother making an action that they have been asked
to make even when they perform experiments in which they
freely choose when to act. The present behavioural paradigm,
however, led participants to make predictable decisions about
when to act and when not to bother. We ensured this by allowing
the participants to carry on viewing a movie when they decided to
do nothing. First, we showed that participants took a variety of
contextual factors into account when deciding whether to act and
perform an effortful task for a potential reward. Willingness-to-
act on each trial was defined as the probability of acting predicted

by the combination of opportunity and environment in a given
context. The factors that we hypothesised might influence deci-
sions to act were all found to exert clear effects on act/no act
decisions; participants were more likely to give up watching the
movie and exert effort for potential reward when they received
high magnitude and high probability opportunities, and when the
average value of offers in their current environment was low.
Variation in the movie over time might have contributed to
variation in act/no-act decisions. Despite the fact that any such
variation remained unmodelled in our analyses (it was not cor-
related with task events and it remained as unaccounted noise in
the GLMs), the factors that determined the value of acting were
powerful enough for their impact to emerge clearly as statistically
significant as explanations of both behaviour and of neural
activity. Nevertheless, we conducted a control experiment to
investigate the relationship between interest-in-the-movie-clip
and willingness-to-act and showed that trial-by-trial variation in
interest-in-the-movie-clip does not influence participants’ deci-
sion about whether or not to act and therefore cannot confound
interpretation of the data (Supplementary Fig. S1).

Next, after using ultra-high field imaging, we extracted BOLD
signal from a group of a priori selected subcortical structures
known to be involved in action planning and initiation including
the dorsal striatum (DS), nucleus accumbens (NAc), midbrain
dopaminergic system (MidD), pedunculopontine nucleus (PPN),
habenula (HB), and the basal forebrain (BF). We found that
BOLD activity in HB tracked the trial-by-trial variation in par-
ticipants’ willingness-to-act (Fig. 3). We could not find the same
relationship in other structures.

HB is an ancient brain structure located at the caudal end of
thalamus. It receives distributed inputs from the septum, basal
ganglia, cingulate and insular cortex and sends direct and indirect
projections to dopaminergic and serotonergic nuclei?>23-28,
Functionally, HB is linked to avoidance of negative outcomes,
omission of expected reward and control of impulsive
behaviours!®. Here we showed that the relationship between
willingness-to-act and HB activity was strongest when partici-
pants received high value offers but nevertheless decided not to
respond. This is consistent with a potential role of HB in impulse
control and suppression of motor responses, accomplished by its
inhibitory control of the dopaminergic midbrain!®2832,

Interestingly, our PPI analyses showed that participants’
willingness-to-act influenced the functional relationship between
HB and dopaminergic midbrain. However, while previous
resting-state fMRI studies have reported more extensive HB
functional connectivity with VTA than SN¢3334, our PPI analysis
showed that participants” willingness-to-act and their responses
(act/no-act decisions) had more influence on the HB functional
connectivity with SNc than VTA. This is consistent with previous
findings regarding the role of SNc in self-paced action initiation!$
and the results from our previous 7 T study in which SN, but not
VTA, was shown to encode initiation of self-paced actions!®. HB
is made up of a medial and a lateral subdivision with distinct
connectivity profiles?8. It is therefore important to note that while
ultra-high field imaging enabled us to track activity in a small
subcortical structure such as HB, there are still limits to its spatial
resolution and thus our ability to distinguish between the medial
and lateral subdivisions of HB. We therefore combined those
subdivisions into a single HB region.

Anterior insula tracked participants’ willingness-to-act on each
trial—in parallel to HB. In addition, it encoded individual con-
textual factors in the environment that influenced willingness-to-
act (Figs. 4, 5). Importantly, PPI analysis showed that partici-
pants’ willingness-to-act modulated the functional connectivity
between HB and the anterior insula. Together, these results
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suggest that individual contextual factors in the environment
were primarily tracked by the anterior insula, integrated, and then
passed to HB to guide the decision about whether or not to act.
Anterior insula is known to be involved in effort-based decision
making and willingness to exert effort to obtain reward®. It is
well placed to integrate various sources of contextual information;
it receives diverse and multimodal sensory inputs, has reciprocal
connections with limbic and frontal cortical structures implicated
in valuation and, importantly, sends direct projections to HB2236.
In addition, whole-brain resting-state functional connectivity
studies have reported tight functional coupling between HB and
the salience network—a set of brain regions involved in detecting
and integrating relevant internal and external stimuli—including
the anterior insula33. In the context of voluntary action, however,
in the current study it was possible to show that HB occupied a
very specific position within a multi-layered network using
structural equation modelling (SEM). Contextual information
determining willingness-to-act is encoded in the anterior insula,
converges on the habenula, and is then transmitted to SMA via
the nigrostriatal pathway as the binary decision either to act or
not act emerges (Fig. 6).

Understanding the role that HB plays in determining whether
and how the reward environment might elicit the onset of
voluntary behaviour may shed light on changes in behaviour seen
in the clinic. Impairments in willingness to initiate an action can
cause symptoms such as apathy which are prominent in several
major neurological and psychiatric disorders including
depression!®. Interestingly, in patients with depression, the
habenular activity was reported to be correlated with depression
rating’’.

We have previously suggested that cholinergic basal forebrain
(BF) regulates decisions about when to act by integrating current
opportunities in the environment through its connections with
the frontal cortex and the dopaminergic midbrain!®17. Here we
propose that decisions about whether to act also involve a cortico-
subcortical circuit, but now the critical subcortical component
appears to be the HB rather than BF. HB receives direct projec-
tions from BF and is one of the few brain regions that controls
both the dopaminergic and the serotonergic systems through
direct and indirect projections. Therefore, it is ideally placed to
receive contextual information from higher-level cortical areas
and to control decisions about if and when to act through its
interaction with the cholinergic, serotonergic and dopaminergic
systems. Future studies should assess the possible distinctive role
of these neuromodulatory systems in regulating one’s willingness-
to-act.

Methods

Subjects. Twenty-five participants completed the study. They were aged 18—40
years, consisting of 7 males and 18 females. At the end of each testing session, they
were paid £15 per hour for participating in the study. They could earn an addi-
tional £3—£7 depending on their performance during the task. All relevant ethical
regulations for work with human participants were observed. At the beginning of
each testing session, participants were required to provide a written informed
consent. Ethical approval was given by the Oxford University Central University
Research Ethics Committee (CUREC) (Ref-Number: MSD-IDREC-R55856/
RE001). One subject was excluded from all behavioural and brain analyses for
failing to respond frequently enough according to an a priori exclusion criterion
(response rate of >85% or <15%). In addition, two subjects were excluded from all
brain analyses due to excessive head motion (absolute mean displacement > 2 mm).

Experimental task. Before entering the scanner, participants received written
instructions and were introduced to the task. This included a titration procedure to
establish their maximum voluntary contraction (MVC), consisting in three trials
on which participants exerted as much force as possible on a handheld dynam-
ometer. Their MVC was defined as the maximal momentary force produced across
the three attempts. When inside the scanner, participants watched a nature doc-
umentary—a randomly selected episode of Planet Earth—with audio provided

through MRI compatible headphones (Fig. 1a). Participants received a series of
offers in the form of visual stimuli that were periodically superimposed upon the
documentary. Upon accepting an offer, the movie was interrupted, and participants
needed to exert a short bout of physical effort using the dynamometer in order to
be eligible for their reward. If an offer was rejected, participants simply continued
watching the documentary uninterrupted for an equivalent duration. Each offer
appeared for 2 s and could be accepted by button-pad response while it remained
on-screen. Offer stimuli consisted in centrally presented vertical rectangles which
contained small circular dots (range = [1, 21]). The colour of the offer-stimulus
represented reward-magnitude: either low (5p), medium (10p) or high (20p), as
indicated by red, green or blue (magnitude-to-colour contingencies were coun-
terbalanced across participants). The number of dots comprising the stimulus
indicated the reward-probability, such that reward-probability increased linearly
with the number of dots—for example, an offer with the maximum number of dots
(21) was certain to yield reward. Both reward magnitude and reward probability
varied from trial-to-trial in a pseudorandomised order (Fig. 1b). The task included
a total of 216 offers (trials), which were divided into 6 blocks of 36 offers. The ratio
of high magnitude and high probability offers within blocks was manipulated in
order to influence the average value of the participants’ environments—that is, the
average value of the offers they could expect to receive in the near future. Rich
blocks included higher ratios of high magnitude and high probability offers (50%
high; 33% mid; 16% low), while the reverse was true in poor blocks (16% high; 33%
mid; 50% low). Block type (rich vs poor) alternated sequentially and was coun-
terbalanced across participants (Fig. 1b). Participants were informed at the
beginning of each block as to whether they were entering a rich or a poor block.
If an offer was accepted, the film was interrupted, and the participant needed to
complete a short effort-task. The effort-task involved squeezing the dynamometer
at a target level of force corresponding to 50% of the participant’s MVC (this
ensured the effort level was always achievable but still physically demanding) for a
short duration, randomly sampled from a Gaussian distribution (effort-
time ~ A(3.5s, 0.5 5)). Real-time feedback about the level of force being produced
relative to the target was provided via an on-screen force-metre which replaced the
film (see Fig. 1a). Force data were recorded using a TSD121B-MRI dynamometer
(BIOPAC Systems Inc., USA) running on an MP160 acquisition device (BIOPAC
Systems Inc., USA). If the force was successfully exerted, participants became
eligible for a monetary reward with the probability and at the magnitude indicated
by the accepted offer. If it was not, the participant was ineligible for a reward and
was informed of their failure to exert the requisite force. The movie resumed once
the effort-task was completed, and feedback about the reward outcome was
superimposed on-screen for 2 s. If the offer was not accepted, participants
continued to watch the movie uninterrupted for a duration equivalent to the effort-
task but would receive no monetary reward. Feedback about the reward outcome
(Op) was superimposed on the screen for 2 s, even when participants did not accept
the offer. The next offer (trial) appeared after an inter-trial-interval (ITI) randomly
sampled from a Gaussian distribution (ITI ~.47(4.5s, 0.55)). The task finished
after six blocks (three poor blocks + three rich blocks). The experiment was written
in Matlab (Mathworks, Natick, USA), using the Psychophysics Toolbox
extensions.

Behavioural analysis. Willingness-to-act on each trial was defined as the prob-
ability of acting, by making a response to accept an offer, given the combination of
contextual factors. The contextual factors included reward magnitude, probability,
block type (rich/poor) on the current trial, and the response (act/no-act) and
expected value (reward magnitude x probability) on the immediately preceding
trial. We used a generalised linear mixed-effect model to estimate the regression

coefficients. The modelling was performed with the Ime4 and optimx packages in
R39:40,

logit(response;) = 8, + B, reward; + B, probability; + B;block; + f,(reward, x probability;)
+ Bs(reward; x block;) + B (block; x probability;) + ,expectedValue, | + Bgresponse;_,
+ PytotalTime; + p, + y reward; + p, probability; + p;block; + y,(reward; x probability;)
+ pg(reward, x block;) + pg(block; x probability;) + u,expectedValue; | + ygresponse;
+ pytotalTime + e,

m

where f,_, are the fixed effects, y, is by-subject random intercept, y,_, are by-
subject random slopes, and i is the trial number. reward is the offered reward-
magnitude (low, medium or high); probability is the reward probability as indi-
cated by number of dots; block is the average value of the participants’ environ-
ments (rich or poor); expected value is the product of reward and probability;
response is the act/no-act decision. Total time (from beginning of the testing
session up to the current trial, totalTime) was added to the model as a covariate of
no interest to account for fatigue. logit is defined as:

pX)
1°g<1 - p(X)) @

where X = (Xj,..., X},) are p predictors.
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To measure willingness-to-act, we first fit the predictors of the above model
separately to each participant’s response.
logit(response ;) = f3, + 8 reward, ; + 8, probability, ; 4- B;block; + f8,(reward,; x probability, ;)
+ Bs(reward,; x block, ;) + B¢(block,; x probability, ;) + f,expectedValue, ;
+ Bgresponse ;| + BytotalTime,; + e,
(€)
where s is the subject number. Next, we used the estimated coefficients (8,_) to

measure the willingness-to-act separately for each participant and each trial by
using a logistic function:

el{0+ﬁlle\\'ﬂfd‘,+"'+ﬁ9‘0mlTAme" /1 i eﬂnﬁ'ﬁlreward‘,+»~+ﬁ9lolalTlme"

(©)

willingness to act; = p(response,;) =

Imaging data acquisition. Structural and functional MRI was collected using a
Siemens 7 T MRI scanner. High-resolution functional data were acquired using a
multiband gradient-echo T2* echo planar imaging (EPI) sequence with a

1.5 x 1.5 x 1.5 mm resolution; multiband acceleration factor 3; repetition time (TR)
1962 ms; echo time (TE) 20 ms; flip angle 66° and a GRAPPA acceleration factor 2.
Field of view (FOV) was adjusted to cover the whole-brain with axial orientation
and a fixed angulation of —30° (anterior-to-posterior phase encoding direction;
96 slices). Additionally, a single-measurement, whole-brain, functional image was
acquired prior to the main functional image (with similar orientation). This pre-
saturation scan was later used to improve registration of the main functional image
to the whole brain. Structural data were acquired with a T1-weighted MP-RAGE
sequence with a 0.7 x 0.7 x 0.7 mm resolution; GRAPPA acceleration factor 2; TR
2200 ms; TE 3.02 ms; and inversion time (TI) 1050 ms. To correct for field inho-
mogeneities a separate Fieldmap sequence was acquired with a 2 x2 x 2 mm
resolution; TR 620 ms; TE1 4.08 ms; TE2 5.10 ms. Finally, to regress out the effect
of physiological noise in functional data, cardiac and respiratory frequencies were
collected by pulse oximetry and respiratory bellows.

fMRI data processing. Pre-processing was performed using tools from FMRIB
Software Library (FSL)4!. Functional images were first normalised, spatially
smoothed (Gaussian kernel with 3 mm full-width half-maximum), and temporally
high-pass filtered (3 dB cut-off of 100 s). The effect of participants’ head motion
during the scanning was removed by MCFLIRT42 The Brain Extraction Tool
(BET)*? was used on functional and structural images to separate brain from non-
brain matter. The registration of functional images into Montreal Neurological
Institute (MNI)-space was performed in three stages: (1) whole-brain task EPI to
pre-saturation EPI using FMRIB’s Linear Image Registration Tool4* with three
degrees of freedom (translation only). (2) Whole-brain EPI to individual structural
image using Boundary-Based Registration (BBR)** by incorporating Fieldmap
correction. (3) Individual structural image to Standard image by using FMRIB’s
Non-linear Image Registration Tool (FNIRT).

Whole-brain fMRI data analyses. Whole-brain statistical analyses were per-
formed at two-levels as implemented in FSL FEAT40, At the first level, we used a
univariate general linear model (GLM) framework for each participant to compute
the parameter estimates. The contrast of parameter estimates and variance esti-
mates from each scanning session were then combined in a second-level mixed-
effects analysis (FLAME 1 + 2)%, treating scanning sessions as random effect. The
results were cluster-corrected with the voxel inclusion threshold of Z=3.1 and
cluster significance threshold of P=0.001. The data were pre-whitened before
analysis to account for temporal autocorrelations®.

The first-level analyses looked for voxels, across the whole brain, in which
BOLD signal reflected parametric variation in willingness-to-act (i.e., the
probability of acting given the combination of contextual factors).

GLM1 : BOLD =3, 4 f8,stim + f8, willingness_to_act + 3, response + f3, effort + f; mainOut + 3¢ reward
+ B, nonConvResp + f8; nonConvOut,

©)

where BOLD is a ¢t x 1 (f time samples) column vector containing the times-series
data for a given voxel. stim is an unmodulated regressor representing the main
effect of stimulus (offer) presentation (all event amplitudes set to one).
willingness_to_act is a parametric regressor representing willingness-to-act (see
“Behavioural analysis”). response is a binary regressor with two levels (act/no-act).
effort is a parametric regressor representing the amount of force participant exerted
during the effort-task. mainOut is an unmodulated regressor representing the main
effect of outcome. reward is a binary regressor with two levels (rewarded/not
rewarded) representing the reward outcome on the current trial. Regressors 1—6
were modelled as a boxcar function with constant duration of 0.1 s convoluted with
a double-gamma hemodynamic response function (HRF). Regressors 1—2 were
time-locked to the onset of the trial (presentation of the offer). Regressor 3 was
time-locked to the moment the participant made a response, if the offer was
accepted, and to 2 s after the trial onset, if the offer was rejected. Regressor 4 was
time-locked to the onset of the effort-task in trials where the offer was accepted.
Regressors 5—6 were time-locked to the onset of the reward outcome phase. To

model instant signal distortions due to changes in the magnetic field caused by
performing the effort-task we added two additional constant regressors that were
not convoluted with HRF (nonConv). These regressors started at the beginning of
the TR when the response was recorded and the effort-task started (nonConvResp),
and when the outcome phase started (nonConvOut). They had a duration of one
TR (1.96 ).

To further reduce variance and noise in the BOLD signal, we also added task-
unrelated confounds which included: (1) head motion parameters as estimated by
MCEFLIRT in the pre-processing stage; (2) voxelwise regressors created by
physiological noise modelling (PNM)*® to model the effects of physiological noise
(cardiac and respiratory); (3) regressors to completely remove timepoints with
large motions that could not be fixed with linear methods (across participants,
5+ 3% of timepoints were marked as corrupted by large motion).

ROI time-course analyses. To create anatomical regions of interest (ROI) ana-
tomical masks were designed for each ROI in the MNI standard space using the
Harvard-Oxford Subcortical Structural Atlas and Atlas of the Human Brain®’
(Fig. 2). Masks were then transformed from the standard space to each partici-
pant’s structural space by applying a standard-to-structural warp field and from
structural to functional space by applying a structural-to-functional affine matrix.
Transformed masks were thresholded, binarised and were dilated by one voxel.
Functional ROIs (anterior insula and SMA) were defined as spheres of 1.5 mm
radius, centred at the centroid of local maxima (peaks) of an activation cluster.

For time-series analysis the following steps were followed: (1) the filtered time-
series from each voxel within each ROI was extracted; (2) the data were then
averaged across the voxels, normalised and up-sampled 20 times; (3) the up-
sampled data were interpolated using the cubic spline method; (4) the interpolated
data were then epoched in 10 s windows, starting from 2 s before to 8 s after the
trial onset (appearance of the offer); (5) finally, ordinary least squares (OLS)
method was used to fit the GLMs at each time step of the epoched data. We ran the
following GLMs:

GLM2.1 : BOLD = 3, willingness_to_act + f3, response + 3, constant,  (6)

where BOLD is a i x t (i trial, t time samples) matrix containing the times-series
data for a given ROIL willingness_to_act is the probability of acting for a given
opportunity in a given environment. response is a dummy-coded variable
representing the participants’ observed response (act/no-act decision). constant is
an unmodulated constant regressor.

GLM2.2 : BOLD = 8, reward, + j8,probability; + ;block; + f8,expectedValue;_, + fB;response;_;
+ BgtotalTime; + fB; response; + f3; constant,

@)
where reward;, probability; and block; are reward magnitude, reward probability
and block type (average value of the environment), respectively, at trial i.
expectedValue; ; and reponse; , are expected value and response (act/no-act
decision) at the preceding trial (i—1). totalTime; is the total time passed from
beginning of the testing session up to the current trial. response; is the observed
act/no-act decision at trial i.

GLM2.3 : BOLDyg; = fB; BOLD,.4 + f3, willingness_to_act + f3; PPI + f, response + 35 constant,
®)

where BOLDy, is BOLD activity at anterior insula, BOLD,.4 is BOLD activity at
HB, and PPI is the interaction between BOLD,,.4 and willingness_to_act.

GLM2.4 : BOLD = f, BOLD, . + f3, willingness_to_act + 3, response + f, PPI + 5 constant, (9)

where BOLDyq; is BOLD activity at MidD, BOLD,. 4 is BOLD activity at HB, and
PPI is a three-way interaction between BOLD, 4, willingness_to_act, and response.

Leave-one-out analysis on time-series group peak signal. Significance testing
on time-course data was performed by using a leave-one-out procedure on the
group peak signal to avoid potential temporal selection biases. For every partici-
pant, we estimated the peak signal time by identifying the peak in the time course
of the mean beta weights of the relevant regressor in all other participants. When
we did this, we identified the peak (positive or negative) of the regressor of interest
within the full width of the epoched time course: from 2 s before to 8 s after the trial
onset. Next, we took the beta weight of the remaining participant at the time of the
group peak. We repeated this for all participants. Therefore, the resulting 22 peak
beta weights were selected independently from the time course of each single
participant. We assessed significance using t tests on the resulting peak beta
weights. All ¢ tests were two-sided. To control for familywise error rate the sig-
nificance level was adjusted, whenever doing three or more comparisons, using the
Holm—Bonferroni method. This method was the only type of correction that was
applied to all the analyses—whenever doing three or more comparisons—regard-
less of the GLM and ROI: e.g., when comparing across six ROIs as in Figs. 2 and 3
or across four contextual features as in Fig. 5.

Structural equation modelling. PPI analysis is applicable to a maximum of two
ROIs at a time30. To investigate how regions are connected at a wider circuit level,
we conducted structural equation modelling (SEM) to probe for covariance
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between regions in the time-course of BOLD response. SEM assesses inter-
relationships among several continuous variables based on their covariance with
one another. Importantly, it defines the strength of connections between brain
areas in question, rather than activity in individual variables. In practice, it is
reminiscent of linear regression save that more complex patterns of relationships
can be tested. As implemented here, it has the following formal definition:

e =1 B+, (10)

where 7, is a matrix comprising the filtered time-series of BOLD response in the
ROIs, f is a vector of path coefficients describing the relationship(s) between
ROIs, and {; is measurement error. All structural equation modelling was con-
ducted in Latent Variable Analysis (lavaan) package v.0.6-4 using Maximum
Likelihood estimation®!. Akaike information criterion (AIC) was used for model
comparison.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data files and materials used in the main analyses presented here (Figs. 1c—f, 2, 3, 4b—d, 5)
have been archived and uploaded to the Data DRYAD and are freely available at: https:/
doi.org/10.5061/dryad.6t1g1jwxq (ref. °2). Source data are provided with this paper.

Code availability

Custom-written R scripts used for measuring willingness-to-act and reproducing the
figures related to behavioural analysis are available at https://doi.org/10.5061/
dryad.6t1gljwxq.
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