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Abstract: One-carbon (1C) metabolism plays a key role in biological functions linked to the folate
cycle. These include nucleotide synthesis; the methylation of DNA, RNA, and proteins in the
methionine cycle; and transsulfuration to maintain the redox condition of cancer stem cells in the
tumor microenvironment. Recent studies have indicated that small therapeutic compounds affect
the mitochondrial folate cycle, epitranscriptome (RNA methylation), and reactive oxygen species
reactions in cancer cells. The epitranscriptome controls cellular biochemical reactions, but is also a
platform for cell-to-cell interaction and cell transformation. We present an update of recent advances
in the study of 1C metabolism related to cancer and demonstrate the areas where further research is
needed. We also discuss approaches to therapeutic drug discovery using animal models and propose
further steps toward developing precision cancer medicine.

Keywords: one-carbon metabolism; amino acids; epitranscriptome; tumor; microenvironment

1. Introduction

In every cell, physiological processes are controlled by both DNA and prenatally
and/or postnatally acquired epigenetic modifications of DNA, RNA, and histone proteins.
Epigenetic changes control gene expression and silencing [1]. One-carbon (1C) metabolism
includes both the folate and methionine cycles and enables cells to manufacture 1C units
(also known as methyl groups), which are used for both methylation reactions and the
synthesis of crucial anabolic precursors necessary for life (Figure 1). In the reaction, S-
adenosyl methionine (SAM), a product of 1C metabolism, can provide the methylation
donors actively [2]. One-carbon metabolism has emerged as a therapeutic target for cancer,
which shows unregulated proliferation and uncontrolled cellular differentiation [3]. Our
previous studies indicated that serine hydroxymethyltransferase 2 (SHMT2) and 5,10-
methylene tetrahydrofolate dehydrogenase 2 (MTHFD2), the first and second enzymes
of serine catabolism in mitochondrial 1C metabolism, are independent prognostic factors
and therefore potential cancer chemotherapeutic targets [4]. Computational survival rate
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analysis has indicated that aldehyde dehydrogenase 1 family member L2 (ALDH1L2)
is another therapeutic target linked to 1C metabolism [4]. Given that the SHMT2 and
MTHFD2 genes are attractive targets for cancer therapy [5], small-molecular inhibitors
have been developed to target the folate pathway of 1C metabolism, some of which have
been studied in preclinical and clinical trials [6].
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Figure 1. Inputs and outputs of one-carbon (1C) metabolism. The input amino acids, glucose,
and metabolites fuel 1C metabolism, which generates various cellular outputs, such as nucleotide
synthesis, methylation, and origination of cancer stem cells.

SAM in 1C metabolism is involved in the methylation reactions of various down-
stream cancer therapy targets, including DNA, RNA, and proteins. The downstream
targeting of RNA is thought to be a more effective and precise possible therapeutic ap-
proach due to the following findings: (1) molecular and imaging studies have revealed
an intimate connection between RNA modifications, such as in the epitranscriptome, and
in chromatin structure, as shown in [7]; (2) studies of clinical cancer samples have found
numerous alterations in the epitranscriptome [8,9]; (3) alterations of the epitranscriptome
(RNA modifications) are associated with changes in 1C folate metabolism and increased
aerobic glycolysis in cancer cells (the Warburg effect), where cancer cells evade immune
surveillance in the tumor microenvironment [10]; and (4) a recent discovery indicating that
targeting methyltransferase-like 3 (Mettl3), a key RNA methylation enzyme, resulted in the
efficient suppression and eradication of hematopoietic malignancies by a small compound,
STM2357 [11]. The RNA methylation reaction can be activated through cooperative binding
to the Mettl4–Mettl14–Wtap active binding site by a small molecule [12], suggesting the
druggability of this RNA methylation mechanism. These data suggest the importance
of the epitranscriptome in cancer [13,14]. In this paper, we present an update of recent
advances in the study of cancer 1C metabolism, with a focus on the epitranscriptome.
Given that 1C metabolism plays a role in tumors, the targeting may be feasible for precision
medicine. We also discuss approaches to therapeutic drug discovery in animal models and
propose further steps toward developing precision cancer medicine.

2. Glycine, Serine, and Methionine Control 1C Metabolism in the
Tumor Microenvironment

Amino acids are a general term for organic compounds containing amines and car-
boxylic acid functional groups. Although there are more than 500 types of amino acids
in nature, only 22 amino acids are present in living organisms [15]. These amino acids
exist not only as constituents of proteins that make up various tissues but also in free
form in cells and plasma. The amino acids themselves proliferate directly through amino
acid transporters [15]. Nine types of amino acids, termed essential amino acids, are not
synthesized in the body and are deficient unless ingested from the diet. Among these,
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serine, glycine, and methionine are involved in the coupling of folate and methionine units
in 1C metabolism (Figure 2). Hyperactivation of this pathway is a driver of oncogenesis and
establishes a link between epigenetics and cancer [16]. As mentioned above, the functions
of 1C metabolism include biosynthesis (purines and thymidine in nucleotides), amino acid
homeostasis (glycine, serine, and methionine), epigenetic maintenance (methyl transfer
to nucleotides and proteins), and redox defense [17], indicating that 1C metabolism is
involved in broad function. Thus, although targeting 1C metabolism is expected to provide
new opportunities for translation into cancer precision medicine [3,16], specific targeting
will be necessary to control diseases (Figure 3).
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Figure 2. Biochemical schema of 1C metabolism. One-carbon metabolism couples with three reactions: folate cycle,
methionine cycle, and transsulfuration pathway [16]. The folate cycle produces purines and nucleotide synthesis. The
methionine cycle plays a critical role in the control of methylation of target DNA, RNA, and proteins. The transsulfuration
pathway is involved in the regulation of cancer stem cells by the reduction control of cells. Polyamines control cell
proliferation and differentiation in cancer stem cells. ODC, ornithine decarboxylase; SAM, S-adenosylmethionine; SAH,
S-adenosylhomocysteine.
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Figure 3. Biochemical linkage and competition of methylation among DNA, RNA, and histone. One-carbon metabolism
links the methylation reaction. DNA methylation is mediated by H3K4 methylation [18]. Histone H3 trimethylation at
lysine 36 guides m6A RNA modification [19]. Epigenetic methylation of N6-adenine and N6-adenosine with the same input
resulted in different output in various biological aspects [20].

Amino acid metabolism is significantly modified in the tumor microenvironment [21].
Alterations in the metabolism of amino acids glycine [17], serine [17], methionine [17],



Int. J. Mol. Sci. 2021, 22, 7278 4 of 13

glutamine [22], sarcosine [23], aspartate [24], and cysteine [25] have been previously linked
to cancer cell metabolism and malignant phenotypes of various tumors. Recent studies
have revealed differential control of amino acids in epithelial cancer cells, mesenchymal
cells, and immunocytes, suggesting the potential for amino acids and their transporters,
i.e., solute carriers (SLC), in T-cell immunotherapy for cancer [26].

3. Competition for Methionine Upstream in 1C Metabolism

Among the three amino acids, i.e., serine, glycine, and methionine, which are catabo-
lized in 1C metabolism, methionine has been implicated in competition between cancer
and immune cells, although the mechanism in the remaining two amino acids, serine and
glycine, is unclear. Cancer cells compete with each other or with immune cells for methion-
ine and thus impair CD8 T-cell function in vivo [27]. This occurs through interference with
1C metabolism, resulting in altered histone methylation [28] but also in methylation of
nucleotides (Figures 4 and 5). The same study found that the targeting and inhibition of the
methionine transporter SLC43A2, which is highly expressed in tumor cells, resulted in the
restoration of H3K79me2 histone modification in T cells, which led to higher checkpoint-
induced tumor immunity [28]. Cancer cell methionine consumption is a critical mechanism
that fuels cancer cells but also impairs anti-tumor immunity (Figures 4 and 5) [28].

Although the RNA modification is involved in the acquired immune recognition
of antigens of exogenous nucleotides, such as viral or bacterial infections, recent studies
indicated that innate dendritic cells exposed to such modified RNAs ablated the activity [29].
Given that the innate dendritic cells and Toll-like receptors (TLRs)-expressing cells were
potently activated by bacterial RNA and mitochondrial RNA, but not by mammalian total
RNA, it is proposed that the RNA modifications suppress the activity of dendritic cells,
and the innate immune system may detect modification-null RNAs from bacteria [29].
Furthermore, a recent study indicated that m6A RNA modification on human circular
RNAs (circRNAs), a prevalent form of foreign nucleotides, inhibits innate immunity [30].
The study of modification-null circRNA demonstrated that they directly activate RNA
pattern recognition receptor RIG-I to induce the filamentation of the adaptor protein
MAVS and activation of the downstream transcription factor, interferon regulatory factor
3 (IRF3), which can contribute to the targeting and eradication of exogenous RNAs [30].
However, positions and patterns of RNA modification to elicit immunity remains to be
understood perfectly. Interestingly, a recent study of methylated RNA immunoprecipitation
sequencing (MeRIP-seq) and RNA transcriptome sequencing (RNA-seq) showed that
AlkB homolog 5 (ALKBH5)-dependent high-mobility group box 1 (HMGB1) expression
mediates the stimulator of interferon genes protein (STING)-IRF3 innate immune response
in radiation-induced liver diseases, as unavoidable liver injury, which is the adverse effect
for treatment of primary liver cancer [31]. Irradiation induced the recruitment of ALKBH5
to demethylation sites of m6A residues in the 3′ untranslated region (UTR) of HMGB1,
which resulted in activation of STING-IRF3 signaling [31]. The study suggested that the
RNA modification at positions in the UTR of HMGB1 gene is involved in the innate immune
response in the radiation-induced liver damage in cancer treatment. Taken together, the
RNA modification plays a role in the function of innate and acquired immunity.
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Figure 4. Cell-to-cell interaction of 1C metabolism. GSH, glutathione; SHMT2-i, inhibitor to serine hydroxymethyltransferase
2; MTHFD2-i, inhibitor to mitochondrial bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase; KDM-i,
inhibitor to lysine demethylase; IFN, interferon; CSC, cancer stem cell; DC, daughter cancer cell; IC, immune cell. Drug
discovery within 1C metabolism pathways may give rise to targets for cancer therapeutics [3,32].
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Figure 5. RNA-dependent immune response. As an output of 1C metabolism, RNA methylation is
involved in the recognition of and response to exogenous RNA from viruses. RIG-I ATPase assists in
the discrimination between self-RNA and non-self-RNA [33,34]. RIG-I, retinoic acid-inducible gene I;
IFN, interferon.

Methionine plays a critical role in 1C metabolism and controls the methionine cycle,
which couples with the folate cycle and transsulfuration pathway. Cancer stem cells survive
after chemotherapy and radiation therapy [35], in which several cell-surface markers are
involved, such as CD133 [36], c-Met [37], and CD44 [38]. Generally, it is considered that
cancer stem cells survive in the low-stress condition after exposure to chemotherapy and
radiation therapy through the mechanism of slow-cycling characteristics [39], activation
of glycolysis and the pentose phosphate pathway [40], and low levels of glutathione [41].
The 1C metabolism couples with polyamine metabolism, which is involved in the pro-
duction of SAM, in the pathway of ornithine, putrescine, spermidine, and spermine [42].
The SAM provides the methylation donor to DNA and RNA. The demethylation reac-
tion of methylated forms of the substances can be mediated in the nucleus via enzymes,
such as iron-dependent dioxygenases [43]. Among the demethylation enzymes, lysine
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demethylase (KDM) 5 plays a role in slow-cycling cancer stem cells, which are required
for continuous cancer growth [44]. The depletion of KDM resulted in the induction of
cellular senescence in gastrointestinal cancer [45]. In the proliferating daughter cancer cells,
the inhibition of 1C enzymes in mitochondria, Shmt2 and Mthfd2, is supposed to induce
tumor eradication [32]. In the tumor microenvironment, immune cells and cancer cells
compete for methionine, which is involved in the production of anti-tumor cytokines, such
as interferon (Figure 4). Thus, the hypothesis is proposed that the 1C metabolism plays an
important role in the initiation of cancer in the early stages, maintaining cancer stem cells,
advancement of cellular transformation, and expression of malignant behaviors of tumors,
in the tissue microenvironment [46]. Studies of 1C mechanism will provide candidates for
drug discovery.

Recent studies indicated that methylation of RNA is involved in the therapy resistance
and proliferation of pancreatic cancer cells, via reaction of RNA demethylation enzyme
Mettl3 [47]. The expression of RNA methylation and responses are under the control of
oncogene c-MYC [48]. In addition to cancer development and cellular transformation, the
methylation of RNA is involved in the recognition of endogenous RNA or exogenous viral
RNA (Figure 5), suggesting that the biological response system of methylation occurs as a
result of 1C metabolism.

Glycine, the smallest nonessential amino acid, is involved in various aspects of cancer,
and a previous study of metabolic profiling showed that glycine plays a critical role in the
rapid proliferation of cancer cells [49]. Glycine participates in the synthesis of proteins and
glutathione as well as in detoxification reactions, which are involved in a broad spectrum of
anti-inflammatory, cytoprotective, and immunomodulatory properties, all elements critical
in the cancer microenvironment [50].

Serine metabolism is also frequently dysregulated and highly expressed in cancer cells.
Serine synthesis facilitates 1C-related amino acid transport, nucleotide synthesis, folate
metabolism, and redox homeostasis—all mechanisms involved in the development of
cancer [51]. Sideroflexin 1 (SFXN1), a serine transporter and multipass inner mitochondrial
membrane protein, was recently discovered by a CRISPR-based genetic screen in human
cells [52]. Although any involvement of SFXN1 in the development of cancer is unclear, it
has been linked to gene expression associated with osteoarthritic synovitis [53].

4. Epitranscriptome (RNA Methylation)

Recent studies revealed the function of RNA modifications through the mechanisms of
control of splicing, stability of transcripts, and translation process of encoded peptides [14].
Given that m6A, i.e., N6-methyl adenosine, is a predominant modification of RNA, previous
studies demonstrated that the methylation reaction occurs according to consensus sequence,
typically GGACU; more precisely, RRm6ACH (R notes G or A; H includes A, C, or U),
or Pu (G > A) m6AC (A/C/U) (where Pu represents purine), though there are some
exceptions (reviewed in [14]). The RNA modification is regulated finely by the methylation
“writing” enzymes, as a forward reaction, such as Mettl3, which contains a catalytic domain,
in the protein complex with Mettl14 and Wilms’ tumor 1-associating protein (Wtap) as
subunits [14]. Mettl3 forms a heterodimer with Mettl14 to induce methylation of adenosine
at the N6 position of the RNA. Additionally, Mettl3 constitutes the catalytic site in the
heterodimer formed with Mettl14. Accordingly, m6A in the 5′-[A/G]GAC-3′ consensus
sequence of mRNA plays a role in the function, such as stability, processing, translation
efficiency, and editing [14]. Considering that m6A modification of RNA is involved in the
circadian clock, differentiation of embryonic stem cells and hematopoietic cell lineages,
cortical neurogenesis, DNA damage response, T-cell homeostasis and differentiation, and
primary miRNA processing, the epitranscriptome plays a role in the heterogeneity of
tumors [14]. Eventually, m6A is required for T-cell homeostasis and differentiation. In
mice, the naive Mettl3-deficient T cells inhibit the mRNA decay and increase the levels of
suppressor of cytokine signaling (SOCS) family members, which inhibit the signaling of
a transcription factor, signal transducers and activators of transcription (STAT) [54]; this
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mechanism consequently inhibited IL-7-mediated STAT5 activation and T-cell homeostatic
proliferation and differentiation, suggesting the biological role of m6A modification in
T-cell-mediated pathogenesis and T-cell homeostasis through the mechanism of signal-
dependent induction of mRNA degradation [54].

In the reverse de-methylation reactions, “erasing” enzymes are involved, including
fat mass and obesity-associated protein (FTO) and α-ketoglutarate-dependent dioxygenase
(AlkB) homolog 5 (ALKBH5) [14]. The genes or proteins were identified through the
characteristics of obesity-associated phenotypes, suggesting metabolism is involved closely
in the control of the epitranscriptome in the cells. Given that the 1C metabolism provides the
methylation donor to target molecules, and amino acids such as extracellular methionine,
serine, and glycine can fuel cancer cells and immune T cells in the tumor microenvironment,
it is proposed that those amino acids play a critical role upstream of 1C metabolism, and
thus to eradicate the malignant cancer stem cells and daughter cells, the targeting of the
1C metabolism pathway stands to reason. Moreover, the function of RNA modification
can be exerted via “reading” enzymes, such as the protein family of heterogeneous nuclear
ribonucleoproteins (hnRNP) and YT521-B homology (YTH) m6A RNA binding protein
1 (YTHDF1). Those reading enzymes recognize the methylation of RNAs and bind to
different proteins, which finally affect the translation efficiency and lifetime of RNA [14].
Given that a recent study demonstrated that the oncogene c-MYC promotes the expression
of YTH domain family protein genes [32], it is necessary to develop adequate biomarkers, or
surrogate markers, which can prove the relationship with the final evaluation of diagnostic
and therapeutic behavior and drug efficacy, in medical and pharmaceutical research. Given
that 1C metabolism places the methyl residue as a “fingerprint” on the target molecules,
the amounts and sites of m6A may associate with the intracellular 1C metabolism and the
measurement of the methylation status is proposed to be useful for monitoring diseases as
biomarkers. The recent study showed that the measurement of RNA methylation is more
sensitive and specific for the prediction of early stages of gastrointestinal cancer including
pancreatic cancer, compared to those of the expression amount of RNA [8]. Taken together,
the measurement of the epitranscriptome will be useful for monitoring 1C metabolism.

Considering it is important to maximize anti-cancer effects and to minimize adverse
events, the novel therapeutic approaches will also need increasing specificity and pharma-
cological effects. The recent study indicates that the SLC43A2 methionine transporter is a
candidate for the target with high specificity in the tumor microenvironment [28]. Not only
small compounds, but also therapeutic strategies such as nucleotide medicines, antisense,
shRNA, and genome editing, may be plausible for pre-clinical trials.

5. The Significance of RNA Modification

We can suggest the significance and implication of RNA control via m6A modification,
in comparison with the expression control of each gene promoter or post-translational
levels, as the following. Firstly, the “erasing” enzymes are related closely to metabolic
diseases, such as the “Fat Mass and Obesity Related” (FTO) gene, the mechanisms of
which can impact on obesity and energy balance (reviewed in [55]). The previous studies
indicated that the FTO gene is widely expressed in the brain, including hypothalamic
nuclei linked to food intake regulation in rodents, and the activity that the gene product
plays a role in is associated with an amino acid sensor, linking circulating amino acids to
the mammalian target of rapamycin complex 1 (mTORC1) [55]. Accordingly, the reaction
of RNA modification is supposed to reflect the condition of diet and obesity in bodies.
Accordingly, RNA modification has emerged as a potential target of human diseases, such
as cancer [56]. Second, the intracellular dynamic process is involved in RNA modifica-
tion. RNA modification plays a role in splicing at the post-transcriptional level, nuclear
exportation, and translation in the cytoplasm. The de-methylation is mediated by the
nuclear enzymes, which can reflect the nuclear condition, such as open and closed, of
chromatin in each cell. Recent studies have placed emphasis on the elucidation of the vast
heterogeneity and context-dependent functions of RNA methylation “writers”, “readers”,
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and “erasers”, which are eventually complicated by divergent cell-type-specific and tissue-
specific expression and localization of the effectors, as well as modifications, with abundant
expression of different RNA species (reviewed in [57]). Third, RNA modification responds
to extracellular stimuli. Hypoxia and alterations of nutrients such as glucose and amino
acids, growth factors such as epidermal growth factors and transforming growth factor,
and cytokines signaling are involved in the function of iron-dependent dioxygenases [57].
The response can be executed in a relatively prompt manner to the extracellular condition
by post-transcriptional modification, as with the pre-translational process. The diversity
of RNA modification was observed in microRNAs in non-coding RNAs, in extracellular
vesicles (exosomes) [8]. The diversity of RNA modification can contribute to the hetero-
geneous characters of tumors [14]. Fourth, RNA modification affects its function through
RNA editing, a unique mechanism which can alter the cellular fate of RNA molecules but
also changes their sequence relevant to the genome, as noted in several cases in human
diseases [58], suggesting that it is not an exaggeration to say that the effect of the RNA
modification is in a sense beyond the classical central dogma of molecular biology, i.e., an
explanation of the flow of genetic information within a biological system. Finally, recent
studies emerged that RNA modification has been found to play an essential role in the
regulation of the immune system [59]. RNA modification plays a role in various aspects
of immunity, including immune recognition of antigens and target cells, and activation of
innate and adaptive immune responses in epithelium, mesenchyme, and lymphoid organs,
which can contribute to cell fate decisions and immune function [59]. Accordingly, it is
suggested that RNA modification may be useful for the biomarkers to assess immune
reaction in human diseases. Taken together, RNA modification is expected to provide novel
seeds for the diagnosis and therapy of gastrointestinal cancer, which reflect the critical
one-carbon metabolism.

6. Animal Models Reveal Cell-to-Cell Interactions of 1C Metabolites

MicroRNAs, types of small non-coding RNAs of around 22 bp in length, were discov-
ered as regulators of developmental timing in the nematode Caenorhabditis elegans [60,61].
MicroRNAs have also been shown to play an important role in determining both cell fate
and cell identity in C. elegans [62,63]. MicroRNAs may be used as a mechanism of RNA
interference [64], but also in the development of therapeutic targets of human diseases
including tumors [65,66]. The latest version of the public repository miRbase contains
annotations for 48,860 mature microRNAs across 271 organisms (http://www.mirbase.org
accessed on 1 January 2019).

C. elegans is an appropriate animal model for the study of altered 1C folate metabolism
as most enzymes show a high degree of similarity to their human counterparts, especially
the 64% involved with total methionine synthase. Impaired folate metabolism in humans
can increase birth defects, neurodegenerative disorders, cardiovascular diseases, and can-
cer [67]. Previous work on RNA interference showed that the methionine synthase (MS)
and thymidylate synthase cycles are involved in adaptation mechanisms during folate defi-
ciency and over-supplementation [67]. Furthermore, the biguanide drug metformin, which
is widely used for type 2 diabetes, caused an increased lifespan in C. elegans cocultured
with Escherichia coli as a feed for the nematodes [68]. Metformin-induced longevity was
linked to mutations of MS and SAM synthase in the worms, suggesting that metformin
acts as a dietary restriction mimetic [68]. Interestingly, the previous study also indicated
that metformin-related changes in worm lifespan depended on the E. coli strain’s met-
formin sensitivity and environmental glucose concentration [63]. This finding implicates
the gastrointestinal organs of higher vertebrates through a complex mechanism, such as
inflammation [69].

Another recent study revealed that bacterial metabolism in the C. elegans gut can
affect the nematode’s reaction to anticancer agents [70]. A further study of C. elegans
indicated that diet–microbe interactions can alter the host response to chemotherapeutic
reagents such as 5-fluoro 2′-deoxyuridine (FUdR) [66]. This study showed that dietary

http://www.mirbase.org
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serine does not alter FUdR metabolism, but it changes E. coli’s 1C metabolism, which
exacerbates host drug toxicity [71]. On the other hand, the evolved resistance of E. coli
against fluoropyrimidines can exert other effects, such as a reduction in the impact of
chemotherapies on C. elegans [72]. These findings suggest that the model C. elegans is useful
for the elucidation of metabolic interactions between host and microbiome or between
epithelial cancer and mesenchymal differentiated cells (Figure 6).
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7. RNA Methylation in Caenorhabditis elegans

Studies of transfer (t)RNA methylation in C. elegans indicated that 5-methyl cytosine
(m5C) loss leads to reduced translation efficiency of UUG-rich transcripts and impaired
fertility, suggesting a role for m5C tRNA methylation in translational adaptation to higher
temperatures or heat stress [73]. Another recent study of ribosomal (r)RNA in C. elegans
indicated that the loss of a single enzyme, NOL1/NOP2/Sun Domain Family, Member
1 (NSUN-1), which is required for rRNA methylation, has highly specific effects on the
organism’s development and physiology [74]. The methylation of miRNAs in C. elegans
remains unclear.

8. Conclusions

Although cancer is a genetic disease with various DNA sequence alterations, recent
studies have demonstrated that epigenetic changes, especially of the epitranscriptome, play
a critical role in tumor development, mediated by 1C metabolism. Targeting 1C metabolism
has the potential to inhibit malignant tumor behaviors, as shown by the effects of drugs
targeting Mthfd2, Shmt2, and Mettl3. To assess the effect and underlying mechanisms of
potential therapies in preclinical studies, animal models, such as C. elegans, will be useful
to guide researchers toward precision cancer medicine.
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