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Abstract: Locoweeds, including Oxytropis and Astragalus species, are globally recognized
as plants containing swainsonine (SW), a neurotoxic alkaloid that induces neurological dys-
function and growth inhibition in livestock. SW is produced by endophytic fungi in plants;
the pyrroline-5-carboxylate reductase (P5CR) gene is critical in the fungal SW biosynthetic
pathway. In this study, a P5CR gene knockout mutant (∆P5CR) was constructed from the
endophytic fungus Alternaria oxytropis OW7.8 isolated from Oxytropis glabra. Compared
to the wild-type strain (A. oxytropis OW7.8), the SW content in the ∆P5CR mycelia was
significantly reduced, indicating that the P5CR gene plays a crucial role in promoting SW
biosynthesis. Compared to the wild-type strain A. oxytropis OW7.8, the ∆P5CR mutant
exhibited distinct morphological alterations in both colony and mycelial structures. The
transcriptomic analysis of A. oxytropis OW7.8 and ∆P5CR revealed the downregulation of
six genes associated with SW biosynthesis. Metabolomic profiling further demonstrated
altered levels of six metabolites linked to SW synthesis. These findings provide founda-
tional insights into the molecular mechanisms and metabolic pathways underlying SW
biosynthesis in fungi. They hold significant value for future strategies to control SW in
Oxytropis glabra and contribute positively to the protection and sustainable development of
grassland ecosystems.

Keywords: Alternaria oxytropis OW 7.8; swainsonine; P5CR gene

1. Introduction
Locoweeds, globally referred to as Oxytropis and Astragalus species containing swain-

sonine (SW), are predominantly distributed in western China, North America, and Aus-
tralia [1,2]. SW, an indolizidine alkaloid, inhibits intracellular mannosidase activity, lead-
ing to neurological dysfunction and growth inhibition in livestock upon ingestion [3–5].
Notably, SW also exhibits potential as an anticancer agent by activating mitochondrial-
mediated apoptosis, suppressing tumor metastasis, and inducing cancer cell death [6–8].
To date, studies have confirmed that SW in locoweeds is biosynthesized by endophytic
fungi of the genus Alternaria [9–13].

Endophytic fungi associated with locoweeds belong to Alternaria spp., including
four species: A. oxytropis, A. cinereum, A. fulva, and A. bornmuellerii [14–16]. Early work by Braun
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et al. isolated Alternaria endophytes from eight locoweed species, and Chinese researchers
identified A. oxytropis in Oxytropis kansuensis, O. glabra, and O. ochrocephala [17–22]. Our re-
search group first isolated A. oxytropis from O. glabra populations. This strain, designated A.
oxytropis OW7.8, produces SW in vitro [23,24]. The saccharopine reductase (sac) catalyzes
the following reaction in fungi: α-Aminoadipic semialdehyde + glutamate + NADPH +
H+ ↔ saccharopine + α- ketoglutarate + NADP+ + H2O. Saccharopine is one of the inter-
mediate compounds in SW biosynthesis. To investigate SW biosynthesis, we generated
a saccharopine reductase gene (sac) knockout mutant M1 in A. oxytropis OW7.8 [23,24]. The M1
mutant exhibited a reduced SW level, while the complemented strain C1 had a higher SW
level than both M1 and OW7.8, indicating that Sac enzyme activity promotes SW biosynthe-
sis [23–25]. Furthermore, the supplementation of the culture medium with saccharopine,
α-aminoadipic acid, L-lysine, or L-pipecolic acid (L-PA) enhanced SW production in both
wild-type OW7.8 and M1 strains. The transcriptomic analysis of A. oxytropis OW7.8 and
the M1 mutant revealed key genes associated with SW biosynthesis [25]. Based on these
findings, it is speculated that L-PA can originate from two branches: the delta-1-piperideine-
2-carboxylate (P2C) branch and delta-1-piperideine-6-carboxylate (P6C) branch [23–25].

A comparative genomic analysis of 34 fungal species, including locoweed-associated
Alternaria spp., human dermatophyte Arthroderma spp., and entomopathogenic Metarhiz-
ium spp., was conducted using Hidden Markov Models (HMMs) [12,26]. This analysis
identified putative SW synthesis-related gene clusters (designated SWN gene clusters)
and predicted the functional members involved in SW biosynthesis. The SWN cluster
comprises seven genes (swnA, swnH1, swnH2, swnK, swnN, swnR, and swnT; Table 1), whose
encoded enzymes primarily catalyze the conversion of L-PA to SW [12,26]. Intriguingly,
the composition of the SWN cluster varies across fungal species. In locoweed endophytes,
the cluster contains five core genes (swnH1, swnH2, swnK, swnN, and swnR), whereas swnA
and swnT are absent [12,26].

Table 1. Members of the SWN gene clusters and their predicted functions [12,26].

Gene Encoding Product Function Prediction

swnA Aminotransferase Catalyzing the synthesis of pyrroline-6-carboxylate
(P6C) from L-lysine

swnR Dehydrogenase or reductase Catalyzing the synthesis of L-PA from P6C

swnK Multifunctional protein Catalyzing the synthesis of 1-oxoindolizidine (or
1-hydroxyindolizine) from L-PA

swnN Dehydrogenase or reductase Catalyzing the synthesis of 1-hydroxyindolizine from
1-oxoindolizidine

swnH1 Fe(II)/α-Ketoglutarate-dependent dioxygenase Catalyzing the synthesis of SW from
1,2-dihydroxyindolizine

swnH2 Fe(II)/α-Ketoglutarate-dependent dioxygenase Catalyzing the synthesis of 1,2-dihydroxyindolizine
form 1-hydroxyindolizine

swnT Transmembrane transporter Transport of SW

Our research team previously cloned the swnN gene (GenBank: OR596336) and the
swnH1 gene (GenBank: ON416998) from A. oxytropis OW7.8 [27,28]. The swnN and swnH1
genes were individually knocked out in A. oxytropis OW7.8, and SW was undetectable in
both ∆swnN and ∆swnH1 mutants [27,28]. However, the complemented strain ∆swnN/swnN
regained the ability to synthesize SW, indicating that swnN and swnH1 genes promote
SW biosynthesis [27,28]. Transcriptomic and metabolomic analyses of OW7.8 and ∆swnN
predicted six genes (sac, P5CR, swnH1, swnK, swnH2, and swnR) and five metabolites (L-
glutamate, α-ketoglutaric acid, L-proline, 2-aminoadipic acid, and L-PA) associated with SW
biosynthesis [27]. Similarly, transcriptomic and metabolomic analyses of OW7.8 and ∆swnH1
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predicted five genes (sac, swnN, swnK, swnH2, and swnR) and five metabolites (α-aminoadipic
acid, L-stachydrine, L-proline, saccharopine, and L-PA) linked to SW biosynthesis [28].

Early investigations into fungal SW biosynthesis primarily focused on Rhizoctonia
leguminicola [13]. In this species, the SW biosynthetic pathway proceeds as follows: L-
lysine is first reduced to saccharopine, which is subsequently converted to α-aminoadipic
acid semialdehyde via the action of Sac. Following conformational rearrangement, α-
aminoadipic acid semialdehyde generates P6C. P6C is then reduced to L-PA by 6-carboxyl-
pipecolic acid reductase. L-PA undergoes reductive cyclization to form 1-oxoindolizidine,
which is further reduced by 1-oxoindolizidine reductase to yield 1-hydroxyindolizidine.
Subsequent reactions produce 1,2-dihydroxyindolizidine, which is ultimately hydroxylated
to form SW (Figure 1) [13].
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Figure 1. Partial biosynthesis pathways of SW from R. leguminicola [13].

In Metarhizium robertsii, the proposed biosynthetic pathway from L-PA to SW involves
sequential enzymatic steps mediated by the SWN gene cluster [12]. L-PA and malonyl-
CoA are initially condensed by the multifunctional protein SwnK, followed by reductive
modifications catalyzed by SwnR or SwnN, yielding 1-hydroxyindolizidine intermediates.
Subsequent hydroxylation by SwnH1 and SwnH2, coupled with further reduction by
SwnR/SwnN, ultimately generates SW (Figure 2) [12].

To delineate the roles of SWN cluster members, knockout experiments were per-
formed in M. robertsii [29]. These studies revealed two potential pathways for L-PA
biosynthesis from L-lysine: L-Lysine is converted to P6C via the lysine aminotransferase
(LAT/SwnA), which is subsequently reduced to L-PA by the reductase SwnR. L-Lysine
undergoes direct cyclization to L-PA through lysine cyclodeaminase (LCD). The L-PA-
derived intermediates then converge into a unified pathway: SwnK facilitates the con-
densation of L-PA with malonyl-CoA, generating (8aS)-1-oxoindolizidine. This inter-
mediate is reduced by SwnN to form stereoisomers (1S,8aS)-1-hydroxyindolizidine and
(1R,8aS)-1-hydroxyindolizidine. SwnH2 catalyzes the hydroxylation of these isomers, pro-
ducing (1R,2S,8aS)-1,2-dihydroxyindolizidine, (1S,2S,8aS)-1,2-dihydroxyindolizidine, or
(1S,2R,8aS)-1,2-dihydroxyindolizidine. Finally, 1,2-dihydroxyindolizine undergoes hydrox-
ylation to form SW (Figure 3) [29].
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The P5CR gene (pyrroline-5-carboxylate reductase gene, P5CR) encodes pyrroline-5-
carboxylate reductase (P5CR), which catalyzes the conversion of P6C to L-PA in fungi [30,31].
L-PA is recognized as a critical precursor for SW biosynthesis and serves as a key intermediate
in the secondary metabolism of plants and microorganisms [32,33]. Notably, a limited number
of studies have proposed that the P5CR gene in A. oxytropis from O. ochrocephala may also
belong to the SWN cluster [21]. The transcriptomic analysis of OW7.8 and the M1 mutant
revealed the downregulation of the P5CR gene in M1 compared to the wild-type strain,
suggesting a potential regulatory role of P5CR in SW biosynthesis [23]. Our team previously
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cloned the P5CR gene from the endophytic fungus Alternaria oxytropis OW7.8 (GenBank
accession number: ON004912).

This study aims to investigate the role of the P5CR gene in SW biosynthesis in Alternaria
oxytropis OW7.8 by constructing a P5CR knockout mutant (∆P5CR). The SW levels in both
wild-type A. oxytropis OW7.8 and the ∆P5CR mutant will be quantified, followed by com-
prehensive transcriptomic and metabolomic analyses. These experiments are designed to
elucidate the functional contribution of P5CR to the SW biosynthetic pathway in A. oxytropis
OW7.8 and to refine the overall understanding of SW biosynthesis in this endophytic fungus.
The findings of this research will provide critical insights into the molecular mechanisms
and metabolic pathways underlying the fungal SW synthesis. Furthermore, this study holds
significant practical value for guiding SW control strategies in locoweeds and contributes
positively to the conservation and sustainable management of grassland ecosystems.

2. Materials and Methods
2.1. Fungal Strain

The A. oxytropis OW7.8 strain was isolated from O. glabra by our research group [34].
The mycelia were cultured on potato dextrose agar (PDA) medium at 25 ◦C for
subsequent experiments.

2.2. Genomic DNA Extraction from A. oxytropis OW7.8

Genomic DNA was extracted from A. oxytropis OW7.8 using a plant genomic DNA
extraction kit (TIANGEN). The quality of the extracted DNA was assessed by 1% agarose
gel electrophoresis and quantified using a Q5000 spectrophotometer (Quawell).

2.3. Construction of the P5CR Gene Knockout Vector

The upstream and downstream homologous sequences of the P5CR gene were am-
plified using A. oxytropis OW7.8 genomic DNA as the template and P5CR-UF/P5CR-
UR (5′-CGCGGATCCATGGCAAACACGCAGGAATCTAAGC-3′; 5′-GCACCGGTGTCAC
AGGCGATGAAGTTGGAGAG-3′) and P5CR-DF/P5CR-DR (5′-TATCCTGCAGGCTC
AGCGAGGCGCAGTACAAGCTT-3′; 5′-CGGAATTCCTACCGCCTGTGGTTCACGA-3′) as
primers. The hygromycin phosphotransferase gene (hpt) was amplified using the pCT74 plas-
mid (MiaoLingBio) as the template and H-F/H-R (5′-GCACCGGTGGCTTGGCTGGAGCTAG
TGGAGGTC-3′; 5′-CGGCCTGCAGGGAACCCGCGGTCGGCATCTACTCTAT-3′) as primers.
Using restriction enzyme digestion and ligation, the upstream and downstream homologous
sequences of P5CR were flanked to the hpt gene, constructing the P5CR knockout cassette.
This cassette was then ligated into the pUC19 vector (Takara) to generate the P5CR gene
knockout vector.

2.4. Protoplast Preparation and Transformation of A. oxytropis OW7.8

Young mycelia of A. oxytropis OW7.8 were inoculated into 150 mL of potato dextrose
broth (PDB) medium and cultured at 180 rpm and 25 ◦C for approximately 5 days. The
protoplast lysis solution was prepared by dissolving 0.3 g Driselase, 0.1 g Lysing Enzyme,
and 0.004 g Chitinase in a 15 mL centrifuge tube containing a small volume of 1.2 mol/L
MgSO4 solution, which was then adjusted to a final volume of 10 mL. The mixture was
shaken at 80 rpm and 30 ◦C for 30 min and filtered through a 0.22 µm organic filter into
a 50 mL centrifuge tube. Mycelial balls were filtered through a Miracloth (22–25 µm
pore size) funnel, rinsed twice with ddH2O and once with 1.2 mol/L MgSO4, and gently
squeezed before being added to the lysis solution. The mixture was incubated at 80 rpm
and 30 ◦C for 4 h. After incubation, the solution was filtered through Miracloth into
a new 50 mL centrifuge tube, rinsed twice with 1.2 mol/L MgSO4, and centrifuged at
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4000 rpm for 5 min. The supernatant was discarded, and the pellet was resuspended
in 5 mL of STC buffer (1 mol/L Sorbitol, 100 mmol/L CaCl2, 100 mmol/L Tris-HCl),
followed by centrifugation at 4000 rpm for 5 min. The pellet was resuspended in an
appropriate volume of STC buffer, and the protoplasts were aliquoted into 100 µL portions.
Approximately 2 µg of the P5CR knockout vector was added to each tube, mixed gently,
and incubated on ice for 25 min. SPTC buffer (prepared fresh by adding 0.4 g PEG8000
to 1 mL STC) was filter-sterilized using a 0.22 µm organic filter. One milliliter of SPTC
buffer was added to each tube, mixed gently, and incubated at room temperature for
30 min. After centrifugation at 4000 rpm for 5 min, the supernatant was discarded. Each
tube was mixed with 12.5 mL of molten 1.5% TB3 regeneration medium(1mol/L Sucrose,
0.3% Yeast Extract, 0.3% Casein, 1.5% Agarose L.M.P) containing 50 µg/mL ampicillin
(Amp) and 1 µg/mL hygromycin B (Hyg B), poured into plates, and incubated overnight
at 25◦C. Molten 0.7% TB3 regeneration medium (1mol/L Sucrose, 0.3% Yeast Extract, 0.3%
Casein, 0.7% Agarose L.M.P) supplemented with 50 µg/mL Amp and 2 µg/mL Hyg B was
added to the plates and incubated at 25 ◦C for approximately 14 days.

2.5. Screening and Identification of Transformants

Transformants resistant to Hyg B were screened and verified by PCR. Genomic DNA
from transformants was used as the template for amplification with the following primer
pairs: hptF/hptR (5′-GGCTTGGCTGGAGCTAGTGGAGGTC-3′; 5′-GAACCCGCGGTCGG
CATCTACTCTAT-3′) for the hpt sequence, P5CR-TF/hptR (5′-ATCCGAACCGTCCAAG-3′;
5′-GAACCCGCGGTCGGCATCTACTCTAT-3′) for the upstream homologous sequence
plus hpt, P5CR-TF/P5CR-TR (5′-ATCCGAACCGTCCAAG-3′; 5′-AAGTCCAGTGGTTCCT
CTCAT-3′) for the P5CR knockout cassette, and HYP-F/HYP-R (5′-GACATCGTGCTGCTGA
GTT-3′; 5′-GGTCCATCGGGATACAAG-3′) for the internal P5CR sequence. PCR prod-
ucts were analyzed by gel electrophoresis and sequenced for validation (Sangon Biotech,
Shanghai, China).

2.6. Scanning Electron Microscopy of Mycelia

The colony morphology of OW7.8 and ∆P5CR after 20 days of culture was ob-
served. Mycelial morphology was examined using a scanning electron microscope (SU8100,
3.0 kV, ×30, Hitachi, Tokyo, Japan).

2.7. Extraction and Detection of SW in A. oxytropis OW7.8 and ∆P5CR Mycelia

Mycelia from 20-day cultures of A. oxytropis OW7.8 and ∆P5CR were extracted using
an acetic acid–chloroform solution. SW was purified using cation exchange resin and eluted
with 1 mol/L ammonia. SW levels were quantified by HPLC-MS, with three replicates per
sample. Data were analyzed using one-way ANOVA in GraphPad Prism 9.5.

2.8. Transcriptome Sequencing and Analysis of A. oxytropis OW7.8 and ∆P5CR

Mycelia from 20-day cultures of A. oxytropis OW7.8 and ∆P5CR were flash-frozen
in liquid nitrogen and stored on dry ice for sequencing. Three biological replicates were
prepared for each strain. Transcriptome sequencing was performed on the Illumina NovaSeq
6000 platform (Novogene, Beijing, China). Data analysis was conducted using the R packages
DESeq2 and clusterProfiler, with differentially expressed genes (DEGs, |log2(Fold Change)|
≥ 1 and padj ≤ 0.05) subjected to KEGG and GO functional enrichment analysis [35–37].

2.9. Metabolomic Profiling and Analysis of A. oxytropis OW7.8 and ∆P5CR

Mycelia from 20-day cultures of A. oxytropis OW7.8 and ∆P5CR were flash-frozen in
liquid nitrogen and stored on dry ice for metabolomic analysis. Five biological replicates
were prepared for each strain. Metabolites were detected using HPLC-MS2 technology
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(Novogene, Beijing, China). Data analysis was performed using the R package Com-
pound Discoverer, and differentially metabolites (VIP > 1, |log2(Fold Change)| ≥ 0.59 and
p-value < 0.05) were subjected to KEGG functional enrichment analysis [38–40].

2.10. Extraction of SW Biosynthesis-Related Gene Expression Levels in A. oxytropis OW7.8
and ∆P5CR

Total RNA was extracted from A. oxytropis OW7.8 and ∆P5CR using the OminiPlant
RNA Kit (CWBIO) and reverse-transcribed into cDNA. RT-qPCR was performed using
cDNA templates from both strains, with the actin gene as the internal reference. The follow-
ing primer pairs were used to amplify six SW biosynthesis-related genes: sac-F/sac-R (5′-
CTGCTGCTCGGTGCTGGATTC-3′; 5′-CTAGACTGATGGCGTTGGTGTTGG-3′); R-F/R-R
(5′-TTCTACTTTGCCACACACGAACCC-3′; 5′-ATAGTCAGCCAACCAGCCAATGC-3′);
K-F/K-R (5′-GACCGCTTGCTCGCCTGTG-3′; 5′-CTCGTCAACTCGTCCAACACTTCC-3′);
N-F/N-R (5′-TGACTAAGTTCATTCCCAGCG-3′; 5′-AAGAGTTCCGTTTCTGCCTC-3′);
H2-F/H2-R (5′-CATCTGCTCCTCGCTTGCTACC-3′; 5′-CAGGACAACGCCTCCATCTCTT
TC-3′); H1-F/H1-R (5′-TTGCTTTGCGGAGATGGAACCAG-3′; 5′-CGGAGTGTGCCTGAG
ATGAAGAAG-3′). Gene expression levels were statistically analyzed using GraphPad
Prism 9.5.0, with one-way ANOVA applied to compare data across sample groups.

3. Results
3.1. Construction of the P5CR Gene Knockout Vector in A. oxytropis

The upstream and downstream homologous sequences of the P5CR gene and the
hpt gene were successfully amplified (Figure 4A). These three fragments were ligated to
construct the P5CR knockout cassette, which was then inserted into the pUC19 vector to
generate the P5CR knockout vector (Figure 4B). The final vector contained the ampicillin
resistance gene (AmpR) and the P5CR knockout cassette, which included the hpt gene.
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Figure 4. Construction of the P5CR gene knockout vector. Note: M: 1 kb plus DNA ladder. (A) PCR
electrophoresis image of the upstream and downstream homologous sequences of the P5CR gene and the
hpt gene. Lane 1, 2, 3: Upstream homologous sequence of the P5CR gene, expected product: 422 bp. Lane
4, 5, 6: hpt gene sequence, expected product: 1398 bp. Lane 7, 8, 9: Downstream homologous sequence of
the P5CR gene, expected product: 439 bp. CK: Negative control. (B) Schematic diagram of the P5CR gene
knockout vector. Original Images for Gels see Supplementary Materials.

3.2. Screening and Identification of Knockout Transformants

One week after transforming the A. oxytropis OW7.8 protoplasts with the knockout
vector, a small number of transformants appeared on the TB3 medium. These transformants
were transferred to a PDA medium supplemented with 2 µg/mL of hygromycin B (Hyg
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B) for resistance screening. The PCR analysis confirmed that the knockout strain ∆P5CR
could amplify the hpt gene, the upstream homologous sequence of P5CR plus the hpt gene,
and the P5CR knockout cassette, but not the internal sequence of P5CR (Figure 5). The
sequencing of the PCR products further validated the correct integration of the knockout
cassette, confirming the successful generation of the ∆P5CR mutant.
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amplification of the hpt gene sequence, expected product: 1380 bp. Lane 1: Transformant DNA;
Lane 2: Wild-type strain DNA. (B) PCR amplification of the upstream homologous sequence of
the P5CR gene + hpt gene sequence, expected product: 1563 bp. Lane 1: Wild-type strain DNA;
Lane 2: Transformant DNA. (C) PCR amplification of the P5CR gene knockout cassette se-
quence, expected product: 759 bp for the wild-type strain and 1799 bp for the knockout strain.
Lane 1: Transformant DNA; Lane 2: Wild-type strain DNA. (D) PCR amplification of the in-
ternal sequence of the P5CR gene, expected product: 152 bp. Lane 1: Wild-type strain DNA;
Lane 2: Transformant DNA. Original Images for Gels see Supplementary Materials.

3.3. Comparison of Colony Morphology and Scanning Electron Microscopy (SEM) Structures
Between A. oxytropis OW7.8 and ∆P5CR

The wild-type A. oxytropis OW7.8 exhibited white, fluffy colonies with a raised center
and radial mycelial growth, accompanied by melanin accumulation on the reverse side. In
contrast, the ∆P5CR mutant formed raised, irregularly edged colonies with a creamy-white
to pale-yellow appearance, lacking pigment accumulation. The mutant also displayed
slower growth, irregular mycelial patterns, and densely packed, stacked hyphae (Figure 6).
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The SEM analysis revealed distinct morphological differences between the two strains.
The wild-type A. oxytropis OW7.8 exhibited typical fungal mycelial structures, with loose, fil-
amentous, and well-organized hyphae (Figure 7A,B). In contrast, the ∆P5CR mutant showed
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an abnormal mycelial morphology, characterized by tightly packed, swollen, and irregularly
shaped hyphae, with some structures appearing shrunken or collapsed (Figure 7C,D).
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3.4. SW Levels in A. oxytropis OW7.8 and ∆P5CR Mycelia

The SW content in 20-day-old mycelia of A. oxytropis OW7.8 was 102.69 ± 3.38 µg/g·DW,
while that in ∆P5CR was significantly lower at 46.82 ± 7.41 µg/g·DW (p < 0.001) (Figure 8).
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3.5. Transcriptomic Analysis of A. oxytropis OW7.8 and ∆P5CR

Transcriptome sequencing of A. oxytropis OW7.8 and ∆P5CR yielded 252,427,347 clean
reads. Significant expression differences were observed between OW7.8 and ∆P5CR (Figure 9A),
with 2791 differentially expressed genes (DEGs) identified, including 1273 upregulated and
1518 downregulated genes (Figure 9B).
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The GO enrichment analysis annotated 1535 DEGs to 582 biological processes (BPs),
183 cell components (CCs), and 770 molecular functions (MFs). Key enriched processes in-
cluded an oxidation-reduction process, transmembrane transport, membrane part, intrinsic
component of membrane, oxidoreductase activity, and cofactor binding (Figure 10A). Specif-
ically, for the oxidation-reduction process, 55 genes were upregulated and 122 genes were
downregulated; for oxidoreductase activity, 50 genes were upregulated and 117 genes were
downregulated; for transmembrane transport, 41 genes were upregulated and 100 genes
were downregulated; for cofactor binding, 47 genes were upregulated and 87 genes were
downregulated; and for transmembrane transporter activity, 25 genes were upregulated and
69 genes were downregulated.
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The KEGG enrichment analysis annotated 893 DEGs, with the largest proportions
associated with secondary metabolism and ribosome biosynthesis. Key pathways included
ribosome, starch and sucrose metabolism, ribosome biogenesis in eukaryotes, and pen-
tose and glucuronate interconversions (Figure 10B). Specifically, for the biosynthesis of
secondary metabolites, 44 genes were upregulated and 67 genes were downregulated. For
the ribosome, fifty-one genes were upregulated and one gene was downregulated. For
starch and sucrose metabolism: five genes upregulated and eighteen genes were downreg-
ulated. For ribosome biogenesis in eukaryotes, twenty genes were upregulated and one
gene was downregulated. For pentose and glucuronate interconversions, three genes were
upregulated and sixteen genes were downregulated.

Notably, the expression levels of swnN, swnR, swnK, swnH1, Aminoadipate reductase,
and sac were downregulated in ∆P5CR.
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3.6. Metabolomic Profiling of A. oxytropis OW7.8 and ∆P5CR

The principal component analysis (PCA) of metabolomic data revealed distinct metabo-
lite profiles between ∆P5CR and OW7.8 (Figure 11A,B). In positive ion mode, the most
abundant metabolites were lipids and lipid-like molecules (30.07%), followed by phenyl-
propanoids and polyketides (3.44%) and alkaloids and derivatives (2.17%). In negative ion
mode, lipids and lipid-like molecules accounted for 39.14%, while phenylpropanoids and
polyketides represented 2.53% (Figure 11C,D). A total of 498 differentially expressed metabo-
lites (317 upregulated, 191 downregulated) were detected in positive ion mode, and 269
(159 upregulated, 110 downregulated) were detected in negative ion mode (Figure 12A,B).
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negative ion mode.
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Figure 12. Metabolomic analysis of A. oxytropis OW7.8 and ∆P5CR. Note: (A) Clustering heatmap
analysis of differential metabolites in positive ion mode. (B) Clustering heatmap analysis of differen-
tial metabolites in negative ion mode. (C) KEGG enrichment analysis of differential metabolites.

The KEGG enrichment analysis of 777 differential metabolites annotated 222 metabo-
lites to 50 metabolic pathways. These include the biosynthesis of secondary metabolites
(twenty-nine), biosynthesis of amino acids (fourteen), Pyrimidine metabolism (thirteen),
Aminoacyl-tRNA biosynthesis (nine), and Glyoxylate and dicarboxylate metabolism (nine)
(Figure 12C). Six metabolites closely associated with SW biosynthesis were identified: sac-
charopine, L-PA, α-aminoadipic acid, L-lysine, L-proline, and L-glutamate. Among these,
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saccharopine, L-PA, α-aminoadipic acid, L-lysine, and L-proline were downregulated,
while L-glutamate was upregulated.

3.7. Expression of SW Biosynthesis-Related Genes in A. oxytropis OW7.8 and ∆P5CR

The RT-qPCR analysis of 20-day-old cultures revealed that the expression levels of sac, swnR,
swnK, swnN, and swnH1 were significantly lower in ∆P5CR compared to A. oxytropis OW7.8
(p < 0.001). No significant difference was observed in the expression of swnH2 (Figure 13).
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4. Discussion
This study investigated the role of the P5CR gene in SW biosynthesis in the locoweed

endophytic fungus A. oxytropis OW7.8. For the first time, we successfully knocked out the
P5CR gene in A. oxytropis OW7.8, resulting in a significant reduction in SW levels in the
∆P5CR mutant compared to the wild-type strain. This finding indicates that P5CR enzyme
activity promotes SW biosynthesis in fungi. Additionally, the ∆P5CR mutant exhibited
slower growth, lack of pigment accumulation, irregular colony edges, and densely packed,
swollen hyphae with partially shrunken and collapsed structures. These observations
suggest that P5CR also influences the growth, reproduction, and metabolic processes of A.
oxytropis OW7.8.

Transcriptomic data suggest that SW biosynthesis in A. oxytropis OW7.8 is associated
with pathways related to alkaloid and derivative metabolism, organic nitrogen compound
metabolism, heterocyclic compound metabolism, terpenoid and polyketide metabolism,
arginine and proline metabolism, secondary metabolite biosynthesis, and lysine biosynthe-
sis and degradation. Among the DEGs in A. oxytropis OW7.8 and ∆P5CR, six genes closely
associated with SW biosynthesis (swnN, swnR, swnK, swnH1, Aminoadipate reductase, and
sac) were downregulated. The products of swnN, swnR, swnK, and swnH1 catalyze reactions
downstream of P5CR. The knockout of P5CR likely reduced L-PA formation, leading to
the downregulation of these four genes. However, due to limitations in transcriptomic
platforms, genes such as AASS, L-lysyl-alpha-oxidase, lysDH, and Saccharopine oxidase were
not enriched.

The metabolomic analysis identified six metabolites closely associated with SW biosyn-
thesis: saccharopine, L-PA, α-aminoadipic acid, L-lysine, L-proline, and L-glutamate.
Among these, saccharopine, L-PA, α-aminoadipic acid, L-lysine, and L-proline were down-
regulated in ∆P5CR. Saccharopine, α-aminoadipic acid, L-PA, and L-lysine are key precur-
sors in the SW biosynthetic pathway. The inactivation of P5CR in ∆P5CR disrupted the con-
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version of P6C to L-PA, leading to reduced SW levels and the downregulation of upstream
metabolites (saccharopine, α-aminoadipic acid, and L-lysine). P5CR also catalyzes the
synthesis of L-proline from P5C. In ∆P5CR, the inability to convert P5C to L-proline resulted
in reduced L-proline levels, while the glutamate-semialdehyde dehydrogenase-mediated
conversion of P5C to L-glutamate led to upregulated L-glutamate levels. Additionally,
other enzymes, such as SwnR, may participate in the conversion of P6C to L-PA. However,
due to limitations in metabolite databases, intermediates such as 6-amino-2-oxohexanoate,
P2C, and P6C were not detected.

Integrated transcriptomic and metabolomic analyses revealed that the downregula-
tion of Aminoadipate reductase reduced α-aminoadipic acid levels, as this enzyme catalyzes
the conversion of α-aminoadipic acid to α-aminoadipate semialdehyde. Similarly, the
downregulation of sac, which catalyzes the synthesis of saccharopine from α-aminoadipate
semialdehyde, may be attributed to reduced levels of this intermediate. The SW biosyn-
thetic pathway predicted based on the transcriptomic and metabolomic data in this study is
consistent with the pathway proposed in our latest research [27,28]. These findings deepen
our understanding of the SW biosynthetic pathway in A. oxytropis OW7.8 and provide
insights into the enzymatic reactions involved. In the future, as more SW biosynthetic genes
are characterized, we hope to further elucidate and refine the SW biosynthetic pathway.

5. Conclusions
This study constructed the gene knockout mutant strain ∆P5CR of A. oxytropis OW7.8.

Compared to OW7.8, the SW content in ∆P5CR was significantly reduced, indicating that
the P5CR gene promotes SW biosynthesis. The mutant also exhibited an altered colony
and mycelial morphology. Transcriptomic and metabolomic analyses of A. oxytropis OW7.8
and ∆P5CR identified six downregulated genes and six differentially expressed metabolites
closely associated with SW biosynthesis. The predicted SW biosynthetic pathway based on
these omics data is consistent with our recent findings. This research provides a foundation
for elucidating the molecular mechanisms and metabolic pathways of SW biosynthesis in
fungi, offering valuable insights for controlling SW in Oxytropis glabra and contributing to
the conservation and sustainable management of grassland ecosystems.
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