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ABSTRACT

During recent years, miRNAs have been shown to
play important roles in the regulation of gene ex-
pression. Accordingly, much effort has been put into
the discovery of novel uncharacterized miRNAs in
various organisms. miRNAs are structurally defined
by a hairpin-loop structure recognized by the two-
step processing apparatus, Drosha and Dicer, nec-
essary for the production of mature ∼22-nucleotide
miRNA guide strands. With the emergence of high-
throughput sequencing applications, tools have
been developed to identify miRNAs and profile their
expression based on sequencing reads. However,
as the read depth increases, false-positive predic-
tions increase using established algorithms, under-
scoring the need for more stringent approaches.
Here we describe a transparent pipeline for confi-
dent miRNA identification in animals, termed miRd-
entify. We show that miRdentify confidently discloses
more than 400 novel miRNAs in humans, including
the first male-specific miRNA, which we successfully
validate. Moreover, novel miRNAs are predicted in
the mouse, the fruit fly and nematodes, suggesting
that the pipeline applies to all animals. The entire
software package is available at www.ncrnalab.dk/
mirdentify.

INTRODUCTION

MicroRNAs (miRNAs) are small evolutionary conserved
non-coding RNAs involved in the regulation of gene ex-
pression by translational repression and mRNA destabiliza-
tion (1,2). This regulatory role has within the last decade
been shown to be crucial for most biological processes in-
cluding developmental timing, stem cell differentiation, cell
division and disease development (3–6). The biogenesis of
miRNAs includes two cleavage events carried out by RNase
III enzymes, Drosha and Dicer, producing an RNA duplex
structure with 2 nt 3′ overhangs at each terminus. Typi-

cally, one strand––the guide strand––from the RNA duplex
is incorporated into the RNA-induced silencing complex,
which represents the miRNA effector complex, whereas the
other strand––the passenger strand––is degraded. Using
highly sensitive deep-sequencing techniques, miRNA bio-
genesis intermediates (i.e. passenger strands) are in most
cases easily detectable; thus, for each bona fide miRNA,
both duplex-forming guide and passenger strand reads with
the corresponding RNase III-specific overhangs should be
detected in contemporary datasets.

Within the last decade, great efforts have been made to
predict and identify novel miRNAs within the genomes
of eukaryotes. A handful of tools have been developed to
predict miRNAs in genomes either using a comparative
phylogenetic approach (7,8) or a non-comparative, sup-
port vector machine-based approach (9–11). With the emer-
gence of high-throughput sequencing techniques, a great re-
source of small RNA species within cells is readily avail-
able, which greatly enhances its predictive power. This has
been implemented in prediction algorithms to identify novel
miRNA species more efficiently (12–16). Currently, miRD-
eep2, which scores the likelihood of novel candidates ac-
cording to Bayesian probabilities, is likely the most reliable
prediction tool available (13,17).

Measures to ensure confident animal miRNA annota-
tion (18) have essentially been based on two main criteria:
(i) detectable expression and (ii) proper structural features,
i.e. a stem-loop structure conforming to Drosha/Dicer-
dependent maturation. However, with the depth of high-
throughput sequencing, the criterion of expression is eas-
ily met, and without increased stringent structural speci-
ficity, a multitude of false-positive miRNA species will in-
evitably emerge on the global scale. Hence, exact parame-
ters for miRNA hairpin recognition have never been estab-
lished and with the current depth of small RNA sequencing
techniques and the abundant occurrence of putative stem-
loop structures in animal genomes (19), the confidence of
miRNAs annotated solely based on sequencing efforts is in
several cases highly questionable (20). Accordingly, several
studies have identified ‘non-genuine’ miRNA entries in the
miRBase registry, which cannot be validated experimentally
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Figure 1. The miRdentify pipeline.

(21), or seem to be derived from degradation of abundant
RNA species (22,23). This emphasizes the imminent need to
improve the reliability of miRNA annotation and thus ad-
ditional parameters and increased stringency are necessary
to reduce continued annotation of non-genuine miRNAs.

Here, we have developed a stringent approach to con-
fidently predict novel miRNAs in animals. Only miRNA
hairpin structures with distinct guide and passenger strand
reads, annotated miRNAs as well as predicted, putatively
engaging in duplex formation are considered in the analysis.
In addition, we establish a series of distinct criteria serving
as dynamic parameters for novel miRNA prediction. The
strength of all parameters is concomitantly increased until
the estimated false-positive rate (FPR) is below 0.01. The
outcome of this approach is a high confidence and strin-
gent miRNA prediction tool, which we coin miRdentify. As
a result of accumulating multiple available small RNA se-
quencing datasets, we predict more than 400 novel human
miRNAs including the first human male-specific miRNA,
which we validate by northern blotting. Furthermore, miR-
dentify also predicts several novel miRNAs in the mouse,
the fruit fly and nematodes. miRdentify is publicly available
at www.ncrnalab.dk/mirdentify.

MATERIALS AND METHODS

miRdentify

Small RNA sequencing datasets were retrieved from the
Gene Expression Omnibus (GEO); accession numbers
are listed in Supplementary Table S1. The reads were
adaptor-trimmed and collapsed using miRdentify (the
fa2tab tool) discarding all reads not within 18–26 nu-
cleotides in length. Reads were subsequently mapped to ref-
erence genome (GRCh37/hg19, GRCm38/mm10, BDGP
R5/dm3, WS220/ce10) using the Bowtie version 1.0.0 (24).

Mapped reads within 46–80 nucleotides (the predefined
size of pre-miRNA hairpin, Supplementary Figure S1A)
were evaluated in duplex formation using MultiRNAFold
version 1.1 (25). A locus containing reads capable of duplex
formation with minimal free energy (MFE) ≤ −14, consis-
tent with the vast majority of annotated 5p and 3p duplexes
(Supplementary Figure S1B), were kept for further analy-
sis as miRNA candidates. The most abundant read in the
candidate loci was assigned the guide strand, and the most
abundant read able to potentially produce 46–80 nt hair-
pin structures with the guide strand was assigned passenger
strand. The pre-miRNA locus was then defined by the guide
and passenger strand adding 10 additional nucleotides be-
fore and after (useful for more accurate structural predic-
tion and overhang assessments). All pre-miRNA loci were
scored in 10 parameters (Figure 2 and Supplementary Fig-
ures S2–S7) and divided into annotated miRNA based on
miRBase version 20 (26) or candidate miRNA. For each pa-
rameter, a cutoff was assigned based on the performance of
annotated miRNAs, e.g. excluding one percent of annotated
miRNAs. The strength of the parameters was determined
by the number of candidate miRNAs excluded by the given
cutoff (see text for more details). Subsequently, the num-
ber of expected positives and the associated FPR was cal-
culated, as follows (see also Supplementary Figure S8):

F PR = Expected
Observed

= �(1 − Strength)xN
Observed

,

where Observed is the number of candidates passing all
cutoffs and N is the total number of candidates consid-
ered. Cutoffs for each parameter were then incremented
uniformly (i.e. excluding 2, 3, 4%. . . of annotated miRNAs)
until an FPR ≤0.01 was reached. In the end, a final list
of novel miRNAs is compiled comprising all the candidate
miRNAs successfully passing all 10 parameter cutoffs.

Quality assessment of other methods

Shell commands used are listed in the Supplementary Table
S4. Rfam percentage was assessed by mapping the mature
miRNA sequences against Rfam version 11. Repeatmask
percentage was calculated based on the mask from UCSC
(University of California Santa Cruz) genome browser.
Here, miRNAs were scored as repeatmasked, if more than
half the pre-miRNA locus was embedded in a repeatmasked
region. Pre-miRNA sequence including 10 nucleotides
flanking sequence on each side of the pre-miRNA sub-
sequently submitted to available low-throughput miRNA
prediction tools: miR-Abela (http://www.mirz.unibas.ch/
cgi/pred miRNA genes.cgi), miREval 2.0 (http://mimirna.
centenary.org.au/mireval/) and CID-miRNA (http://mirna.
jnu.ac.in/cidmirna/) scores were retrieved from their respec-
tive online webtools, using default setting. miRFinder ver-
sion 4.0 (http://www.bioinformatics.org/mirfinder/), miR-
Para 6.2 (http://159.226.126.177/mirpara/download.htm)
and MiPred (http://www.bioinf.seu.edu.cn/miRNA/) were
downloaded and executed. Finally, the output produced by
the different algorithms was retrieved and analyzed.

http://www.ncrnalab.dk/mirdentify
http://www.mirz.unibas.ch/cgi/pred_miRNA_genes.cgi
http://mimirna.centenary.org.au/mireval/
http://mirna.jnu.ac.in/cidmirna/
http://www.bioinformatics.org/mirfinder/
http://159.226.126.177/mirpara/download.htm
http://www.bioinf.seu.edu.cn/miRNA/
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Figure 2. Parameters. (A–J) To distinguish true miRNA entities from other hairpin-forming structures, annotated miRNAs (black, n = 1007) and all the
putative candidates (gray, n = 30 110) were scored by 5′ heterogeneity (A, B), overhangs, negative numbers indicate 5′ overhang (C, D), thermodynamics
(E, F), entropy (G, H), tailing (I) and multimapping (J). Scores are depicted as cumulative plots. In all cases, miRNA and candidates differ significantly (P
< 2.2E-16, two-sided Kolmogorov–Smirnov test). See also supplementary Figures S2–S7 for detailed information on parameter value assessments.
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miRNA validation

The novel two chrY-situated miRNAs, NM#419 and
NM#420, were PCR amplified with ∼200 bp flanking
sequence on each side using ATAGAAGCGGCCGC
GCCTCTTTCTAGCCATTGGA/ATAGAAGTCGAC
AGAATTGTCTTGGGCCACAC or ATAGAAGCGG
CCGCTTTGTGAGGCAGCAAAGACA/ATAGAAGT
CGACTGTTGGGTTGATAGGTGCAG, respectively,
digested with NotI and SalI and inserted into NotI/SalI-
digested pJEBB vector. HEK293 cells were transfected
with either empty pJEBB or miRNA containing pJEBB
using calcium phosphate procedure. Forty eight hours after
transfection, RNA was harvested using TRIzol R© reagent
(Invitrogen) according to manufacturer’s protocol. Thirty
micrograms of RNA was separated on 12% denaturing
polyacrylamide gel electrophoresis and transferred to
Amersham hybondTM-N+ membranes (GE Healthcare).
The membranes were then hybridized in Church buffer
[0.5 M NaPO4, 7% sodium dodecyl sulphate (SDS), 1
mM ethylenediaminetetraacetic acid (EDTA), 1% bovine
serum albumin (BSA), pH 7.5] with 32P-endlabeled DNA
probes (NM#419, GGTAACTTCCCAACATAGTATT;
NM#420, CTCACAAACTGCTTCAAAAGCA; miR-
15b, TGTAAACCATGATGTGCTGCTA) at 37◦C.
Membranes were washed three times in 2xSSC (300 mM
NaCl, 30 mM Na-citrate, pH 7.0) with 0.1% SDS at room
temperature and exposed on phosphorimager screens and
analyzed using Quantity One R© or Image LabTM software
(Bio Rad).

RESULTS

Previously, it has been shown that the majority of bona
fide miRNAs are detectable across multiple deep sequenc-
ing datasets (20). Furthermore, consolidation of datasets
enriches for distinct biological entities and dilutes ran-
dom degradation products. In an attempt to identify novel
miRNA using online datasets, we collected and combined
∼350 small RNA sequencing datasets, resulting in ∼3 bil-
lion total reads in the size range between 18 and 26 nu-
cleotides (Supplementary Table S1).

Parameters for in silico miRNA annotation

An imperative task for confident in silico annotation of
miRNAs is stringency. While potentially sacrificing several
bona fide miRNAs, we aim to avoid false positives using a
highly stringent approach with several ‘cutoff criteria’ that
should all be met in order to become scored as a miRNA.
First, all reads from the consolidated datasets were mapped
to the human genome allowing no mismatches (hg19), and
discarding reads with more than four genomic hits to avoid
highly repetitive loci (Figure 1). This resulted in mapping
of ∼82% of all reads (73% mapped onto known human
miRNA loci, miRBase version 20).

The detection of both 5p and 3p arms (miR and miR*
sequences) in miRNA prediction has previously been re-
ported as an important signature indicative of miRNA-like
biogenesis (27,28). Thus, reads with potential duplex for-
mation capabilities were collected by ‘walking’ along the

genome in 46–80 basepair windows, including all the addi-
tional reads emanating from the same locus (Figure 1). This
resulted in 31 117 putative candidates. Cross-referencing the
list of candidates with miRBase version 20 revealed that
1007 were annotated miRNAs and the remaining 30 110
candidates were, thus, considered as putative novel miR-
NAs. For each candidate, 10 different features were ana-
lyzed (Figure 2A–I).

Heterogeneity. In order to avoid degradation-derived
reads positioned on miRNA-like hairpin structures to be in-
cluded in the final list of confident miRNAs, we established
a simple measure of heterogeneity. Firstly, miRNA biogen-
esis and downstream events generally result in a high pre-
cision of the miRNA 5′ end in agreement with seed-based
miRNA-targeting. Therefore, low 5′ heterogeneity is typi-
cally observed for bona fide miRNAs, in agreement with
RNase III-based endonucleolytic cropping (27,29). Hetero-
geneity was calculated for each arm as the count of each
read mapping the respective arm multiplied by the distance
to the most predominant read relative to total count (Sup-
plementary Figure S2). As expected, heterogeneity was rad-
ically lower for loci matching annotated miRNAs compared
with the list of putative miRNA candidates retrieved in the
initial genome survey (Figure 2A and B). Furthermore, an-
notated miRNAs exhibit almost identical 5p and 3p arm
heterogeneity. The 5′ end of the 3p arm is supposedly both
Drosha and Dicer dependent, and therefore expected to be
more prone to heterogeneity. However, the lack of increased
heterogeneity in the 3p arm suggests that either Dicer cleav-
age is not solely defined by a molecular ruler as previously
suggested (30,31) or that Drosha/Dicer both conduct accu-
rate processing but post-processing events are responsible
for the observed heterogeneity.

3′ overhang. Bona fide miRNA duplex structures are typ-
ically characterized by two nucleotide 3′ overhangs at both
ends due to the processing mechanisms of Drosha and
Dicer. As noted above, the occurrence of predominant reads
corresponding to either the 5p or 3p arm of the miRNA
hairpin is included here as a prerequisite for in silico miRNA
prediction, which enables an overhang assessment of the
predicted 5p/3p duplex formation. We evaluated the over-
hang profile of annotated miRNAs (Supplementary Figure
S3) and as expected we identified the two nucleotide over-
hang as the most abundant type of overhang (Figure 2C and
D). In contrast, the list of candidates showed a wide range
of overhangs with no obvious preference, which likely repre-
sent non-RNAi-derived products. This indicates that over-
hang discrimination is a useful parameter to distinguish be-
tween bona fide miRNAs and random hairpin structures.

Thermodynamics. miRNA hairpin structures exhibit a
lower free energy than random RNA (32), and therefore we
included a thermodynamic MFE score as a parameter (Sup-
plementary Figure S4). Here, we not only determined the
calculated MFE of miRNA duplex structures (Figure 2E,
Supplementary Figure S4A and B) but also the MFE of the
flanking region (Figure 2F, Supplementary Figure S4A and
C), which has been shown to be part of the recognition by
the microprocessor (33). As expected, annotated miRNAs
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display a lower MFE in the duplex structure and flanking
region compared to the group of putative candidates.

Entropy. Hairpin structures of simple repeat RNA are
widespread in the transcriptome and therefore often found
in small RNA sequencing datasets. Even though miRNA-
like biogenesis and function of simple-repeat RNA has been
observed, we included a nucleotide complexity assessment
to avoid potential erroneous miRNA prediction of simple
repeat hairpins (Supplementary Figure S5A and B). Indeed,
annotated miRNAs exhibit a higher degree of nucleotide
entropy compared to the list of putative candidates (Fig-
ure 2G), suggesting that bona fide miRNAs tend to have
a more complex nucleotide arrangement than the average
candidate hairpin structure. Also, structural entropy was
similarly assessed (Supplementary Figure S5A and C). Con-
ventionally, the pre-miRNAs are simple hairpin-loop struc-
tures, and, as seen in Figure 2H, the structural entropy of
annotated pre-miRNA hairpins is generally lower than can-
didate hairpins, suggesting a preference for lower structural
complexity in the secondary structure of miRNA precur-
sors.

Non-templated tailing. Several studies have shown non-
templated tailing of miRNAs with adenosine or uridine
residues (34–36). Consistently, these 3′end modifications are
widespread in small RNA sequencing datasets and we also
observe a relatively high level of tailing in the group of anno-
tated miRNAs compared to the group of candidates (Figure
2I) as measured by the ratio of genomic non-mapped reads
having a terminal A or U mismatch compared to reads with
mismatches elsewhere (Supplementary Figure S6).

Multimapping. Finally, we excluded all provisional candi-
dates containing ‘multimapped’ reads to avoid ambiguous
miRNA evidence. In the initial perfect mapping of reads,
a restriction of no more than four genomic hits was set to
discard highly repetitive loci. Here, the discarded reads (i.e.
reads with more than four genomic hits) are mapped back
onto the candidate sequences, and the fraction of multimap-
ping reads relative to single-mapping reads (i.e. reads with
no more than 4 genomic hits) determines the multimap-
ping score (Supplementary Figure S7). This reveals the can-
didates that have undergone an incomplete evaluation due
to the initial multimap restriction and therefore the assign-
ment of guide and passenger strand and the downstream
analysis of the high-scoring candidates are therefore not
trustworthy. Also, annotated miRNAs rarely emanate from
loci with a high multimap occurrence (Figure 2J), suggest-
ing that this parameter not only addresses the trustworthi-
ness of the above assessments but also distinguishes between
true and false miRNA loci.

Cutoff values and FPRs

To estimate the number of miRNAs predicted by chance
and thereby calculating the FPR, each parameter has to
behave independently. To validate this assessment, Pearson
correlations between all parameters were calculated (Fig-
ure 3). This showed, not surprisingly, that the 5p and 3p
overhang values were highly interdependent. To a lesser de-
gree, a positive correlation between 5p and 3p heterogeneity

Figure 3. Parameter dependencies. Scatter plots and Pearson correlation
scores for all parameter pairs. Annotated miRNAs are excluded (n = 30
110).

and between the structural entropy and duplex MFE is ob-
served. Also, the thermodynamic properties of the flanking
sequence and the entropy of nucleotide composition show
a positive correlation. However, in this case, the correla-
tion is complementary, as a low flanking MFE and high
nucleotide entropy are known features of bona fide miR-
NAs. This means that the strength of flanking MFE and nu-
cleotide entropy combined, exceeds the product of individ-
ual strengths, i.e. these parameters in conjunction act syner-
gistically in demarcating miRNA species from non-miRNA
hairpin candidates. Conclusively, we approximate that all
parameters except the overhangs behave independently, and
thus for the FPR assessment, the overhangs are grouped to-
gether, resulting in nine independent parameters.

Then, starting at 1% relative cutoff, for each parame-
ter the worst 1% of annotated miRNAs was discarded, i.e.
the miRNAs with high heterogeneity, adverse overhangs,
low level of tailing, low nucleotide entropy etc. The abso-
lute values in each parameter corresponding to a 1% cutoff
were used to define true and false miRNAs (Supplemen-
tary Figure S8A, first column). As an example, 1% of an-
notated miRNAs detected has a 5′end heterogeneity score
above 6.48 (Supplementary Figure S8A), whereas 13% of all
the collective miRNA candidates exceed this score. There-
fore, at 1% cutoff, the strength of this parameter is 0.13
(number of eliminated candidates/total number of candi-
dates, Supplementary Figure S8B). Applying this approach
on the other parameters, the expected and observed number
of candidates passing all parameters were 9423 and 9861, re-
spectively (Supplementary Figure S8B and C), resulting in
an FPR of 0.956 (expected/observed, Supplementary Fig-
ure S8B and C). Subsequently, the relative cutoff was incre-
mented stepwise by 1% (Figure 4A and Supplementary Fig-
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Figure 4. False positive rate. (A) Using variable relative cutoffs (X-axis),
the expected false positives (black) and the observed number of predicted
miRNA (gray) are plotted. The –log10 ratio between false positive and the
actual number of predictions is plotted in green. By default, a –log10 (pre-
diction miRNA/expected false positives) above 2 (i.e. an FPR ≤0.01) was
used corresponding to a relative cutoff of 0.09. (B) Scatterplot with anno-
tated (gray), observed positive candidates (red) and expected false positives
(black) as a function of FPR. 430 novel miRNAs of which 10 are antisense
to known miRNAs loci and 503 annotated miRNAs pass the FPR ≤0.01
criterion. (C) Using the 0.09 cutoff, the strength of each parameter is de-
picted as the fraction of candidates failing the specific parameter cutoff.
The cutoff values and the corresponding strength for each parameter are
depicted in Supplementary Figure S8A and B.

ure S8A and B). For each cutoff, the ratio between expected
(Figure 4A, black line) and observed miRNA candidates
(Figure 4A, gray line) denotes the FPR (Figure 4A, green
line). We selected an FPR ≤0.01 to confidently demarcate
false and true positives. This was obtained at a relative cut-
off of 9% (0.09, resulting in an FPR of 0.007, Figure 4A and
Supplementary Figure S8B) producing a total of 933 ac-

cepted miRNA structures (Figure 4A), of which 503 species
were annotated in miRBase, 10 species were antisense to an-
notated miRNAs and the remaining 420 were currently not
annotated and thus considered to be novel miRNAs (Fig-
ure 4B). As expected, based on the comparison between an-
notated and candidate miRNAs (Figure 2), 5′heterogeneity,
duplex thermodynamics, overhangs and tailing scored as
the strongest parameters in the miRNA prediction (Figure
4C), discarding between 60 and 80% of candidate structures
at the 9% cutoff.

Comparison to other prediction methods

Currently, miRDeep2 is one of the most reliable methods
for prediction of novel miRNAs. Based on the consoli-
dated small RNA dataset, miRDeep2 was able to predict
between 898 and 406 novel miRNAs using a miRDeep2
score ≥1 or ≥10, respectively (Supplementary Table S2).
However, the set of novel miRNAs predicted by miRDeep2
was more heterogeneous in terms of pre-miRNA length
compared to miRdentify and miRBase-annotated miRNAs
(Figure 5A and Supplementary Figure S12D), and con-
tained a considerably higher percentage of Rfam database-
associated RNA species (Figure 5A). Furthermore, a higher
fraction of miRNAs predicted by miRdentify was scored as
bona fide when subjected to six previously established low-
throughput prediction tools available (Figure 5A): miR-
Abela (10), miRFinder (37), miRPara (38), miREval (39),
MiPred (40) and CID-miRNA (41). Surprisingly, based on
these analyses, little or no difference between the high scor-
ing (score ≥10) and total (score ≥1) miRDeep2 species was
observed, suggesting that increased score does not infer in-
creased quality. Comparing the distribution and density of
reads on the predicted pre-miRNA loci showed a very strin-
gent pattern of 5p and 3p reads on the pre-miRNAs pre-
dicted by miRdentify similar to annotated miRNA (Fig-
ure 5B), whereas the miRDeep2 predicted species displayed
a more heterogeneous distribution, and accordingly only
a small overlap between the two prediction tools was ob-
served (Figure 5C). Conclusively, even though the stringent
prediction employed by miRdentify results in a reduced
number of predicted miRNAs, the comparison indicates
that the quality and true-positive rate may be significantly
higher than miRDeep2 irrespective of the miRDeep2-score
cutoff used.

To further evaluate miRdentify, we also compared our
pipeline with the following prediction methods: miRD-
eep star (16), miRanalyzer (14) and miReap (http://
sourceforge.net/projects/mireap). Unfortunately, using our
hardware, none of these methods were able to complete a
prediction on the complete dataset 1. Therefore, to enable
a meaningful comparison, we used a sub-dataset, dataset 2
(Table 1 and Supplementary Table S1) comprising 50 sRNA
sequencing datasets giving rise to a total read count of ∼750
million reads. In the prediction by miRDeep2 and miRD-
eep star, we only considered candidates with score above
10. In case of miRanalyzer, the ‘Unlikely/No dicer’ group
of candidates was excluded, and with miReap only candi-
dates with 5p and 3p reads were considered. The compari-
son showed, as with dataset 1, that miRdentify was superior
in terms of quality, but modest in quantity (Supplementary

http://sourceforge.net/projects/mireap
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Figure 5. Comparison to miRDeep2. (A) Table listing various features of annotated miRNAs, miRDeep2-predicted miRNA and miRdentify-predicted
miRNAs. (B) Distribution of reads on predicted pre-miRNA. Reads are mapped perfectly (no mismatch allowed) onto the predicted species and aligned
to the 5′ end of the most abundant read. For each pre-miRNA locus, read density is shown relative to the most abundant read and depicted in gray-scaled
intensities. (C) Venn diagram depicting overlapping prediction between miRDeep2 and miRdentify.

Figure S10A and Supplementary Table S2). Furthermore,
read density was more distinct with miRdentify (Supple-
mentary Figure S10B). Again, the overlap between predic-
tions was surprisingly small; only 16 species predicted by
all five methods (Supplementary Figure S10C). However,
miRdentify exhibits the lowest percentage of uniquely pre-
dicted miRNAs, i.e. the number of miRNA only predicted
by one method, suggesting that most miRNAs predicted by
miRdentify are reproducibly predicted by at least one other
method. Finally, we compared the duration of the predic-
tion (Supplementary Figure S10D). Here, miRdentify and
miReap were by far the fastest methods completing a pre-
diction on ∼750 million reads in less than 1 h.

We next compared the fraction of annotated miRNAs
having an FPR above or below 0.01, respectively (Supple-
mentary Figure S11A). This clearly showed a much larger
fraction of approved miRNAs in the below 0.01 fraction.
Furthermore, as noted above, the 5′ heterogeneity param-
eters exhibited a somewhat positive correlation suggesting

that they do not behave completely as independent parame-
ters. Thus, we performed a prediction with merged 5′ hetero-
geneities (Supplementary Figure S11B). As expected, this
revealed a reduced number of predicted miRNAs, but with
similar scores as the original prediction, suggesting that as-
suming independent 5′ end heterogeneity parameters does
not interfere with the general quality of the prediction.

Validation of chrY-specific miRNAs

Two novel miRNA genes (NM) positioned on chrY were
predicted (NM#419 and NM#420, Figure 6). To our
knowledge, all annotated chrY-encoded miRNAs in hu-
mans also have a chrX-encoded counterpart, and there-
fore no chrY/male-specific miRNA has ever been identified.
NM#419 is exclusively positioned on chrY with no appar-
ent sequence homology elsewhere in the genome, whereas
NM#420 has a near-perfect region of homology on chrX,
allowing the mature sequence to also originate from chrX.
Nonetheless, to validate this prediction, the two miRNAs
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Figure 6. Validation of chrY-specific miRNAs. (A and D) Predicted secondary structure of NM#419 (hg19: chrY:16811019–16811092,+) (A) and NM#420
(hg19: chrY:4020820–4020881,-) (D) with 5p and 3p arms marked in red. (B and E) Distribution of reads on the NM#419 locus (B) and on the NM#420
locus (E). (C and F) Northern blot with RNA from HEK293 cells transfected with either empty vector (EV) or a vector expression, the candidate miRNA.
Northern membrane was probed against the predominant NM#419-5p arm (C) or the NM#420-3p arm (F), and miR-15b as a loading control.

were cloned as pri-miRNAs into a mammalian expression
vector and transfected into HEK293 cells. After 48 h, the
RNA was analyzed by northern blotting and probed for
the mature miRNA strand. Here, both pri-miRNAs pro-
duced ∼22 nt RNA species efficiently (Figure 6C and F),
suggesting that they are indeed genuine miRNAs. There-
fore, to our knowledge this is the first identification of a
male-specific miRNA in humans. Determining the expres-
sion profile and biological relevance of the chrY miRNA
awaits further analyses.

Predicting long miRNAs
In the above prediction, only pre-miRNA hairpins in the
range of 46–80 nucleotides were considered, which also in-
cludes the vast majority (97%) of annotated miRNAs in
miRBase (Supplementary Figure S1A). However, to our
knowledge, there is no size restriction in the biogenesis of
miRNA per se, and therefore it could easily be envisioned
that a class of larger pre-miRNA (i.e. 81–120 nucleotides)
structures exist. As no parameters in the above analysis have
any inherent size preference, we speculated that miRden-
tify would also confidently predict long pre-miRNA. In this
case, since only a few annotated pre-miRNAs in the 81–
120 size range exist, an alternative approach must be es-
tablished to determine the cutoff values. Hence, we instead

fixed the relative strengths of each parameter obtained in
the previous prediction and then as before increased the
stringency gradually. As a result, based on the similar crite-
rion for demarcation, i.e. FPR ≤0.01, we only found 12 can-
didates (Supplementary Figure S12A), in which two candi-
dates are already annotated in the miRBase (miR-3678 and
miR-5010) and two other candidates are consistent with
tailed mirtron biogenesis as judged by the location of an-
notated splice sites (data not shown, Supplementary Figure
S12B). Also, nine of the 12 candidates were below 92 nu-
cleotides in length indicating a preference for shorter species
(Supplementary Figure S12B). Furthermore, conducting a
similar prediction on 121–160 nucleotide species, no novel
miRNAs passed in almost 10 000 initial candidates. Alter-
natively, addressing pre-miRNAs in a full 46–160 size range,
miRdentify predicts 436 novel miRNAs, of which 406 over-
lap with the 46–80 nucleotide prediction (Supplementary
Figure S12C). Finally, comparing the length distribution
of 46–160 nucleotide predicted pre-miRNAs with miRBase
entries having 5p and 3p annotation, no significant differ-
ence is observed, whereas the miRDeep2 prediction differs
significantly (Supplementary Figure S12D). Conclusively,
this argues that pre-miRNAs in general are between 46 and
80 nucleotides in length, and additionally, strengthens the
confidence of miRdentify predictions.
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Table 1. The number of novel miRNAs predicted in human, mouse, fruit fly and nematodes, and the total small RNA sequencing reads used in the
prediction

Organism Ref. Genome Total datasets Total reads (×106) Novel miRNAs

Homo sapiens (dataset 1) GRCh37/hg19 355 1998 420
Homo sapiens (dataset 2) GRCh37/hg19 50 747 94
Mus musculus GRCm38/mm10 149 791 109
Drosophila melanogaster BDGP R5/dm3 87 750 23
Caenorhabditis elegans WS220/ce10 45 110 46

Detailed information is available in Supplementary Tables S1–S3.

Applying miRdentify to other animals

Performing miRNA prediction in other animals, we suc-
cessfully identified 109 novel miRNAs in the mouse (Mus
musculus), 20 in the fruit fly (Drosophila melanogaster) and
46 in nematodes (Caenorhabditis elegans) (Table 1, Supple-
mentary Table S3). Across the species, it is evident that the
parameter strengths are comparable (Supplementary Fig-
ure S13A and B) in agreement with the notion that an-
imal miRNAs are roughly similar in structure (7). How-
ever, the tailing parameter constitutes one noteworthy dif-
ference between organisms. Based on our analyses, tailing
seems to be much less apparent in the fruit fly and nema-
todes (Supplementary Figure 13A). This either reflects low
background tailing, i.e. the average tailing observed on the
candidate mapped reads, in which case tailing efficiently de-
marcates true and false miRNAs as seen in the fruit fly and
therefore has a high strength (Supplementary Figure S13B),
or it reflects low miRNA-specific tailing as seen in nema-
todes (Supplementary Figure S13B). In fact, most nema-
tode miRNAs seem to avoid tailing compared to the bulk of
candidate structures (Supplementary Figure S13C), which
was somewhat surprising as a TUT4 ortholog, Pup-2, was
recently identified and characterized to uridylate pre-let-7
in nematodes (42). However, in this particular case, tailing
seems to be LIN28-pre-let-7-specific and inhibits Dicer pro-
cessing. Also, background tailing was observed to be much
more frequent in C. elegans (0.44) compared to the other or-
ganisms (0.22, 0.24 and 0.11 in human, mouse and fruit fly,
respectively, Supplementary Tables S2 and S3, tailing aver-
age), suggesting that tailing here fails as a strong parameter
to select for genuine miRNAs.

Moreover, the requirement for an extended flanking stem
structure seems also to be more pronounced in mouse and
human pri-miRNAs (Supplementary Figure S13B). Per-
haps with increasing genome complexity, the affinity of
the microprocessor toward pri-miRNAs hairpin structures
has increased in stringency to avoid adverse processing of
miRNA-like hairpins.

DISCUSSION

Here, we have established a transparent and simple miRNA
prediction strategy coined miRdentify that, based on grad-
ual increase in 10 parameters, ensures a selection of highly
miRNA-like hairpin structures. In fact, the stringency of
this strategy discards 50% of the annotated miRNAs with
5p and 3p detectable reads and therefore serves as a very
conservative approach crucial for bona fide novel miRNA

prediction based on contemporary high-throughput small
RNA sequencing datasets.

Expectedly, the necessary cost of a high stringency ap-
proach is sensitivity, i.e. the rate of false negatives. Increas-
ing the stringency of novel miRNA detection in response
to the large sequencing depth of current sequencing tech-
nologies is crucial, as any acceptance of false positives has
the potential to undermine the credibility of the miRNA
field and the miRBase. Thus, we argue that miRNA anno-
tation based solely on sequencing must be performed con-
servatively. Attempting to predict all miRNAs expressed
in any given sequencing dataset would almost certainly in-
clude high quantities of false positives and the quality of
the prediction would consequently be lowered. Adhering to
a conservative prediction, non-canonical miRNAs such as
miR-451 (43,44) would be disregarded. We suggest that any
unconventional miRNAs must instead be predicted using
other algorithms and subsequently validated experimen-
tally.

Even with the high level of stringency attained with miR-
dentify, we report hundreds of novel miRNAs, 420 in hu-
mans, 109 in mouse, 23 in fruit fly and 46 in nematode. We
observe that the parameters used for miRNA prediction be-
have in a comparable manner between animal species except
for tailing and to some degree the structure of the flanking
region. In situations where a specific parameter does not ef-
fectively select for bona fide miRNAs, it may be beneficial to
exclude the parameter in the given prediction; however, an
ineffective demarcation between miRNAs and other hair-
pin species also means low parameter strength and thus
only a minor contribution to the overall FPR assessment
and downstream novel miRNA output. Therefore, we ar-
gue that the dynamic strengths of parameters in miRden-
tify comprise a flexible tool for miRNA prediction in vari-
ous organisms. Moreover, implementation of additional pa-
rameters useful for miRNA prediction is easily achieved in
the miRdentify pipeline, which makes this a compliant tool
that enables adaptation of future miRNA biology insights.

Interestingly, miRdentify predicts two chrY-encoded
miRNA, which we successfully validate experimentally,
and this constitutes the first reported truly male-specific
miRNA. Although they exhibit no evolutionary conserva-
tion, which makes in silico target prediction much more dif-
ficult, future studies will decipher the functional role and
relevance for these miRNAs.

The prediction by miRdentify, compared with other
methods, is generally higher in quality but lower in numbers.
Concerning the sensitivity and recall rate of annotated miR-
NAs, miRdentify identifies 1007 annotated species, of these
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503 species have FPR below 0.01, indicating a sensitivity of
∼50%. Therefore, as expected for a conservative and strin-
gent approach, it does not exhaust the repertoire of undis-
covered miRNAs in the genome. In comparison, miRDeep2
recovers 1010 annotated miRNAs, of which 689 have a score
below 10, thus a ∼68% sensitivity. In dataset 2, miRdentify
detects 823 and recalls 340 (41%) annotated miRNAs with
an FPR below 0.01; miRDeep2 and miRDeep star detect
1019 and 958, and recall 386 (38%) and 398 (42%), respec-
tively, with scores above 10 (Supplementary Table S2). At
least for dataset 2, this shows a very similar level of sensi-
tivity once the miRNA has been detected. However, miR-
dentify detects fewer annotated species in total, which pri-
marily is due to the 5p/3p duplex requirements, where in
contrast several annotated miRNAs found by miRDeep2
and miRDeep star only have reads on one arm. Moreover,
perfectly mapped reads (i.e. no mismatch tolerance) are nec-
essary for initial detection in miRdentify. Here, miRDeep2
also identifies miRNA species, novel as well as annotated,
without the presence of any perfectly mapped reads in the
dataset, and this is also the case for miRanalyzer, which,
at least for ∼22 nt RNA species, makes the accuracy of the
prediction more dubious. Thus, the high stringency of miR-
dentify impacted only modestly the sensitivity compared to
miRDeep2 and miRDeep star, suggesting that the reduced
quantity of predicted miRNAs reflects more accurately the
abundance of still unannotated true miRNAs.

MiRDeep2 and miRDeep star attribute each putative
miRNA with a score. Here, we used a score threshold of
10 to select for the highest quality candidates, even though
a score of 1 or 0 has been recommended by the authors
(12,16). Using score 0 as threshold, 1182 and 1525 novel
miRNAs are predicted from dataset 2 by miRDeep2 and
miRDeep star, respectively, and in the latter case, a large
subset of candidates between score 0 and score 10 only
have reads on one arm of the pre-miRNA hairpin (data
not shown, Supplementary Table S2). MiRanalyzer and
miReap are not scoring the candidates and instead read
count is the only available feature by which candidates
are sorted; however, miRanalyzer groups the prediction
into four categories dependent on read density signature,
whereas miReap outputs all candidates in one list. MiRd-
entify assigns each candidate with an FPR estimate, and
as noted above, we suggest an FPR below 0.01 to define
novel miRNAs (all outputs are available in Supplemental
Table S2). Furthermore, miRdentify outputs all the param-
eter values for each miRNA candidate and therefore it is
clearly evident why particular candidates are excluded or in-
cluded in the list of novel miRNAs as well as the associated
FPR estimates.

It is unclear to what extent the other prediction tools ac-
tively exclude Rfam-annotated RNA species. Here, miRd-
entify has no prior knowledge of genome annotation, and
miRdentify seemingly demarcates miRNA from other small
RNA species, e.g. snoRNA and tRNA, with high efficiency.
In contrast, miRDeep2 predicts several non-miRNA Rfam
species as miRNAs. One possible explanation is that read
count has a high impact on the miRNA score produced
by miRDeep2 and miRDeep star, having a 0.93 and 0.99
Pearson correlation between score and read count, respec-
tively (Supplementary Table S2). Thus, this approach seems

to be very exposed to annotation of highly abundant non-
miRNA species.

Regarding flexibility, the pre-defined criteria used in miR-
dentify, such as a pre-miRNA size between 46 and 80 nu-
cleotides, are customizable values, and this enables miRd-
entify to also predict longer miRNA species, which is ben-
eficial for the typically much longer plant pre-miRNAs. To
our knowledge, this is not a possible feature in the other
available prediction algorithms.

Finally, unlike miRdeep star and miRanalyzer, which
are only available as pre-compiled java applications, miR-
dentify is available both as open source and as a pre-
compiled user-friendly windows-based application. This en-
ables other researchers and programmers to implement,
adapt and improve miRdentify to their specific needs.

In conclusion, as existing tools seem to focus on the quan-
tity of miRNAs predicted and the associated number of
reads rather than the quality of the prediction, we believe
that high-stringency tools like miRdentify are of particu-
lar interest for the miRNA community especially when se-
quencing depth is constantly increasing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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