
RESEARCH ARTICLE

An optimal set of features for predicting type

IV secretion system effector proteins for a

subset of species based on a multi-level

feature selection approach

Zhila Esna Ashari1*, Nairanjana Dasgupta2, Kelly A. Brayton1,3,4, Shira L. Broschat1,3,4

1 School of Electrical Engineering and Computer Science, Washington State University, Pullman,

Washington, United States of America, 2 Department of Mathematics and Statistics, Washington State

University, Pullman, Washington, United States of America, 3 Department of Veterinary Microbiology and

Pathology, Washington State University, Pullman, Washington, United States of America, 4 Paul G. Allen

School for Global Animal Health, Washington State University, Pullman, Washington, United States of

America

* z.esnaashariesfahan@wsu.edu

Abstract

Type IV secretion systems (T4SS) are multi-protein complexes in a number of bacterial

pathogens that can translocate proteins and DNA to the host. Most T4SSs function in conju-

gation and translocate DNA; however, approximately 13% function to secrete proteins,

delivering effector proteins into the cytosol of eukaryotic host cells. Upon entry, these effec-

tors manipulate the host cell’s machinery for their own benefit, which can result in serious ill-

ness or death of the host. For this reason recognition of T4SS effectors has become an

important subject. Much previous work has focused on verifying effectors experimentally, a

costly endeavor in terms of money, time, and effort. Having good predictions for effectors

will help to focus experimental validations and decrease testing costs. In recent years, sev-

eral scoring and machine learning-based methods have been suggested for the purpose of

predicting T4SS effector proteins. These methods have used different sets of features for

prediction, and their predictions have been inconsistent. In this paper, an optimal set of fea-

tures is presented for predicting T4SS effector proteins using a statistical approach. A thor-

ough literature search was performed to find features that have been proposed. Feature

values were calculated for datasets of known effectors and non-effectors for T4SS-contain-

ing pathogens for four genera with a sufficient number of known effectors, Legionella pneu-

mophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and

less important features were filtered out. Correlations between remaining features were

removed, and dimensional reduction was accomplished using principal component analysis

and factor analysis. Finally, the optimal features for each pathogen were chosen by building

logistic regression models and evaluating each model. The results based on evaluation of

our logistic regression models confirm the effectiveness of our four optimal sets of features,

and based on these an optimal set of features is proposed for all T4SS effector proteins.
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Introduction

The type IV secretion sytem (T4SS) is a complex made up of proteins which deliver DNA and

proteins to the host cell. Detection of the T4SS in a genome is relatively straightforward, as

most of its genes can be detected through sequence identity using BLAST searches or predic-

tive software [1, 2]. On the other hand, the proteins it secretes pose a much greater challenge.

Proteins secreted by the T4SS are known as effectors and are agents of virulence and pathogen-

esis. They change the environment of the cell to be more hospitable for the bacterial pathogens

allowing replication of the bacteria [3]. The importance of effector proteins is understood,

but for the majority of effectors the more significant question of how they actually function

remains a mystery. However, before function can be studied, effectors must be identified, and

this is still a major challenge as experimental identification and verification is costly both in

terms of time and money. In addition, effectors tend to be species specific, and it is much

more difficult to detect them than the structural components of the T4SS for each species.

With the advent of machine learning methods, researchers have turned to scoring methods [4]

and machine learning algorithms [5–8] to predict effector proteins from the genomes or prote-

omes of pathogens. If prediction is known to be highly accurate, the process of experimental

verification can be performed much more efficiently.

Several T4SS effector prediction algorithms have been published recently. Burstein et al.

[7] used a machine-learning approach to consider Legionella pneumophila and predicted and

validated 40 new effector proteins while Wang et al. [8] focused on Helicobacter pylori. The

method by Meyer et al. [4] was first used with the effector dataset of L. pneumophila, strain

Philadelphia, and then used for several other proteobacterial pathogens. The algorithms in

these studies used sets of features, which are measurable characteristics and properties of pro-

tein sequences. Each algorithm employed a different set of features for effector prediction, and

the different sets had either some or no features in common. This raised the issue of which fea-

ture set should be used to develop a new machine learning model. Also, while both [4] and [5]

claim to predict effector proteins in T4SS pathogens, when we used their programs for the

rickettsial pathogen Anaplasma phagocytophilum, which has a T4SS and only three validated

effector proteins, the former predicted 20 effector proteins and the latter predicted 81. How-

ever, only one protein was common to both of them which is a known effector protein [9]. We

conclude that the probable reason for the large discrepancy in the results is the difference in

the feature sets used in the algorithms which are orthogonal to each other—that is, none of

the features used by the two algorithms are shared. It should be noted that all features used in

these works are listed in S1 Table, and the two different feature sets are identified. As a result

of our analysis, we were motivated to study the effectiveness of all different features proposed

in previous studies and to select the best features for effector prediction. This is the first study

of its kind, i.e., it is the only analysis performed to determine the best features for predicting

T4SS effectors.

Effector proteins are different among different pathogens [1] and, as such, the signals for

transconductance via the T4SS apparatus are likely to differ. In this paper, we present a statisti-

cal study of the protein characteristics or features used to recognize effectors for several T4SS

pathogens with the goal of identifying an optimal set that will potentially work well for all

T4SS pathogens of interest. We performed a literature search for all features that had been pre-

viously used in scoring or machine learning approaches to predict T4SS effectors and compiled

an extensive list of these features. The gathered features are related to the different characteris-

tics of protein sequences including: chemical properties such as hydropathy and charge; struc-

ture and composition of sequences such as the presence of different domains, amino acid

composition, and the position-specific scoring matrix (PSSM) profile of protein sequences;
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and the topology of the sequences such as their secondary structure. The complete list of fea-

tures can be found in S1 Table. Also, we have provided the references from which we extracted

each feature. We gathered a total of 51 features, but because four of them were vector features

(for example, amino acid composition is a vector feature with 20 features because there are 20

different amino acids) and we used each of their elements as a separate feature in our analysis,

we ended up with 1027 features.

Because pathogens in the Alphaproteobacteria and Gammaproteobacteria classes with

T4SS effectors have relatively high rates of T4SS and are the best studied [1], for our dataset,

we searched the literature for organisms in these two classes for confirmed effectors. We chose

to consider L. pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp based on their

number of effectors, 317, 86, 16, and 9, respectively. After generating datasets of confirmed

effectors and non-effectors for the four pathogens, we calculated the value of each feature for

all four datasets. By value of each feature, we mean the number associated with each feature

after presenting it as a measurable property. Details on the features and how they were calcu-

lated are presented in [10]. Feature values vary in range and can be binary or continuous.

For instance, presence of a region or domain is indicated by a binary value of 0 or 1, where 1

shows it is present, and chemical properties such as hydropathy are given by the calculated

value of the protein sequence, which is continous. Also, we represent the secondary structure

of proteins by the percentage of the particular structure present in the sequence. After feature

values had been calculated, we began our statistical study by ranking and filtering features

based on their p-values using a t-test. Next we normalized feature values and used principal

component analysis (PCA) and then factor analysis for dimensional reduction and elimination

of any correlation between features. Finally, using a fast backward feature selection method,

we built logistic regression models to select an informative set of features that works well as a

group of predictors for prediction of T4SS effectors for each genus. Based on the results of the

four different feature sets, we were able to establish an optimal feature set for determining

T4SS effector proteins of interest to researchers.

Materials and methods

A workflow of the methods used in this paper is shown in Fig 1. Each step in the workflow is

described below; details of some of the steps are given in an earlier paper [10].

Effector and non-effector datasets

Our goal was to determine an optimal set of features for prediction of all T4SS effector pro-

teins, and as such, we decided to work with various pathogen datasets. However, to enable

this, it was necessary to have a sufficient number of confirmed effector proteins. For our first

step we searched through previous studies that had been done to verify T4SS effectors. Because

pathogens in the Alphaproteobacteria and Gammaproteobacteria classes with T4SS, are of

interest to many researchers, we searched the literature for organisms in these two classes for

confirmed effectors. For Gammaproteobacteria, we found 317 effectors for L. pneumophila
[11–31] and 86 effectors for C. burnetii [32–36]. For Alphaproteobacteria we found a total of

16 effectors for Brucella abortus and Brucella melitensis [37, 38] and a total of 9 effectors for

Bartonella henselae and Bartonella tribocorum [39]. Next we used the non-effector dataset

created by Zou et al. to build our own datasets [5]. In [5], protein sequences from the whole

genome of 10 pathogens with T4SS, which have homologous genes to E. coli, were gathered,

and the sequences that were highly similar to those in E. coli were selected using BLAST. Next

the ones that were orthologous or paralogous were eliminated to reduce redundancy, leaving

them with their non-effector dataset. More details concerning their method can be found in
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Fig 1. Workflow used to identify optimal features for predicting T4SS effector proteins.

https://doi.org/10.1371/journal.pone.0197041.g001
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[5]. We downloaded the non-effector dataset from their website (http://bioinfo.tmmu.edu.cn/

T4EffPred) and used the sequences related to our four genera of interest using 554, 95, 32, and

17 non-effector sequences for L. pneumophila, C. burnetii, Brucella spp, and Bartonella spp,

respectively. The effectors and non-effectors used in this study are listed in the supporting

information in S1 through S8 Files.

Features and feature evaluation

The second step in this work involved reviewing the literature and gathering the features for

predicting type IV effectors proposed previously. As such, we reviewed the literature that

focused on predicting T4SS effectors using scoring or machine learning methods [4–8, 40–42]

and selected all features relevant to the protein sequences for effectors and non-effectors in

this study. The complete list of features used is given in S1 Table as supporting information.

An explanation for each feature as well as the reference in which each feature was introduced

is included in this table. The features are related to different chemical properties (different

hydropathy measures as well as polarity, charge, basicity, molecular mass, and iso-electric

point measures); structure (presence of various regions and domains such as coiled coil

domain, Ank domain, as well as PSSM profile of protein sequences); composition (amino

acid composition and dipeptide composition of amino acids); and topology of the protein

sequences (percentage of secondary structure types). Descriptions of each feature along with

software, programs, and tools used to calculate their values [43–48] can be found in [10].

Feature selection filtering using t-test

In this step we used a filtering feature selection approach to eliminate less informative features.

For this purpose, the t-test was used over the dataset of known effectors and non-effectors for

each feature, and the calculated p-values associated with each feature were stored. The p-values

represent the significance of each feature with lower p-values indicating a higher potential for

use in our machine learning classifier. Finally, we eliminated less important features by filter-

ing out those with higher p-values than the chosen threshold. To choose a threshold for p-val-

ues, we used Bonferroni correction resulting in a cut-off value of 0.0009. It should be noted

that the most significant features had p-values on the order of 10−100 and the least significant

ones had p-values of approximatley 0.9. Details for this step are described in [10], and the

results are discussed in the Results and Discussions section of this paper.

Principal component analysis

To this point and in our earlier work [10], we have chosen features for each type of bacteria by

filtering out less important features based on the t-test. However, more sophisticated statistical

methods can be used to determine how selected features might work together to predict T4SS

effectors and which group is most effective. In addition, correlation between different features

can be eliminated to avoid redundancy using a dimensional reduction method.

Toward this end, we used principal component analysis (PCA) for dimensional reduction

of the number of features. PCA finds the features that have the largest amount of variance

from other features. First we normalized continuous feature values to be on the same scale.

Then we performed PCA using Minitab 17.1.0 software (http://www.minitab.com). In PCA

the eigenvectors, or principal components, for the correlation matrix of the features are calcu-

lated. Features are projected in the directions of the calculated eigenvectors and are called fac-

tors. Since, eigenvectors are orthogonal to each other, factors are orthogonal as well and, thus,

have no correlation. This eliminates redundancy. Next by calculating the eigenvalue associated

with each factor, we can find the variance between the factors and we consider those that have
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the largest variance. For this purpose, a scree plot is used. A scree plot displays eigenvalues as

functions of factors, or principal components, in descending order, i.e., the largest eigenvalues

represent the greatest variance. For our work, we considered factors that had eigenvalues

greater than 1, which is the value commonly used, and ignored all others. In this way we

obtained the number of effective factors for each pathogen.

Factor analysis

In conjunction with the PCA performed in the previous step, factor analysis was used. The

idea behind the use of factor analysis was to remove features by finding similar underlying pat-

terns of features that represent a so-called latent feature that cannot be measured directly. For

example, a socioeconomic status latent feature might be represented by the features net worth,

occupation, and number of vacation homes. Mathematically, each feature value is given as a

sum of factor loadings times factors with the number of feature values greater than the number

of factors, and factor loadings can be thought of as how much features correlate with factors.

To obtain the factor loadings, Minitab was used with the number of factors determined previ-

ously by means of PCA. As mentioned in the previous section, we performed PCA and factor

analysis over continuous features. Thus, we retained the factors determined from factor analy-

sis and combined these with our binary features as separate factors to form our final factor set

for use in our logistic regression model. Also, we retained the factor loadings to determine

which features to retain at the end of our study based on the selected set of factors. For exam-

ple, if socioeconomic status is represented by one factor, and the factor loadings for net worth,

occupation, and number of vacation homes are 0.64, 0.60, and 0.70, we might remove net

worth and occupation from our set of features because number of vacation homes is sufficient

to represent socioeconomic status.

Logistic regression feature selection

After reducing the dimensions of our predictor set and calculating the effective factors, we

used them to build a binary logistic regression model for using a fast backward feature selec-

tion method. As we have two classes of responses (effector and non-effector), binary logistic

regression is a suitable analysis method. Logistic function input can be any real number and its

output takes a value between 0 and 1, representing the probability of being an effector. The

logistic function format is given by Eq (1).

f ðx1; x2; . . .Þ ¼
eða1�x1þa2�x2þ...þbÞ

eða1�x1þa2�x2þ...þbÞ þ 1
ð1Þ

For this step, we used Minitab software to build a logistic regression predictor model for test-

ing our calculated factors and to determine which ones were the most effective based on the

built model. We used factors as independent variables and constructed a logistic regression

model for each of the four bacteria types. Also, the Hosmer-Lemeshow test, which is a good-

ness-of-fit test, was used to evaluate our model to ascertain how well our predicted model

matches the expected model and predicts the effectors. It works by grouping the input dataset

of effectors and non-effectors based on estimated probabilities of being an effector. Most soft-

ware groups data into deciles, using 10 percent of the data in each group, which is the case for

our work. Then the model is used to predict whether they are effectors or non-effectors. The

percentage of expected and observed results that are in concordance are then calculated.

Considering the logistic function in Eq (1), we see that it associates a coefficient with each

independent variable, and the ones with larger coefficients are more effective in the model.

First, we built our logistic regression models such that we did not have complete separation
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between effectors and non-effectors based on the factors which happens readily for small data-

sets. In this way we were able to discern the most informative factors and eliminate the least

informative ones. We then built a logistic regression model again and evaluated the effective-

ness of the remaining factors. We continued until the concordance rate from the Hosmer-

Lemeshow test stays acceptable and greater than 90%. In this way, the set of factors working

most effectively to predict effector proteins was selected.

In the final step, as discussed in the factor analysis section, we used the factor loadings to

determine the set of original features that were selected from the selected factors. If we assume

that each original feature is represented by the factor with the greatest loading, we know the

set of original features that each factor represents. In this way, we created the group of selected

features for each of the four types of pathogens.

Results and discussion

To understand what features are important for T4SS prediction, we first used a feature selec-

tion filtering method over our feature set for four pathogens similar to the method applied in

[10] and created a ranked set of the remaining features based on their importance. Afterwards

we used PCA and factor analysis over the features to reduce their dimensions and also to elimi-

nate any correlation and redundancy among them. These steps led to generation of factors

that were used in building logistic regression models for the purpose of selecting an informa-

tive group of features.

To determine the number of effective factors to be considered, PCA analysis was used and

scree plots for each pathogen were created. A scree plot displays the eigenvalues associated

with factors in decreasing order plotted versus factor number. We can see the scree plots for

our four bacteria types in Fig 2. As described before, to determine the number of necessary fac-

tors, we considered the number of eigenvalues which were greater than 1 using the scree plots.

As shown in Fig 2, the selected number of factors are 106, 49, 6, and 14 for L. pneumophila, C.
burnetii, Brucella spp, and Bartonella spp, respectively. Using a cut-off of 1 for the eigenvalues

is a conservative approach for selecting the number of factors because it allows us to retain

most of the variability of the data without suffering from the redundancy caused by extreme

pairwise correlations. Thus, dimensions are drastically reduced while the selected factors,

explain 84%, 89%, 84%, and 95% of the total variability in the feature sets for the named

pathogens, respectively. As such, we keep most of the variability in our datasets, even after

selecting a subset of factors among all the factors, which shows that it will not cause significant

loss in fit. While there is a loss in information using this approach, PCA allows us to reduce

dimensionality, and the use of factor analysis makes our newly created factors interpretable.

Using this approach was conservative in the sense that if a feature was very significant, it was

included in our factors.

Next, factor analysis was used and a set of final factors were generated. The next step was

building a logistic regression model for each pathogen. We calculated the coefficients of each

factor in the logistic function as well as the p-values associated with the null hypothesis stating

that by setting the coefficient of a factor to zero, the model will not change significantly and

so there is not a significant association between a factor and the expected outputs. Thus, by

removing the factors with greater p-values and keeping the ones with p-values that were

approximately zero, we eliminated the less informative factors and rebuilt the model with the

remaining factors.

As mentioned, the Hosmer-Lemeshow goodness-of-fit test was performed over the four

final logistic regression models to verify their effectiveness. This test divides the input dataset

of effectors and non-effectors into 10 groups according to their predicted probabilities of
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being an effector and predicts whether they are effectors or non-effectors using our model.

Finally, it calculates the percentage of expected and observed results that are in concordance.

The achieved results of concordant percentages are presented in Table 1 for the four patho-

gens. The results are significant and show how well our logistic regression models work.

In order to evaluate our final logistic regression models further, we decided to consider

residuals, which indicate the difference between the true and predicted values using the model

(by value, we mean the probability of being an effector). Using Minitab, deviance residuals

were considered for each data point where the residual is equal to -2 times the logarithm of the

absolute difference between the predicted probability and 1 (if it is not an effector) or 0 (if it is

an effector). For a good model, the residual of a data point should be close to zero.

Residual histograms are plotted for our four logistic regression models and shown in Fig 3.

An examination of this figure shows that for all four pathogens the residuals are concentrated

around zero and have normal distributions and, thus, there are not many outliers.

Fig 2. The PCA scree plots show the values of an eigenvalue versus its factor or principal component number. The dashed vertical line in each plot shows a cut-off

value of one for the eigenvalue. Factors to the right of each line were discarded. The number of factors used for each pathogen is given in the top right corner of each

plot. (A) L. pneumophila, (B) C. burnetii, (C) Brucella spp, and (D) Bartonella spp.

https://doi.org/10.1371/journal.pone.0197041.g002

Table 1. Hosmer-Lemeshow goodness-of-fit test: Concordant percentages between effector predictions using our

built logistic regression models and known effectors.

Concordant percentage

L. pneumophila C. burnetii Brucella spp Bartonella spp
97.8 95.8 98.4 98.0

https://doi.org/10.1371/journal.pone.0197041.t001
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Based on the analysis done on the final logistic regression models, we can conclude that for

four pathogens, the group of selected features work effectively together.

The next step was to revert from factors to our original features using the saved factor load-

ings. Using the absolute value of the largest factor loading for each feature enabled identifica-

tion of the factor associated with the feature which, in turn, showed which factor represents

which group of features. As a result, we converted the group of final factors to the group of

final selected features by substituting each factor with the features it represents. This was

repeated for all four pathogens and the sets of selected features for each one are shown in S2 to

S5 Tables. In these tables, elements of vector features are considered as separate features and

we can see which elements are selected as effective.

Finally, for T4SS effector protein prediction, we created a set of the union of all selected fea-

tures presented in S2 to S5 Tables and made a list of selected effective features for prediction of

T4SS effectors. The list is presented in S6 Table as supplementary information.

Based on the calculated p-values after using t-test, we created a ranked set of features

based on their effectiveness for our four types of bacteria, which are shown in Table 2. The

numbers in each column show the rank for each feature for each bacterium. The top part of

Table 2 shows the four vector features which are ranked based on the percentage of elements

that were selected after applying our filtering method. We conclude that amino acid and

PSSM composition are the two most predictive vector features while dipeptide composition

is the least. The middle part of Table 2 represents the ranked set of other features, while the

features in the lower part of the table are ranked but were not selected for any of our bacterial

pathogens.

Fig 3. Histogram of residual values showing the frequency of each value interval versus residual values. Residuals represent the

difference between true and predicted values using our final logistic regression models. It can be seen that residuals are concentrated

around zero and have a normal distribution and also are not skewed and contain no outliers. (A) L. pneumophila, (B) C. burnetii, (C)

Brucella spp, and (D) Bartonella spp.

https://doi.org/10.1371/journal.pone.0197041.g003

Feature selection for T4SS effector prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0197041 May 9, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0197041.g003
https://doi.org/10.1371/journal.pone.0197041


Table 2. Features in different steps: Features are ranked based on p-values and the ones selected using filtering method are underlined for each pathogen. The ones

selected using logistic regression are in bold. The last column shows the selected features for T4SS prediction. Upper part of table shows vector features and the bottom

part shows the features that have not been selected for any of the pathogens.

No. Features L. pneumophila C. burnetii Brucella spp Bartonella spp Selected

1 AA composition 1 2 3 1 �

2 Auto-covariance of PSSM 2 3 2 3 �

3 PSSM composition 3 1 1 2 �

4 Dipeptide composition 4 4 4 4 �

5 Homology to known effectors 1 1 1 1 �

6 Average hydropathy 2 4 13 4 �

7 Total Hydropathy 3 6 8 5 �

8 Hydropathy of C terminal 4 3 21 23 �

9 Pepcoil hitcount 5 11 7 19 �

10 Hydropathy of N terminal 6 5 28 3 �

11 Pepcoil length 7 12 8 20 �

12 Charge of C terminal 8 35 3 9

13 Coiled coil domain 9 7 11 22 �

14 Signal peptide probability 10 37 2 27 �

15 Polarity 11 29 29 15 �

16 Molecular mass 12 28 23 16 �

17 Maximum cleavage site probability 13 36 16 24 �

18 Transmembrane helices 14 14 30 14

19 Length 15 15 24 18 �

20 Isoelectric point 16 30 25 17 �

21 Ank domain 17 10 31 28

22 Basicity of N terminal 18 34 22 8 �

23 E-Block 19 18 10 28

24 Coiled coils secondary structure 40 8 17 25

25 α helices secondary structure 38 2 19 11 �

26 β strands secondary structure 24 9 26 2

27 Transmembrane prediction by philius 35 13 20 6

28 Total charge 21 39 18 7

29 Charge of N terminal 23 17 27 10

30 Basicity of C terminal 31 38 4 21

31 Combined content of I, L, V and F 41 32 9 28

32 Combined content of D and E 42 22 31 28

33 Combined content of N and Q 28 33 31 28

34 Combined content of R, K and H 37 25 6 28

35 Combined content of S and T 43 27 31 28

36 Combined content of S, N, E, and K 27 19 12 28

37 Combined content of V, A, G and I 43 23 31 28

38 protein subcellular localization 23 13 5 13

39 DUF domain 33 26 15 28

40 TM domain 25 16 14 12

41 F-box domain 26 31 31 28

42 F-box like domain 29 40 31 28

43 U-box domain 34 40 31 28

44 Pkinase domain 39 20 31 28

45 LLR domain 43 40 31 28

(Continued)
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The underlined features in the table represent features that were selected following our fil-

tering feature selection method. As mentioned, filtering was performed using a p-value thresh-

old determined by Bonferroni correction. Other features that are not selected but have the

ranks less than 37, 31, 18, and 23 for L. pneumophila, C. burnetii, Brucella spp, and Bartonella
spp, respectively, have p-values smaller than 0.5 and can be considered to have the potentiality

of inclusion in prediction models.

Features given in blue were selected following the complete statistical approach shown in

Fig 1 that concludes in the building of a logistic regression model. They are the set of features

that have worked effectively as a group for predicting effector proteins. The selected features

for L. pneumophila, which has the greatest number of known effectors, include almost all the

selected features for the other three bacteria. Moreover, the elements of each vector feature,

presented in S2 to S5 Tables, follow the same pattern. Based on the results presented, the final

set of features, composed of the union of selected features (in blue) and marked by an asterisk

in the last column of the table, are proposed for prediction of T4SS effectors. A complete list of

these features is given in S6 Table.

As the different elements of the vector features were included in the set, we conclude that

these vector features are important predictors for all of our pathogens. As we can see and as

one might guess, homology to known effectors has a high rank as an effective feature for all

four bacteria. In addition hydropathy-related features have high rankings in the table which

shows that the degree of hydrophobicity of proteins plays an important role for effectors. The

presence of coiled coil domains and protein length are also important indicators of effector

proteins, and overall, the secondary structure of proteins seems to be important for effectors.

Finally we can see that in addition to the chemical properties of a protein sequence, its struc-

ture and composition as well as its topology all have a share in determining whether a protein

is an effector.

By considering the bottom part of Table 2, which shows features that were not selected for

our four pathogens, we can conclude that some combinations of amino acids, with p-values in

the range of 0.08 to 0.9 for L. pneumophila, as well as the presence of some domains, with p-

values in the range of 0.005 to 0.9 for L. pneumophila, are not highly effective predictors of

whether a protein is an effector. For example, some domains, such as Patatin and F-box, may

be specific to certain bacteria or they may be present in a small subset of effector proteins. NLS

(Nuclear Localization Signals), which target proteins to the nucleus of eukaryotic cells, were

not selected as a highly effective feature, but NLS rank more highly for some of our bacteria

compared to other features that were not selected. The same is true for MLS (Mitochondrial

localization signals) which are signal sequences in the N-terminus of proteins that are targeted

to the mitochondria. Also, total charge, charge of N-terminus, and basicity of C-terminus,

with p-values in the range of 0.008 to 0.1 for L. pneumophila, were not as effective as other

selected features.

Table 2. (Continued)

No. Features L. pneumophila C. burnetii Brucella spp Bartonella spp Selected

46 TPR domain 43 40 31 28

47 Sel1 domain 32 21 31 28

48 Patatin domain 22 40 31 28

49 NLS domain 20 24 31 26

50 MLS domain 36 40 31 28

51 Prenylation domain 30 30 31 28

https://doi.org/10.1371/journal.pone.0197041.t002
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As mentioned previously, hydropathy plays an important role in predicting effectors. In

fact, from our table we see that all four hydropathy measures, with p-values on the order of

10−33 to 10−12 (p � Oð10� 33Þ � Oð10� 12Þ), which give both hydrophobic and hydrophilic

characteristics of a protein sequence, are effective predictors of whether a protein is an effector,

although hydropathy of the C-terminus appears to be more effective than hydropathy of the

N-terminus. Hydropathy of effector proteins tends to be more negative than non-effectors.

For example, for L. pneumophila the average hydropathy of effectors has a mean of approxi-

mately -40 compared to 0 for non-effectors. Also, total hydropathy, hydropathy of C-terminus,

and hydropathy of N-terminus have averages of -194.5, -16.7, and -5.9, respectively, for effec-

tors compared to -27.13, -6, and 2.9 for non-effectors.

The presence of coiled coil domains, structural motifs in a protein sequence (p � Oð10� 13Þ)

for L. pneumophila, appears to have a significant impact on the probability of effector predic-

tion as both features calculated using different methods have been selected in our feature set.

For L. pneumophila the pepcoil hitcount (the number of coiled coil domains) and pepcoil

length (the total length of coiled coil domains), the averages are 0.64 and 20.1 for effectors,

respectively, compared to 0.1 and 3.9 for non-effectors. For C. burnetii, 9.9 and 3.2 are the aver-

age pepcoil lengths for its effectors and non-effectors, respectively. In addition, using Pfam and

SMART tools shows that in L. pneumophila about 22% of effectors have coiled coil domains

while only 4% of non-effectors contain one of these domains. In C. burnetii, it seems that sec-

ondary structure is more important for predicting effectors than for the other three bacteria as

seen in Table 2.

Effector proteins appear to have a lower probability of having signal peptide cleavage sites.

For L. pneumophila this feature has averages of 0.054 and 0.13 for effectors and non-effectors,

respectively, (p � Oð10� 7Þ), and maximum cleavage site probability shows the same trend.

Next we consider some chemical properties of protein sequences. Effector proteins have

higher polarity than non-effectors. For instance, for L. pneumophila the average polarity

(using Grantham indices) for effectors and non-effectors is 3884 and 3005, respectively,

(p � Oð10� 7Þ). Moreover, effectors are longer and have higher molecular mass than non-

effectors. For example, for L. pneumophila the average lengths and molecular masses are 471

and 2831, respectively, for effectors and 377 and 2279 for non-effectors (p � Oð10� 6Þ). Ank

domains function as protein-protein interaction domains. For C. burnetii about 14% of effec-

tor proteins contain an Ank domain while nearly no non-effectors do (p � Oð10� 4Þ). Thus,

Ank domain presence appears to increase the probability of effector prediction. The same

observation is made for E-Block, a domain which consists of a glutamate-rich sequence in the

C-terminus of a protein. Our results indicate that about 6% of effectors in L. pneumophila have

this domain, while almost none of the non-effectors do (p � Oð10� 6Þ).

Examination of our results and the predictions that we made in [10] for C. burnetii, indicate

that we have identified a set of effective features for T4SS effector protein prediction.

Conclusion

The final goal of this study was to find a set of optimal features for prediction of T4SS effectors.

For this purpose, we worked with four types of pathogens and gathered validated sets of pro-

tein sequences of effectors and non-effectors for each type to create our datasets. Then by

means of an extensive literature search we collected a set of features proposed in different

works to be important in T4SS effector prediction. We calculated each feature for all protein

sequences in our four datasets and evaluated their effectiveness using the t-test to filter less

important ones. Then using PCA and factor analysis, we reduced the dimensions of the fea-

tures set and eliminated correlation between features. Finally by creating logistic regression
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models, we selected a set of effective features that led to high accuracy for differentiating

between effectors and non-effectors for each type of bacteria. Based on the set of selected fea-

tures, we conclude that L. pneumophila features, which has the largest number of known effec-

tors, include almost all the features selected for the other three pathogens.

Moreover, of all the features examined, the most important ones are vector features includ-

ing the position specific scoring matrix (PSSM), amino acid composition, and dipeptide com-

position. In addition, some chemical properties as well as topology related features such as

hydropathy and coiled coil domains are also important.

In future work, the final set of selected features can be used to develop a machine learning

algorithm for prediction of T4SS effectors for different types of pathogens.
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