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The identification of biomarkers indicating the level of
aggressiveness of prostate cancer (PCa) will address
the urgent clinical need to minimize the general over-
treatment of patients with non-aggressive PCa, who
account for the majority of PCa cases. Here, we isolated
formerly N-linked glycopeptides from normal prostate
(n � 10) and from non-aggressive (n � 24), aggressive
(n � 16), and metastatic (n � 25) PCa tumor tissues and
analyzed the samples using SWATH mass spectrometry,
an emerging data-independent acquisition method that
generates a single file containing fragment ion spectra
of all ionized species of a sample. The resulting datasets
were searched using a targeted data analysis strategy in
which an a priori spectral reference library representing
known N-glycosites of the human proteome was used to
identify groups of signals in the SWATH mass spectrom-
etry data. On average we identified 1430 N-glycosites
from each sample. Out of those, 220 glycoproteins
showed significant quantitative changes associated
with diverse biological processes involved in PCa ag-
gressiveness and metastasis and indicated functional
relationships. Two glycoproteins, N-acylethanolamine
acid amidase and protein tyrosine kinase 7, that were
significantly associated with aggressive PCa in the ini-
tial sample cohort were further validated in an inde-
pendent set of patient tissues using tissue microarray
analysis. The results suggest that N-acylethanolamine
acid amidase and protein tyrosine kinase 7 may be used

as potential tissue biomarkers to avoid overtreatment of
non-aggressive PCa. Molecular & Cellular Proteomics
13: 10.1074/mcp.M114.038273, 1753–1768, 2014.

Prostate cancer (PCa)1 is the most common noncutaneous
cancer and the second leading cause of cancer-related death
in men in the United States (1). Most diagnosed cases repre-
sent slow-growing, non-lethal forms of cancer. Unfortunately,
neither the currently available diagnostic biomarkers, such as
serum prostate-specific antigen (PSA), nor histological exam-
ination of (biopsied) tumor tissue can distinguish aggressive
(AG) PCa from non-aggressive (NAG) PCa. This situation
leads to the undertreatment of AG PCa and, more important,
the overtreatment of NAG PCa (2). In fact, up to 90% of men
with PCa harbor localized tumors that are unlikely to cause
significant symptoms or mortality. Of these, many are over-
treated because of a lack of clear (molecular) indicators that
guide physicians to the appropriate treatment. All available
treatment options, including surgery, radiation therapy, and
hormonal therapy, carry a risk of complications and show a
range of side effects that impact the patient’s long-term qual-
ity of life. There is, therefore, a pressing clinical need to
identify new PCa biomarkers in clinical tissue or blood that
distinguish AG from NAG prostate tumors.

PCa tissue samples (e.g. those obtained from biopsies) are
routinely subjected to histopathological examination, and the
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results are reported by a Gleason score, a grading score
ranging from 2 to 10 that is calculated by adding the score of
the predominant grade pattern and that of the second most
common grade pattern in a specific sample. The Gleason
score helps guide patient treatment, but sometimes it fails to
do so sufficiently because it cannot be used to distinguish
significant molecular heterogeneities of PCa and a range of
clinical trajectories (3). For example, the clinical outcome is
unpredictable for most Gleason 7 PCas (4, 5). Molecular-level
phenotyping has been proposed as a means to develop a
more highly resolving scoring system capable of correctly
classifying clinically important PCa types. In principle, clinical
samples can be phenotyped by different types of measure-
ments (e.g. genomic (6), epigenomic (7), transcriptomic (3),
metabolomic (8), and proteomic (5)). To date, transcript pro-
filing has been used most extensively, mainly because of the
relatively advanced maturity and accessibility of the respec-
tive measurement techniques (9). However, proteomic mea-
surements should be equally or more informative, because
proteins are more dynamic and diverse and more directly
reflective of cellular physiology than nucleic-acid-based
markers (10). Moreover, PSA and other approved protein
markers (11) exemplify the potential information contents of
proteins.

The glycoproteome represents a subproteome that is par-
ticularly relevant for clinical research because glycoproteins
are usually found on the cell surface or secreted by tissues
and are more likely to be detected in the blood stream as
non-invasive biomarkers (12–17). In fact, all current blood
tumor biomarkers, including PSA in the case of PCa, that are
approved by the U.S. Food and Drug Administration are gly-
coproteins (14). We previously developed a protocol for the
solid phase extraction of glycopeptides (SPEG) to robustly
isolate the glycoproteome based on chemical immobilization
and enzymatic release of N-linked glycopeptides with high
specificity (18, 19) that was thereafter successfully applied in
different cancer biomarker discovery studies (18, 20–25).

In this study we used SPEG to profile the N-glycoproteome
of PCa histotypes to identify glycoproteins associated with
tumor aggressiveness. The isolated de-N-glycopeptide sam-
ples from prostate tissues were analyzed via the recently
developed SWATH mass spectrometry (SWATH-MS) technol-
ogy. SWATH-MS is a data-independent acquisition method
(26) that essentially allows one to convert all the peptides
ionized from a clinical sample into a perpetually reusable
digital map (27). When combined with a targeted data analysis
strategy, SWATH-MS was demonstrated to achieve the fa-
vorable accuracy, dynamic range, and reproducibility of se-
lected reaction monitoring (SRM), the gold-standard quanti-
tative proteomic technology, while greatly extending the
degree of multiplexing to thousands of peptides (26, 28, 29).
We have recently demonstrated that the combination of
SWATH-MS and de-N-glycopeptide isolation has promising
quantitative performance for biomarker verification in human

plasma (28). Here we establish that this integrated technology
is also highly efficient for “molecular phenotyping” of tissue
specimens because, once acquired, the quantitative data files
representing control and disease-affected human tissues
support iterative in silico biomarker discovery. To facilitate the
targeted analysis of SWATH maps, we generated a spectral
library covering a large part of the human N-glycoproteome,
specifically optimized for SWATH-MS analysis. This library
will also provide the community with a high-quality set of
reference assays for future MS analyses of the global human
N-glycoproteome and for related clinical applications. Fur-
thermore, our SWATH dataset led to the identification of
regulated proteins and pathways that might serve a predictive
role in discriminating AG and NAG PCas.

EXPERIMENTAL PROCEDURES

Materials—Hydrazide resin was from Bio-Rad (Hercules, CA); the
BCA protein assay kit, Zeba spin desalting column (7k molecular
weight cut off), urea, and tris (2-carboxyethyl) phosphine were from
Thermo Fisher Scientific (Waltham, MA); sequencing-grade trypsin
was from Promega (Madison, WI); PNGase F was from New England
Biolabs (Ipswich, MA); and monoclonal mouse anti-NAAA and anti-
PTK7 primary antibody was from R&D Systems (Minneapolis, MN). All
other chemicals were from Sigma-Aldrich (St. Louis, MO).

Clinical Samples—Samples and clinical information were obtained
with informed consent, and procedures were performed with the
approval of the Institutional Review Board of the Johns Hopkins
University. NAG and AG primary prostate tumors were collected via
radical prostatectomy or transurethral resection of the prostate at
Johns Hopkins Hospital and Johns Hopkins Bayview Medical Center
under the National Cancer Institute–funded Johns Hopkins prostate
cancer SPORE project. The NAG PCa group included 22 tumor spec-
imens with Gleason scores of 6 and 2 tumor specimens from tumors
with Gleason scores of 7 with no evidence of recurrence in up to 15
years of follow-up. The AG PCa group included 11 tumor specimens
with Gleason scores of 8 or 9 and 5 tumor specimens with Gleason
scores of 7 from patients who either died of cancer metastasis within
6 years of surgery or were positive for metastatic tumor at the time of
surgery (supplemental Table S1). The 25 metastatic tumors were from
men who died of PCa and underwent autopsy as part of the Project
to Eliminate Lethal Prostate Cancer rapid-autopsy program of the
Johns Hopkins Autopsy Study of Lethal Prostate Cancer, initiated in
1994. All subjects underwent androgen deprivation during the course
of their treatment. The 10 normal prostate tissues were from healthy
transplant donors who died from accidents or suicide. The primary
prostate tumor tissues were immediately frozen after resection from
surgery. The normal prostate tissues were immediately frozen after
resections from transplant donors. The metastatic tumor tissues were
acquired via rapid autopsy (a few hours to a day after death). All
specimens were snap-frozen, embedded in optimal cutting temper-
ature compound, and stored at �80 °C until use.

Isolation of de-N-glycopeptides and Sample Preparation—Frozen
prostate tissues embedded in optimal cutting temperature compound
were sectioned and stained with hematoxylin and eosin (H&E). The
H&E staining was used to guide cryostat microdissection for enrich-
ment of the tumor content of tissue. After cryostate microdissection,
6-�m-thick tissue sections for each specimen were collected in sterile
screw-cap bullet tubes. Proteins were extracted using cell lysis buffer
(50 mM Tris, pH 8.0, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxy-
cholate, 1% Triton X-100). BCA assay was performed, and 100 �g of
total protein mass per specimen was used to extract formerly N-
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linked glycopeptides via the SPEG procedure as described previously
(20, 22). Briefly, the proteins were alkylated and digested into pep-
tides, which were cleaned up by means of C18 chromatography
prior to SPEG. The peptides were treated with sodium periodate to
oxidize the glycan moieties of glycopeptides and purified by G-10 gel
filtration cartridges (Nest Group Inc., Southborough, MA). The sample
was then conjugated to Affi-gel Hydrazine resin (Bio-Rad) overnight.
The unbound peptides were removed through an extensive washing
procedure. N-linked glycopeptides were released by PNGase F. Fi-
nally, de-N-glycopeptides were used for downstream MS analysis. To
generate a SWATH spectral library and to quantify the de-N-glyco-
peptides from each tissue group, equal amounts of peptide samples
from each tissue group were pooled together and analyzed via LC-
MS/MS. In addition, small-scale sample pools (from five individual
samples each) were generated for non-aggressive, aggressive, and
metastatic prostate tumors. Eleven retention time anchor peptides
(iRT peptides, Biognosys AG, Zurich, Switzerland (30)) were added
into each sample at a ratio of 1:30 v/v. For each SWATH analysis,
equal amounts of sample (estimated to be roughly 1 �g of total
peptide mass) derived from pooled tissue were analyzed so that a
meaningful comparison could be achieved across groups.

SWATH-MS Measurement—SWATH-MS datasets (or SWATH
maps) were acquired using an AB Sciex 5600 TripleTOF mass spec-
trometer (Concord, Ontario, Canada) interfaced to an Eksigent
NanoLC Ultra 2D Plus HPLC system (Dublin, CA) as previously de-
scribed (26, 28, 29). Peptides were directly injected onto a 20-cm
PicoFrit emitter (New Objective, self-packed to 20 cm with Magic C18
AQ 3-�m, 200-Å material) and then separated using a 120-min gra-
dient of 2% to 35% buffer (buffer A: 0.1% (v/v) formic acid, 2% (v/v)
acetonitrile; buffer B: 0.1% (v/v) formic acid, 90% (v/v) acetonitrile) at
a flow rate of 300 nl/min. In SWATH-MS mode, the instrument was
specifically tuned to optimize the quadrupole settings for the selec-
tion of precursor ion selection windows 25 m/z wide. Using an isola-
tion width of 26 m/z (containing 1 m/z for the window overlap), a set
of 32 overlapping windows was constructed covering the precursor
mass range of 400–1200 m/z. The effective isolation windows can be
considered as 399.5–424.5, 424.5–449.5, etc. SWATH MS2 spectra
were collected from 100 to 2000 m/z. The collision energy was
optimized for each window according to the calculation for a charge
2� ion centered upon the window with a spread of 15 eV. An accu-
mulation time (dwell time) of 100 ms was used for all fragment-ion
scans in high-sensitivity mode, and for each SWATH-MS cycle a
survey scan in high-resolution mode was also acquired for 100 ms,
resulting in a duty cycle of �3.4 s.

Shotgun Measurement of Isolated de-N-glycopeptides from PCa
Samples—For shotgun acquisition, peptides from subpools of each
PCa group were firstly measured on an Oribtrap XL (Thermo Scien-
tific) to check the sample quality in collision-induced dissociation
mode, and then de-N-glycopeptides from all four tissue groups were
pooled equally as a super-mixture and analyzed using classical shot-
gun data acquisition on a TripleTOF 5600 instrument via four injection
replicates. For measurements on the Oribtrap XL, a 90-min gradient
was used for each sample using the acquisition method published
previously (31). For shotgun MS/MS on the TripleTOF, the same
chromatographic system and settings as described above for
SWATH-MS were used. MS1 spectra were collected in the range of
360–1460 m/z for 250 ms. The 20 most intense precursors with
charge states of 2 to 5 that exceeded 250 counts per second were
selected for fragmentation, and MS2 spectra were collected in the
range of 50–2000 m/z for 100 ms. The precursor ions were dynami-
cally excluded from reselection for 20 s.

Shotgun Measurement of Synthetic Peptides for the Generation of
an N-glycoprotein SWATHatlas—We previously published an SRM
assay library for 2007 human N-glycosylated proteins (N-glycoprotein

SRMAtlas) for targeted proteomic analysis (31). In that work the SRM
assays were generated mainly by SRM-triggered MS2 acquisition on
a QTrap instrument. For this study, all human synthetic peptides from
the SRM assay library (31) were re-acquired for spectral library gen-
eration, but this time using the shotgun mode on the 5600 mass
spectrometer. Basically, the peptide selection sources were the N-
glycosites identified in large discovery-driven MS-based experiments
in diverse human tissues, cell lines, and plasma and the N-glycosites
that were selected from the UniProt database (13, 31), with additional
peptide targets from recent shotgun datasets (28), yielding an iden-
tified protein list with a total of 2460 glycoproteins with the high
sensitivity of the 5600 mass spectrometer. Peptides were synthesized
using SPOT-synthesis technology (JPT Peptide Tech, Berlin, Ger-
many) (32). About 800 peptides were mixed with iRT peptides to-
gether for each separate shotgun analysis using the 5600 instrument,
with the same LC-MS settings described above. Shotgun measure-
ments were repeated for certain plate-pools to maximize peptide
coverage.

Spectral Library Generation—Profile-mode .wiff files from shotgun
data acquisition were converted to mzML files in centroided format
using AB Sciex Data Converter v.1.3 (default parameter) and then
further converted to mzXML files using MSConvert v.3.04.238. The
MS2 spectra were queried against the canonical Swiss-Prot complete
proteome database for human (November 2012) appended with com-
mon contaminants, iRT peptide sequences, and the corresponding
reversed sequence decoys (33) (40,951 protein sequences including
decoys). The SEQUEST database search (34) through Sorcerer PE
version 4.2 included the following criteria: trypsin as digestion en-
zyme; semi-tryptic peptides and peptides with up to two missed
cleavages were allowed; static modifications of 57.02146 Da for
cysteines; variable modifications of 15.99491 Da for methionine oxida-
tions; and variable modifications of 0.98406 Da for asparagines (for-
merly N-glycosylated asparagines are converted to aspartic acids upon
PNGase F treatment). The mass tolerances of the monoisotopic parent
and fragment ions were set as 50 ppm. The identified peptides were
processed and analyzed using Trans-Proteomic Pipeline 4.5.2 (35), and
search results were validated using the PeptideProphet score (36).
N-glycosylation motif information was used in PeptideProphet. For the
synthetic peptides, the database for shotgun searching was generated
by concatenating peptides plus scrambled pseudo protein sequences
(31). The SEQUEST database searching parameters were identical to
those for the shotgun analysis of the biological sample, except for the
specifications of fully tryptic digestion and up to one miss cleavage. All
the peptides were filtered at a false discovery rate (FDR) of 1%, as
estimated by PeptideProphet at the peptide spectrum match (PSM)
level (33). Peptides mapped to redundant protein identities were ex-
cluded for SWATH-MS quantification at the protein level.

The raw spectral libraries were generated from all valid PSMs in
shotgun experiments of both natural samples and synthetic peptides
and then refined into the nonredundant consensus libraries (29) using
SpectraST (37). To generate the spectral library for SWATH-MS, the
highest priority was given to the shotgun spectra acquired from the
shotgun analysis on the TripleTOF 5600, because those fragment ion
spectra most closely resembled those generated in SWATH-MS. This
means that the spectra of unique shotgun identifications from the
Oribtrap XL analyses were only accepted if the corresponding pep-
tides were not identified with the TripleTOF. For each peptide, the
retention time was mapped into the iRT space (30) with reference to
a linear calibration constructed for each shotgun run, as previously
described (29). The MS assays constructed from the top six most
intense fragments with a Q3 range from 400 to 1200 m/z, excluding
those falling in the precursor SWATH window, were used for targeted
data analysis of SWATH maps.
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Targeted Data Analysis for SWATH Maps—SWATH-MS .wiff files
were first converted to mzXML profile using ProteoWizard (38). As
described previously, the SWATH targeted data analysis was carried
out using OpenSWATH (39) running on an internal computing cluster.
OpenSWATH automatically integrates peak group extraction and a
decoy scoring system using mProphet (40) to estimate FDR. Based
on the generated spectral libraries, OpenSWATH identified the peak
groups from the SWATH maps at FDR � 1% and aligned them
between SWATH maps from different samples based on the cluster-
ing behaviors of the retention time in each run. Specifically, features
were considered for alignment based on a nonlinear alignment algo-
rithm (41) with a maximum FDR quality of 0.25 (quality cutoff to still
consider a feature for alignment) and/or the further constraint of a
retention time difference of less than 60 s in LC gradient after iRT
normalization.

Statistics and Functional Annotation—The peak intensities of
unique peptides were reported by OpenSWATH for label-free quan-
tification. First, a simple global normalization based on the total
intensity was done for each sample (42). Hierarchical clustering anal-
ysis was done at the N-glycosite level using Cluster 3.0 on the
log-transformed, two-dimensional centered and normalized peptide
intensities (43). The hierarchical clustering analysis result was visual-
ized with Treeview (44). Next, to quantify the protein abundances
across samples, we summed up the most abundant identified pep-
tides for each protein (top three if more than three peptides were
identified). This proxy allows one to reliably estimate global protein
abundance changes, as shown in previous studies (23, 28, 41, 45).
Peptides identified and aligned in �80% of samples were discarded
at this step for quantitative glycoproteomic profiling. Principal com-
ponent analysis was performed by R software using protein intensi-
ties. The candidates between PCa subtypes were prioritized by anal-
ysis of variance executed on Pomelo II (46), which also reported the
differential glycoprotein list between AG and NAG groups. The GO
cellular component classification was done by the BINGO 2.44 plugin
in Cytoscape (47, 48). The annotation of biological pathways and
functional processes was done using the DAVID bioinformatics re-
source (49), and the enrichment analysis was performed by taking the
entire N-glycoprotein SWATHatlas as background. The protein list in
each category and the enrichment p values were then downloaded,
manually compiled, and visualized by Cytoscape (48). SignalP 4.1 (50)
and TMHMM 2.0 prediction (51) were used to predict the existence of
signal peptides and transmembrane helices in a protein sequence for
their possible involvement in classical secretion pathways or in inte-
gral membrane structures, with these protein features visualized by
Protter (52). The receiver operating characteristic (ROC) curve analy-
sis was done by PanelComposer (53), with values of the area under
the ROC curve provided for individual proteins and the combine panel
using a logistic regression model.

Network Analysis of the Relationship between Protein Sets and
Public Genomic Data—The Reactome Functional Interaction Network
(RFIN) (54, 55) was used to investigate the functional relationships
between regulated glycoproteins and altered genes. We manually
compiled a list of 351 altered genes from seven genomic, transcrip-
tomic, and epigenomic studies of prostate cancer (6, 7, 56–60).
These genes were found to be significantly mutated, bi-allelically
mutated, epigenetically silenced, or recurrently fused or to have in-
sertions and deletions in the previous studies. The statistical signifi-
cance of the functional relationships between regulated glycoproteins
and altered genes was assessed in RFIN and its 100 random in-
stances. These random instances in the RFIN were created using a
“switching algorithm” (61) in which the interaction partners of the
nodes are randomized. The resulting network is of the same size and
degree distribution as the original network, and it preserves the de-
gree of each node. We used the switching algorithm implemented in

the Random Network Plugin for Cytoscape (55), and the network
graphs were visualized in Cytoscape (48).

Immunoassay Measurements of PSA in Clinical Specimens—Pro-
teins used for immunoassay measurements of PSA from tissue spec-
imens were the same protein extracts used for glycopeptide isolation.
After protein extracts had been adjusted to 1 �g/ml with PBS, tissue
PSA levels were measured with an Access® Hybritech PSA assay
(Beckman Coulter, Inc., Brea, CA) in a lab certified by Clinical
laboratory improvement amendments at Johns Hopkins Medical
Institutions.

Immunohistochemical Staining and Scoring—Staining was per-
formed on formalin-fixed paraffin-embedded prostate tissue slides
from six individuals with primary prostate tumors, as well as on a
336-core prostate tissue microarray (TMA). The TMA contained 56
cases of primary PCa. Each case included four cores of the tumor
regions and two cores of the matching adjacent normal prostate
tissues. IHC staining was performed as previously described (62, 63).
Briefly, slides with sections of tissues or TMA were deparaffinized and
rehydrated. Tissue slides were incubated in antigen retrieval buffer at
92 °C to 95 °C for 10 min. Tissues were blocked by peroxidase block
and 3% BSA/PBS for 30 min each followed by 2.5% horse serum
blocking for 15 min at room temperature. The tissues were then
incubated with a monoclonal mouse anti-NAAA or monoclonal mouse
anti-PTK7 primary antibody in antibody dilution buffer at 50 �g/ml or
10 �g/ml, respectively, followed by incubation with anti-mouse anti-
body labeled polymer-HRP for 30 min each. The staining was de-
tected with DAB chromogen. The intensity of NAAA and PTK7 was
visually graded by a board-certified pathologist as 0 (no staining), 1
(weak staining), 2 (medium staining), or 3 (strong staining) in the
epithelial compartments. A total of 56 cases (tumors and normal
tissues) were scored. The Gleason scores of the tumor cores included
in the TMA are listed in supplemental Table S2. IHC score differences
were calculated by subtracting the IHC score of the matching adja-
cent normal cores from the tumor cores. The Wilcoxon–Mann–
Whitney rank sum test was used to calculate hte statistical signifi-
cance between normal and tumor tissues, as well as that between
tumors with Gleason scores less than or equal to 3 � 4 and tumors
with Gleason scores greater than or equal to 4 � 3.

Data Availability—The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the PRIDE partner re-
pository (64) with the dataset identifier PXD000704.

RESULTS

Identification of Glycoproteomic Signals in SWATH Maps of
PCa Tumor Tissues—The experimental scheme of the present
study is shown in Fig. 1. It principally combined SPEG isola-
tion of de-N-glycopeptides from selected tissue specimens
with SWATH-MS to discover glycoprotein candidates; the
candidates were subsequently validated by means of TMA
analysis. Overall, in this study we analyzed de-N-glycopeptide
samples from 10 cases of normal prostate tissue, 24 cases of
NAG PCa tissue, 16 cases of AG PCa tissue, and 25 cases of
metastatic tumor samples. The level of aggressiveness was
defined based on the Gleason score and the evidence of
recurrence within up to 15 years (see “Experimental Proce-
dures”). All PCa samples selected had a high tumor cell
percentage (�70%; supplemental Table S1). To gain suffi-
cient starting material for the glycoproteomic analysis, and to
focus on the general difference between normal prostate and
the three different PCa types, samples were initially analyzed
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by equally pooling all samples from the same tissue group for
the determination of a quantitative expression ratio between
different tissue groups, based on total intensity normalization.
Additional samples pooled with a smaller sample size from
each tissue group were then analyzed to determine the p
values of each glycoprotein between groups (supplemental
Table S1).

The targeted identification of peptides in SWATH-MS da-
tasets (or SWATH maps) requires a priori generation of a
spectral library that includes essential coordinates such as
precursor ion masses, fragment ion masses, fragment ion
intensities, and retention times for each targeted peptide (27).
We thus firstly generated a spectral library through shotgun
sequencing of the isolated de-N-glycopeptides from same
prostate samples. Glycopeptide pools were analyzed using
classical shotgun data acquisition on Orbitrap XL and Trip-
leTOF 5600 instruments (see “Experimental Procedures”). A
total of 1919 N-glycosites assigned to 548 distinct glycopro-
teins were identified in all the shotgun experiments (see data
supplement and supplemental Tables S3 and S4 for anno-
tated MS2 spectra and identification summary on peptide and
protein levels). We then used these fragment ion spectra to
build a spectral library. Using this library, we identified and
quantified 882 to 1296 N-glycosites in the SWATH maps
generated from the clinical samples at an estimated FDR of
1% (Fig. 2A).

To augment the spectral library with coordinates of N-
glycosites that might be present in the PCa samples but not
detected via the data-dependent acquisition (DDA) of de-N-

glycopeptides from PCa tissues, in part because of the issue
of stochastic precursor-ion selection in DDA (27, 65, 66), we
built a more comprehensive spectral library by generating
fragment ion spectra for all synthetic peptides from the human
N-glycoprotein SRMatlas (31) using a 5600 mass spectrom-
eter operated in DDA mode. This resulted in reference frag-
ment ion spectra under conditions that mimicked those en-
countered in SWATH-MS, thus eliminating instrument bias
(26). These data resulted in the generation of a synthetic
consensus spectral library containing 5422 N-glycosites of
2460 human glycoproteins, covering nearly 50% of the human
proteins that are annotated in the UniProt database as glyco-
proteins. This N-glycoprotein SWATHatlas library is the de
facto model 5600 version of N-glycoAtlas. The coordinates
that constitute a definitive mass spectrometric assay for each
identified N-glycosite are provided in EXCEL format for future
applications in supplemental Table S5. Intriguingly, by using
the spectral library augmented with the spectra from synthetic
peptides, we were able to detect 218 to 414 additional N-
glycosites from the individual PCa SWATH maps, compared
with the peptides identified using the tissue DDA library alone
(Fig. 2A). With these approximately 30% additional peptide
identifications, the augmented library achieved significantly
deeper analysis of the clinical samples than the library gen-
erated from tissue DDA data only, demonstrating that
SWATH-MS analysis consistently identified and quantified
N-glycosites that were difficult to detect with DDA analysis of
the same samples (27, 29). These data also illustrate the
opportunity offered by SWATH-MS to iteratively reanalyze the

SpectraST

FIG. 1. Experimental design. Formerly N-glycosylated peptides of well-characterized PCa tissue samples were isolated via solid phase
extraction of glycopeptides (SPEG) and subjected to SWATH-MS. A spectral library for the targeted identification and quantification of specific
N-glycosites from the SWATH maps was generated via shotgun sequencing of the de-N-glycopeptides from clinical samples and synthetic
reference peptides. The in-house-developed OpenSWATH software was used to identify and quantify peaks in SWATH maps, and quantifi-
cation was followed by bioinformatic analysis and immunohistochemistry (IHC)-based tissue microarray validation.
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same digital datasets with improved or alternative spectral
libraries.

After combining the data from the tissue-derived and syn-
thetic peptide libraries, we identified 2188 N-glycosites cor-
responding to 897 N-glycoproteins from all SWATH maps
(supplemental Table S6) and detected on average 1430 N-
glycosites in each sample, presenting a much deeper and
more consistent glycoproteomic survey than previous studies
(22, 24, 66).

Quantitative Profiling by SWATH-MS Reveals Distinct N-
glycoproteomic Signatures Associated with PCa Aggressive-
ness—To assess the technical quality of the glycoproteomic
data with respect to reproducibility and quantitative accuracy,
we compared datasets from the same samples acquired at
different time points and validated some data points with an
orthogonal method. Pooled N-glycosites from normal tissue
(N_exp1 & 2) were analyzed 3 months apart via SWATH-MS.
The integrated peak areas of the N-glycosites detected in the
repeat analyses highly correlated with each other (r � 0.919)
(Fig. 2B and supplemental Fig. S1). To validate the quantifi-
cation accuracy of SWATH-MS with an orthogonal method,
we measured the PSA levels of all individual tissue speci-
mens using an Access® hybritech PSA assay and com-
pared the values to the relative peak intensities of PSA in

respective glycoproteomic SWATH maps. Fig. 2C indicates
that ELISA results and SWATH signals were strongly con-
cordant (r � 0.973). We conclude from these data that the
quantitative values obtained via SWATH-MS accurately re-
flect real glycoprotein abundance changes in the clinical
samples tested.

To analyze the correlation of the glycoproteome patterns of
three different types of PCa and normal prostate tissues, we
performed an unsupervised hierarchical clustering analysis of
the samples. In total, 1057 N-glycosites were quantified in at
least 8 out of 10 SWATH maps (Fig. 2B). The cluster graph
shows that samples of the same subtype clustered together
tightly. Moreover, we noticed that the overall glycoproteomes
were markedly distinct among different PCa subtypes, with
the most significant alteration observed between metastatic
and nonmetastatic tumors. In contrast, the separation of the
AG and NAG groups was moderate. Principal component
analysis of the four samples of AG PCa and the three samples
of NAG PCa consistently demonstrated that the AG and NAG
groups could be separated by two principal components (Fig.
2D). Overall, these results position the dataset generated in
this study as a valuable resource for further analysis of the
glycoproteome as an indicator of the clinical behavior of var-
ious PCa subtypes.

FIG. 2. Quantitative profiling of tissue N-glyoproteome between different PCa groups. A, numbers of N-glycosites identified from
SWATH maps. Note that identification of de-N-glycopeptides using the SWATHatlas library from synthetic reference peptides increased the
number of identified peptides by approximately 30%. B, hierarchical clustering analysis of 1057 N-glycosites quantified among �80% of the
samples. C, the accuracy of SWATH-MS quantification was revealed by the example of PSA that was also measured by the tissue ELISA. D,
principle component analysis of NAG and AG cases tested.
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Identification of Specific Glycoproteins as Candidates Distin-
guishing Non-aggressive, Aggressive, and Metastatic PCa—We
employed analysis of variance to associate the expression pat-
terns of specific glycoproteins with the normal, AG, NAG, and
metastatic groups. Of the consistently quantified proteins, 220
proteins were differentially expressed across the groups with
high significance (Table I) (p � 0.1; p values and fold changes
summarized in supplemental Table S7). Among these, 50 pro-
teins were significantly altered between the AG and NAG
groups. Extensive literature searching uncovered evidence that
125 (i.e. 56.8%) of the 220 significantly altered proteins are
directly related to prostate cancer or the level of aggressiveness
and metastatic potential of other human cancers (supplemental
Table S7). Two-thirds of the proteins (i.e. 142 out of 220)
showed clear positive staining in �25% of the prostate cancer
tissue specimens documented in the Human Protein Atlas da-
tabase (supplemental Table S7) (67). Moreover, the list contains
clinically applied PCa biomarkers, including PSA and prostatic
acid phosphatase (68, 69).

Differentially expressed tissue glycoproteins are particularly
interesting as biomarker candidates because of the high like-
lihood of their detectability in blood plasma. Using a bioinfor-
matic approach, we assessed the potential detectability of our
candidates in blood plasma. The program SignalP predicted
145 of the 220 (65.9%) proteins as classical secretory proteins
(50) TMHMM predicted 124 of 220 (56.4%) proteins as trans-
membrane (51). In all, 199 of 220 proteins (90.5%) were pre-
dicted as secretory or transmembrane proteins (supplemental
Table S7). These values predict a high likelihood of detecting
these proteins remotely in the blood stream, and the proba-
bility is even greater than that determined from secretome
studies in which conditioned medium of cultured cancer cells
was analyzed (70, 71). Indeed, our list covered 25 out of 54
PCa biomarker candidates that were discovered from a pre-
vious glycoproteomic analysis of a phosphatase and tensin
homolog conditional knockout mouse model (supplemental
Table S7) (23). Even more intriguingly, 17 of these 25 glyco-
proteins were found to be detectable in human serum via
SRM (Table I) (23). These include seven proteins (i.e. metal-
loproteinase inhibitor 1, attractin, asporin, cell adhesion mol-
ecule 1, biotinidase, hypoxia up-regulated protein 1, and neu-
ral cell adhesion molecule 1) that were finally verified as blood
biomarkers predictive for diagnosis or grading of PCa (23).
Furthermore, serum cell adhesion molecule 1, cathepsin F,
and periostin were found in another study as prognostic
markers for survival when serum from 57 metastatic castra-
tion-resistant prostate cancer patients was studied (72). A
direct comparison of these 220 proteins to the human plasma
PeptideAtlas database (73) suggests that 125 proteins were
previously observed in human plasma in large-scale shotgun
experiments derived from PeptideAtlas. Accordingly, �75%
of the proteins mapped to PeptideAtlas are expressed at a
concentration range of �100 ng/ml in human plasma (supple-
mental Fig. S2), indicating the strong relevance of this list for

biomarker discovery, as lots of tissue leakage products are
found in blood at this concentration level (16, 28).

Table I lists representative biomarkers that were reported as
diagnostic and prognostic biomarkers according to the liter-
ature, with a focus on the differentially expressed proteins
between AG and NAG group and their detectability in human
blood.

Annotation of Glycoproteins Significantly Changed in PCa
Subtypes with Altered Pathways—We next investigated bio-
logical pathways and processes of the 220 significantly al-
tered glycoproteins by functional GO annotation. The cellular
component distribution (Fig. 3A) agreed with the prediction
results above, as the majority of proteins were annotated to
reside either in the plasma membrane (45.4%) or in the ex-
tracellular compartment (36.3%). The GO biological pro-
cesses and PANTHER pathways associated with the altered
protein set were displayed in a network with corresponding
proteins (Fig. 3B) so that we could manually remove the
redundant GO items annotated by the same proteins. Taking
the N-glycoprotein SWATHatlas as a comparison back-
ground, we found several functionally interplayed processes
enriched as clusters. Notably, one cluster was related to
lysosome-based proteolysis, and a second was associated
with the cell adhesion process (p � 0.01 in all the processes;
Fig. 3B). The processes of protein maturation by peptide
cleavage and acute inflammatory response were also en-
riched. These interlaced biological processes might be helpful
in synoptically delineating the molecular variability of PCa
subtypes.

Reactome Network Analysis Indicates That Glycoproteomic
Regulation Is Closely Connected to PCa Genomic Events—
Cancer proteomic studies sometimes primarily reflect inflam-
mation processes and acute phase responses that coincide
with the primary disease, owing to the difficulty of achieving
substantial analytical depth (74). Therefore, to explore
whether the regulated glycoproteins identified in this study
were directly associated with PCa, we related the altered
protein set to the genes found altered in previous PCa
genomic studies on a functional level (6, 7, 56–60). We uti-
lized RFIN to investigate functional relationships between reg-
ulated glycoproteins and altered genes. Of the 351 altered
genes, 184 were found in the RFIN. Using the RFIN network
and 100 randomized instances of the same size and degree
distribution, we determined that the sets of altered genes and
the 220 differentially expressed glycoproteins (from analysis
of variance) were significantly interconnected (p � 0.0099;
supplemental Fig. S3). Further, the altered glycoproteins be-
tween AG and NAG groups were also found to be functionally
related to the altered genes known in PCas, such as P53,
PI3K, and AR mutations (p � 0.021; Fig. 4). The RFIN result
supports the notion that our tissue glycoproteomic investiga-
tion was rather deep and correlates well with genomic events
commonly encountered in PCa with statistical significance
(supplemental Fig. S4), although future studies are needed to
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TABLE I
Selected representative biomarkers associated with differential prostate cancer subtypes. This table lists biomarkers that showed strong evidence
as diagnostic and prognostic PCa biomarkers according to previous literature, with a focus on cancer aggressiveness and previous blood detection

Protein (human) UniProt Protein name P value
(ANOVA)

Fold
change

Positive
staining,

% in PCaa
SignalP TMHMM

PCa markers
detected
in bloodb

Higher in AG/lower in NAG
POSTN Q15063 Periostin 0.0685 1.59 0 Y N Y
ASPN Q9BXN1 Asporin 0.0754 1.44 63 Y N Y
LAMB2 P55268 Laminin subunit �-2 0.0002 2.1 26 Y N –
SERPH P50454 Serpin H1 0.0024 1.38 39 Y N –
CSPG2 P13611 Versican core protein 0.0443 2.22 41 Y N –
ENTP1 P49961 Ectonucleoside triphosphate

diphosphohydrolase 1
0.0102 1.96 42 N Y –

SE1L1 Q9UBV2 Protein sel-1 homolog 1 0.0341 1.67 50 Y Y –
ITAV P06756 Integrin �-V 0.0435 1.54 86 Y Y –
FOLH1 Q04609 Glutamate carboxypeptidase 2 0.0708 6.34 94 N Y –
STIM1 Q13586 Stromal interaction molecule 1 0.0377 1.29 96 Y Y –
PTK7 Q13308 Inactive tyrosine-protein kinase 7 0.0004 1.2 100 Y Y –
ICOSL O75144 ICOS ligand 0.0094 1.29 100 Y Y –
SPP2A Q8TCT8 Signal peptide peptidase-like 2A 0.067 1.33 100 Y Y –
CD276 Q5ZPR3 CD276 antigen 0.0888 1.68 100 Y Y –

Higher in NAG/lower in AG
KLK3 P07288 Prostate-specific antigen 0.0032 1.37 90 Y N Y
ZA2G P25311 Zinc-�-2-glycoprotein 0.0005 3.23 95 Y N Y
FBN1 P35555 Fibrillin-1 0.0028 1.28 13 Y N –
CD38 P28907 ADP-ribosyl cyclase 1 0.0003 2.50 30 N Y –
CNTP2 Q9UHC6 Contactin-associated protein-like 2 0.0068 1.61 42 Y Y –
AMPN P15144 Aminopeptidase N 0.0017 2.70 72 N Y –
FAM3B P58499 Protein FAM3B 0.0286 1.72 72 N Y –
RNT2 O00584 Ribonuclease T2 0.0138 2.63 89 Y N –
NAAA Q02083 N-acylethanolamine-hydrolyzing

acid amidase
0.043 2.13 91 Y Y –

PPAP P15309 Prostatic acid phosphatase 0.0001 1.56 100 N Y –
GSLG1 Q92896 Golgi apparatus protein 1 0.0042 1.27 100 Y Y –
TSN1 O60635 Tetraspanin-1 0.0707 10.00 NA N Y –
DPP4 P27487 Dipeptidyl peptidase 4 0.0107 2.27 NA N Y –
ST14 Q9Y5Y6 Suppressor of tumorigenicity 14 protein 0.0384 1.64 NA N Y –

Higher in non-MET/lower
in MET

TIMP1 P01033 Metalloproteinase inhibitor 1 0.0101 2.70 25 Y N Y
CLUS P10909 Clusterin 0.0184 2.08 20 Y N Y
MFAP4 P55083 Microfibril-associated glycoprotein 4 0.0634 3.70 30 Y N Y
AOC3 Q16853 Membrane primary amine oxidase 0 3.45 42 N Y Y
CADM1 Q9BY67 Cell adhesion molecule 1 0.046 2.63 60 Y Y Y
HYOU1 Q9Y4L1 Hypoxia up-regulated protein 1 0.0019 1.85 9 Y Y Y
FSTL1 Q12841 Follistatin-related protein 1 0.0063 2.50 73 Y N Y
KLK11 Q9UBX7 Kallikrein-11 0.0294 8.33 25 N N –
NBL1 P41271 Neuroblastoma suppressor of

tumorigenicity 1
0.0216 4.17 70 Y N –

GOLM1 Q8NBJ4 Golgi membrane protein 1 0.0012 3.70 100 N Y –
Higher in MET/lower in

non-MET
VTNC P04004 Vitronectin 0.0324 1.85 NA Y N Y
CERU P00450 Ceruloplasmin 0.0008 2.53 65 Y N Y
A1AG2 P19652 �-1-acid glycoprotein 2 0.0325 2.78 50 Y N –
LYVE1 Q9Y5Y7 Lymphatic vessel endothelial hyaluronic

acid receptor 1
0.031 3.87 0 Y Y –

A1AG1 P02763 �-1-acid glycoprotein 1 0.0004 8.65 30 Y N –
Higher in cancer/lower

in normal
ATRN O75882 Attractin 0.0683 1.28 100 N Y Y
CATD P07339 Cathepsin D 0.0112 2.19 54 Y N Y
BTD P43251 Biotinidase 0.0265 1.96 NA N N Y
MTA1 Q13330 Metastasis-associated protein MTA1 0.0134 �10 25 N N –

Higher in normal/lower
in cancer

NCAM1 P13591 Neural cell adhesion molecule 1 0.0001 2.17 0 Y Y Y

PECA1 P16284 Platelet endothelial cell adhesion molecule 0.0634 1.56 NA Y Y –

ANOVA, analysis of variance; MET, metastatic.
a The percentages of the positive antibody staining among PCa tissue specimens were manually compiled from Protein Atlas.
b The detection in blood for glycoproteins as PCa markers was based on Refs. 23 and 72.
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establish a causative role between proteomic and genomic
observations.

Tissue Microarray Verification of NAAA and PTK7 as Signa-
tures of PCa Aggressiveness—We next pursued TMA analysis
to further validate the biomarkers of PCa aggressiveness. We
selected NAAA and PTK7 in this phase based on the following
considerations: 1. In the differential N-glycosite analysis de-
scribed above, NAAA and PTK7 stood out as proteins with
significantly altered expression between NAG and AG tumors.
NAAA expression was significantly higher in the NAG group,
whereas PTK7 was higher in AG cases (Table I and supple-
mental Fig. S5). 2. Both proteins showed prevalent positive
staining (�90%) in PCa specimens according to the human
Protein Atlas (67). 3. Both were predicted as secretory pro-
teins (supplemental Fig. S5). 4. To the best of our knowledge,
they have not been tested as tissue markers for PCa. We thus
carried out preliminary IHC staining on six cases of PCa
tissues. For both proteins, staining was primarily observed in
the epithelial compartment, and increased expression of
NAAA and PTK7 was detected in the tumor epithelium relative
to normal epithelium (supplemental Fig. S6). In addition,
whereas NAAA showed medium to strong staining in Gleason
grade 3 tumors (Figs. 5A and 5B), the staining was rather faint
in Gleason grade 4 tumors. In contrast, PTK7 staining was
more intense in Gleason grade 4 tumors than in Gleason
grade 3 tumors (Figs. 5C–5E).

To further evaluate NAAA and PTK7 expression in prostate
tissues, TMA analysis was performed with 56 prostate ade-
nocarcinoma cases. Each case contained four cores of tumor
and two cores of patient-matched adjacent normal tissue (336
cores in total; supplemental Table S2). Among the 56 cases,
21 (37.5%) had a Gleason score of 3 � 3; 4 (7.1%) had a
Gleason score of 3 � 4; 10 (17.9%) had a Gleason score of
4 � 3; 11 (19.6%) had a Gleason score of 4 � 4; 4 (7.1%) had
a Gleason score of 4 � 5; 5 (8.9%) had a Gleason score of 5 �

4; and 1 (1.8%) had a Gleason score of 5 � 5. The prostate
tumor cases were classified into two categories, with 25
cases (44.6%) of Gleason 3 � 4 or less and 31 cases (55.4%)
of Gleason 4 � 3 and above (Table II). NAAA and PTK7
staining intensities were then evaluated and scored by a
board-certified pathologist in the epithelial compartment. We
firstly confirmed the different expression of these two proteins
between the matching adjacent normal tissue and tumor tis-
sues. Figs. 5F and 5G show histograms of NAAA and PTK7
IHC score differences; 66.1% and 55.4% of the cases
showed an increase in NAAA and PTK7 staining, respectively,
in tumors relative to normal tissues (Wilcoxon–Mann–Whitney
rank sum test; p � 0.001 for both proteins). Most important,
whereas the majority (75%) of the adjacent normal tissues
stained negative or weakly for NAAA, 54.8% of the tumors
(Gleason score � 4 � 3) and 88% of the tumors (Gleason
score � 3 � 4) stained with medium to strong intensity. In

FIG. 3. Functional annotation of significantly regulated glycoproteins (n � 220) between PCa groups. A, the GO cellular component
distribution. B, the pathways and biological processes enriched in the 220-protein list, according to DAVID functional annotation.
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contrast, 94.6% of the adjacent normal tissues stained neg-
atively or weakly for PTK7, whereas 28% of the tumors (Glea-
son score � 3 � 4) and 38.7% of the tumors (Gleason score �

4 � 3) stained with medium to strong intensities (Table II).
Relative to expression in tumors with a Gleason score equal to
or less than 3 � 4, NAAA expression was significantly de-
creased and PTK7 expression was significantly increased
(p � 0.05; Fig. 5H) in tumors with a Gleason score equal to or
more than 4 � 3. From the ROC analysis based on TMA
staining intensities in the tumor specimens, we found that
values of the area under the ROC curve of 0.743 and 0.709
were achieved by NAAA and PTK7 expression, respectively,
both with statistical significance. Interestingly, a combined
panel of these two proteins showed greater predictive power
(area under the curve � 0.801) than each of them alone,
indicating a potential power of the two proteins combined to
discriminate AG and NAG.

DISCUSSION

The molecular mechanisms of systemic diseases such as
cancer are still poorly understood. Currently in clinics, disease
symptoms are recorded, for example, through x-ray images,
computed tomography scans, and bio-fluid test results. More
accurate records of high fidelity, particularly those indicating

molecular-level differences between healthy and disease-af-
fected cells, might be helpful in understanding disease biol-
ogy and for directing optimal treatment. Because proteomic
technologies have lagged behind genomic technologies in
terms of throughput, sensitivity, and reproducibility, most mo-
lecular analyses of disease tissues have been carried out at
the genomic or transcriptomic level, even though it is widely
acknowledged that proteomic measurements reflect the func-
tional state of a tissue more closely than genomic patterns.

In this study we used an emerging proteomic method,
SWATH-MS, to quantify the N-glycoproteome of a sample
cohort consisting of normal tissue as well as non-aggressive,
aggressive, and metastatic PCa tissue samples with the intent
to identify proteins capable of orchestrating and distinguish-
ing these groups. In contrast to the more widely used DDA
methods, in which specific precursor ions are selected from
the pool of available precursors, in SWATH-MS and other
data-independent acquisition methods, all the precursor ions
generated by the mass spectrometer from a particular sample
are fragmented, and the fragment ions are recorded in the
form of convoluted composite fragment ion spectral maps. In
essence, SWATH-MS acquires a complete and permanent
digital record for all the detectable components of a sample
(26, 27) and is therefore an appealing technique for the anal-

FIG. 4. An RFIN subnetwork of functional interactions between regulated glycoproteins (AG versus NAG) and genes commonly
mutated in PCa. Red diamonds denote proteins up-regulated in NAG, and blue diamonds denote glycoproteins up-regulated in AG. Altered
genes are shown by yellow circles. Edges denote functional relationships between the nodes they connect. Regulated glycoproteins and
altered genes not connected to each other are not shown in the network. Relative to randomized RFIN networks of the same size and same
connectivity, the altered PCa genes and our regulated glycoproteins are significantly interconnected to each other (p � 0.021).
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ysis of unique, nonrenewable clinical samples (e.g. biopsied
tissues). In this study, SWATH-MS was applied to the analysis
of glycoproteins because this subproteome was assumed to
be enriched for potential biomarkers (13, 16, 17). The data

demonstrate that the combination of SPEG and SWATH-MS
achieved a high degree of reproducibility for quantifying gly-
coproteins (Fig. 2) and correlated well with clinical quantita-
tion of PSA. This is consistent with our previous observation

FIG. 5. TMA analysis for NAAA and PTK7. A, B, representative NAAA staining showing strong staining in Gleason score 3 tumors and faint
staining in Gleason score 4 tumors. Faint or no staining was observed in adjacent normal tissues. C, D, representative PTK7 staining showing
strong staining in Gleason score 4 tumors and less staining in Gleason score 3 tumors. Faint staining was observed in adjacent normal tissues.
E, representative NAAA and PTK7 staining in TMA with corresponding H&E staining. F, histogram of the difference in IHC score between tumor
and its matched adjacent normal tissue for NAAA. G, histogram of the difference in IHC score between tumor and its matched adjacent normal
tissue for PKT7. Wilcoxon signal rank order test (paired, two-sided) was performed for NAAA and PTK7 between tumors and matched adjacent
normal tissues (p � 0.0001). H, a box-plot was generated for NAAA and PTK7 between tumors with a Gleason score less than or equal to 3
� 4 tumor and tumors with a Gleason score greater than or equal to 4 � 3 tumor. *p � 0.05; **p � 0.01. I, ROC analysis of NAAA and PTK7
based on their IHC staining intensities in the tumor specimens.

TABLE II
Epithelium IHC scoring of NAAA and PTK7. Immunohistochemical staining was performed for N-acylethanolamine acid amidase (NAAA) and
protein tyrosine kinase 7 (PTK7) on tissue microarray (TMA) with 56 cases of prostate cancer tissues. From each case, four cores of tumor
tissues and two cores of adjacent normal prostate tissues were included in the TMA. The numbers of cases with pathologist-read epithelium
IHC scores of 0, 1, 2, and 3 are listed for adjacent normal tissue and tumor tissues with a Gleason score less than or equal to 3 � 4 and more

than or equal to 4 � 3 for both NAAA and PTK7

Epithelium IHC score
NAAA PTK7

0 1 2 3 0 1 2 3

Adjacent normal 22 (39.3%) 20 (35.7%) 9 (16.1%) 5 (8.9%) 38 (67.9%) 15 (26.8%) 3 (5.4%) 0 (0%)
Gleason score � 3 � 4 0 (0%) 3 (12%) 8 (32%) 14 (56%) 10 (40%) 8 (32%) 6 (24%) 1 (4%)
Gleason Score � 4 � 3 6 (19.4%) 8 (25.8%) 10 (32.3%) 7 (22.6%) 2 (6.5%) 17 (54.8%) 8 (25.8%) 4 (12.9%)
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that SWATH-MS allows equal variability (cv � 20%) and sim-
ilar accuracy relative to SRM (28).

Because SWATH-MS generates composite fragment ion
spectra of multiple precursor ions that are concurrently frag-
mented, we implemented a targeted data analysis strategy to
reliably identify and quantify specific peptides from the ac-
quired datasets. The strategy requires the generation of a
high-quality spectral library as prior information for the quan-
tification of peptides from SWATH-MS datasets (27). In es-
sence, an ensemble of fragment ion coordinates, including
the m/z ratio of fragment ions, their relative signal intensity,
the elution patterns of the fragment ion signals, etc., is ex-
tracted from the spectral library and used to confidently
identify a target peptide in the SWATH-MS map using a
dedicated search tool such as OpenSWATH (39). To support
this type of data analysis for the N-glycoproteome, we gen-
erated an N-glycoprotein SWATHatlas derived from synthetic
peptides as an easily transferrable resource that will also
support future targeted proteomic studies focused on the
N-glycoproteome. The assays from the N-glycoprotein
SWATHatlas provided an unprecedented chance to identify
and quantify 5422 N-glycosites of 2460 glycoproteins that
essentially cover �50% of the annotated human N-glycopro-
teome. The use of these assays helped us to retrieve 30%
more identifications in every SWATH map as an extra benefit.
More important, this increase highlights the possibility of data
re-mining in the one-time acquired SWATH maps when there
are more MS assays available for novel protein targets. This
data re-mining feature is a unique advantage of SWATH-MS
over traditional DDA or SRM approaches.

It should be noted that the addition of unique shotgun
identifications from an instrument other than that used for
the SWATH-MS analysis (e.g. Orbitrap XL–derived spectra
added to a library generated on a 5600 instrument) is not
ideal because the fragment ion spectra are less similar
across instrument types than within instrument types (75). In
this study, because of the limited amount of peptide avail-
able from the microdissected clinical samples, we neverthe-
less extended the 5600 instrument–derived spectral library
with spectra generated on an Orbitrap XL instrument. The
direct transferability for targeted proteomics of peptide
fragmentation data across instrument platforms and the
outcome were assessed in a recent study (75) in which
Toprak et al. reported that TripleTOF shotgun peptide frag-
mentation provided the most similar fragmentations to that
observed with SWATH-MS targeted data analysis, com-
pared with other shotgun solutions (e.g. those provided by
an Oribtrap instrument). Therefore, we again recommend
that one acquire, when possible, instrument-specific librar-
ies or specifically tune the fragmentation parameters of the
MS instrument available.

We previously determined the limit of detection of SWATH-MS
in human plasma N-glycoproteome at 5 ng/ml, a level close to
the PSA concentration in blood of PCa patients (28). Here,

substantial analytical depth of the tissue glycoproteome was
also achieved in glycoproteomic SWATH analysis, which un-
covered pathways (Fig. 3) associated with PCa progression
including cell adhesion (76), integrin signaling (77), and pro-
teolysis (78), indicating possible linkage between glycopro-
teomic regulations and common genomic mutations in PCa
(Fig. 4). These results shed more light on the disease biology
related to different PCa types, which might be interesting for
future investigations. Although we deployed a greedy litera-
ture search for each putative biomarker candidate from the
discovery phase (supplemental Table S7), defining the mech-
anism of their relationship with prostate cancer aggressive-
ness and metastasis is beyond the scope of this study. Nev-
ertheless, our SWATH dataset nicely overlapped with already
described PCa markers and, again, allows for the re-quanti-
fication and verification of newly discovered biomarkers or
proteins of interest at any time in the future.

To summarize the above discussions, the combination of
SPEG and SWATH-MS provides a reproducible, deep, and
quantitative glycoproteomic reference that can be easily reex-
amined and therefore provides a significant advance for bio-
marker studies. The high specificity (75% to 90%) of SPEG was
repeatedly tested in many previous studies (18–25). Here, ac-
cording to our shotgun data, we found that only 2.6% of the
identified de-N-glycopeptides can present a natural, detectable
un-deamidated form, demonstrating a practically high specific-
ity of glycoproteomic survey by our combined method. In the
instrument configuration for SWATH-MS used in this study, 1 to
3 �g of total peptide mass represented an optimal sample load.
This translates into a need for about 10E5 to 10E6 cells for
proteomic profiling and at least 10E7 cells for the glycopro-
teomic survey by SWATH analysis following SPEG enrichment
(19, 79). Thus, a more efficient protein extraction strategy and a
specific SPEG protocol (80), both optimized for small amounts
of clinical samples such as those derived from microdissected
tissues or biopsied samples, make an important contribution
toward the reproducible glycoproteomic phenotyping of clinical
samples via SWATH-MS.

Two glycoproteins, NAAA and PTK7, were for the first
time reported and verified as novel potential biomarkers for
PCa aggressiveness. NAAA is a lysosomal enzyme that
degrades bioactive fatty acid amides to their corresponding
acids, with primary reference to the anti-inflammatory sub-
stance N-palmitoylethanolamine. NAAA also exhibits weak
hydrolytic activity against ceramides N-lauroylsphingosine
and N-palmitoylsphingosine (81). It has been reported that
NAAA is present in cell lines derived from human blood cells
(82). Wang and coworkers found that among human tissues,
the prostate showed the highest NAAA mRNA level (83). In
addition, IHC staining images from the human Protein Atlas
also showed stronger staining with NAAA antibody relative
to all the other 19 types of human cancers (67). Moreover,
Wang et al. also reported that NAAA is functionally active in
PCa cells and is released as a secretory protein. Interest-
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ingly, they illustrated that the NAAA expression in LNCap
cells, a PCa cell line that is responsive to androgen stimu-
lation, is higher than that in PC-3 and DU-145 cells, which
are androgen-insensitive cells representing the androgen-
refractory phase of advanced PCa (83). In this study, we
showed that NAAA has a significantly lower expression in
PCa with a Gleason score � 4 � 3, which for the first time
established NAAA not only as a potential PCa biomarker, but
also as a promising signature for tumor aggressiveness. How-
ever, the physiological role of lower NAAA expression in high-
grade PCa tissues is unclear and requires further studies.

PTK7, also known as colon carcinoma kinase-4, is an inactive
tyrosine kinase involved in various processes. PTK7 is an es-
sential component of the Wnt/planar cell polarity pathway that
controls tissue polarity and cell movement. Unlike NAAA, PTK7
has been previously annotated as a cancer-associated protein.
In previous reports, the expression of PTK7 has been shown to
be increased in leukemia cell lines (84), acute myeloid leukemia
specimens (85), esophageal squamous cell carcinoma tissues
(86), and colorectal carcinomas (87). Also, PTK7 was reported
as a potential prognosis biomarker for a number of cancers,
such as gastric cancer (88), lung adenocarcinoma (89), and
triple-negative breast cancer treated with chemotherapy (90). In
the case of gastric cancer, positive staining of PTK7 was noted
in 114 of 201 tissue samples (88). However, until now PTK7
expression has not been reported to be associated with pros-
tate cancer. We found that PTK7 was dysregulated in PCa
tumors relative to the matched adjacent normal tissues. More
important, PTK7 was up-regulated in aggressive PCa tumors
relative to non-aggressive PCa. The exact functional role of PTK
in PCa progression remains to be determined.

We observed a certain degree of synergy in applying these
two markers for identifying NAG cases (Figs. 5H and 5I). It
therefore would be very interesting to seek the possibility of
establishing a biomarker panel based on these two markers in
future studies to avoid overtreatment of NAG PCa. Because
both NAAA and PTK7 were predicted as secretory proteins
(Table I), we envision further investigations into their detect-
ability in human plasma and their discriminating power be-
tween PCa cases in blood. Also, the relationship of their
expression with PCa metastasis needs to be ascertained.
TMA analyses (56 cases, 336 cores) were performed for NAAA
and PTK7, and the expressions of both proteins were signif-
icantly altered between AG and NAG samples. These data
suggest that NAAA and PTK7 might be potential IHC markers
for staging prostate cancer. However, larger scaled TMA anal-
yses with different cohorts need to be done to validate their
clinical utility, because of the practical difficulty of discrimi-
nating AG and NAG PCa (as we note in Fig. 2). All the newly
identified markers for PCa aggressiveness have to be vali-
dated in prospective studies in the future.
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