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For many psychological assessments, the engagement of a 
cognitive process of interest requires the temporal regularity 
of stimulus presentations in the form of invariant stimulus 
display times (SDT) and intertrial intervals (ITI). Temporal 
variability in stimulus presentations has been shown to 
affect the engagement of a host of processes, including task 
switching,1 response preparation,2,3 and response inhibi-
tion.4–6 The requirement of temporally invariant stimulus 
presentations, however, seemingly renders such paradigms 
impracticable for fMRI studies due to extreme collinearity, 
and possibly singularity, between the condition regressors 
used in conventional techniques for deconvolving fMRI 
time series data7,8 (where collinearity can lead to error in 
estimating fMRI signal-change with the general linear 
modeling approach). For this study, fMRI data collected on 
participants who completed a go/no-go task were used to 
illustrate the use of trial-level regressor modulation as a 
method for reducing regressor collinearity and improving 
signal detection in designs requiring temporally regular 
stimulus presentations.

Temporal variability in stimulus presentations has been 
shown to affect response execution and inhibition in go/no- 
go paradigms.4,6 Go/no-go tasks typically involve building 

preparatory or anticipatory cognitive and motor responses 
through the frequent and temporally regular presentations of 
go stimuli to which participants are to respond and then involve 
the attenuation, circumvention, or “control” of the prepotent 
responses to less frequently presented no-go stimuli. Varying 
the ITI in go/no-go tasks at 10%, 30%, and 50% of the mean 
ITI (M = 1000 ms; go trials = 75%) has been shown to lead to 
increases in reaction time (RT) and increases in RT variability, 
at least for men, and varying the ITI has been shown to lead to 
reductions in commission error rates at 10% with systematic 
increases in commission error rates (ie, responding to no-go 
stimuli) at 30% and 50%.6

Although designs with invariant SDTs and ITIs might be 
necessary for engagement of some processes, such designs are 
problematic for fMRI, in part, due to regressor collinearity 
affecting the estimation of BOLD signal-change obtained at 
the subject level in conventional fMRI data analysis. In con-
ventional fMRI data analysis, ordinary least squares multiple 
regression is used to obtain BOLD signal-change estimates for 
each experimental condition by regressing the BOLD time 
series on condition regressors on a voxel-wise basis. Condition 
regressors are created by convolving an idealized hemodynamic 
response function (HRF) with condition stimulus event 
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functions (ie, impulse response functions occurring at each trial 
onset). That is, 
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where t is the time in the time series, k is the trial for the condition, 
τk is the time of the onset of the kth trial for the condition, and 
h(t − τk) is the convolution of an idealized HRF with the condition 
stimulus event function, eg, h t t ek k

t k( ) ( ) . ( )/ .− = − ⋅ − −τ τ τ8 6 0 547.7
Through multiple regression, BOLD signal-change esti-

mates then are partial slopes relating the orthogonalized condi-
tion regressors to the BOLD time series. That is, in matrix 
form with standardized variables (ie, mean-centered with unit 
variance),

 β = ′ ′ =− −( ) ( )X X X y R Rxx xy
1 1  (2)

where signal-change estimates (ie, β ) are a function of the 
product of the inverse of the matrix of correlations between 
predictors (ie, Rxx

−1 ) and the matrix of correlations between 
predictors and the time series (ie, Rxy ) or expressed in a simpli-
fied, 2-variable form:
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where ry1 and ry2 are the correlation coefficients for y correlated 
with 2 different condition regressors, r12 is the correlation coef-
ficient between the 2 condition regressors, and R12

2  is the pro-
portion of shared variance between the 2 condition regressors.

From the partial slope formulas, it is clear that the signal-
change estimates are affected by the direction and magnitude 
of collinearity between the regressors and the direction and 
magnitude of correlations between the time series and the 
other predictors if collinearity is present. The magnitude of 
errors in estimating partial slopes has been shown to be affected 
by the direction and magnitude of the collinearity, sample size, 
and fit of the full model.9,10 The effects of high collinearity 
(r = .95) have been shown to be substantially higher with 
smaller sample sizes (eg, number of time points ≤100) and the 
fit of a moderate full model (eg, R2 ≤ 0.50), at least, based on 
simulation parameters examined.9 For fMRI analyses, increased 
error in estimating the partial slopes then can affect statistical 
power in group-level analyses, where partial slopes per partici-
pant per condition are used as task-related or process-related 
BOLD signal-change estimates.

This issue of collinearity has been acknowledged in the 
fMRI go/no-go literature.11,12 In fMRI studies, blocked designs 
with varying proportions of no-go trials between blocks, slow 
event-related designs, and rapid event-related designs with and 
without varied ITIs have been used. However, the designs used 
have limitations regarding the inferences that can be drawn 
about inhibition processes. With blocked designs, for instance, 
state-level versus trial-level inhibition processes cannot be  

disentangled (ie, states of preparedness to respond develop over 
sets of trials),13 and process engagement frequencies cannot be 
easily balanced across blocks (eg, motor response frequencies 
differ with no-go proportions). With slow event-related designs 
and rapid event-related designs with varied ITIs, slowing or 
varying the stimulus presentation rate could affect the establish-
ment of the prepotent go response, as shown in the studies 
examining RT and commission errors.6

One analytical approach has been to exclude modeling the 
go trials in the analysis and treat go-related periods as part of 
the implicit baseline.14–16 This approach, however, has limita-
tions regarding the inferences that can be drawn about inhibi-
tion processes. No-go signal-change estimates, for instance, 
could be affected by the influence of the mean of the go-related 
signal-change on the implicit baseline and the influence of the 
mean of the go-related signal-change on the total variance in 
the data. In addition, the interpretation of the direction of the 
effects from such an analysis would be ambiguous. Positive 
correlations between BOLD and the no-go regressor could 
occur due to increased regional BOLD signal-change from 
baseline in response to the no-go stimulus or to the signal 
returning to baseline from a period of decreased signal-change 
(ie, “deactivation”) in response to the go stimuli. Furthermore, 
when collinearity is present, omitting one of the correlated pre-
dictors biases the parameter estimate for the predictor left in 
the regression model, even with large samples (eg, n = 500), and 
the magnitude of the bias monotonically increases with the 
magnitude of the collinearity.10

Although varying ITIs would affect the processes engaged 
in a go/no-go task,4–6 the duration of engaged processes does 
vary from trial-to-trail, and RT variability has been used as an 
index of variability in processing time.4,6 Introducing model 
variability into the go regressor by varying trial-level HRFs by 
RT could be used to reduce collinearity between the go and no-
go regressors and thus improve the unique variance accounted 
for by each regressor. In addition, hemodynamic response 
regressors modulated by trial RTs have the potential for better 
accounting for BOLD signal-change than typically used non-
modulated models because RT-scaled models might better 
reflect the underlying duration of the neural activity.17 Thus, in 
voxels in which neurons are responding to both go and no-go 
trials, a potentially better fitting go model will provide more 
stable no-go partial slope estimates across participants and thus 
increase group-level statistical power. Increased stability would 
come from the reduction in the variance in y to be explained by 
the no-go regressor after removing shared variance with the go 
regressor.

This study examined the use of RT modulation when ana-
lyzing fMRI time series data collected using a rapid event-
related go/no-go task with constant SDTs and ITIs. Two RT 
modulation methods were explored. For one method, the 
amplitude of the canonical HRF for a trial was scaled propor-
tionally to the RT for the trial, and for the other, the amplitude 
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and width of the idealized HRF for a trial were scaled propor-
tionally for the RT for the trial. Thus, the effects of RT modu-
lation of the go regressor on the independence of the no-go 
regressor and on the detection of group-level no-go effects were 
examined. Decorrelating the no-go model from the go model, 
by creating go model trial-by-trial uniqueness with RT modu-
lation, would allow for increased uniqueness in the sampling of 
BOLD responses to account for the unknown signal-change 
parameter estimates on the no-go trials.

Methods
Participants

A total of 16 healthy young adults participated (women = 10; mean 
age = 23.5 years; range = 19-34 years). All participants were pre-
screened for magnetic resonance imaging contraindications and 
for medical, neurologic, and psychiatric illness, and all had either 
normal or corrected-to-normal visual acuity. All participants gave 
written informed consent in accordance with a protocol approved 
by the Institutional Review Boards of the University of Texas 
Southwestern Medical Center and the University of Texas at 
Dallas. The research was conducted in accordance with the princi-
ples expressed in the Declaration of Helsinki. Analyses of the full 
set of data examining inhibition under varying categorization 
requirements have been reported in another publication.18

Stimuli

Participants completed several tasks while in the scanner, but 
for this study, only the data from one run of the go/no-go task 
were analyzed. A car served as the go stimulus, and a dog served 
as the no-go stimulus. Both were black line drawings on white 
backgrounds, and they were taken from a standardized picture 
set.19 Stimuli were projected onto a screen at the rear of the 
bore of the scanner and viewed by participants via an angled 
mirror (approximately 45°) positioned above the receiving coil, 
with the midpoint of the mirror approximately 12 cm from the 
participant’s eyes. E-Prime (Psychology Software Tools, 
Pittsburgh, PA, USA) was used to control stimulus presenta-
tions and to record responses and RTs, and responses were 
given via a magnetic resonance–compatible response box.

Procedure

Participants were instructed to respond as quickly and accu-
rately as possible to go stimuli and to withhold responding to 
no-go stimuli. There were 160 (80%) go trials and 40 no-go tri-
als. The SDT was 250 ms followed by a centered, fixation cross 
over a 1750-ms ITI.

fMRI data acquisition parameters

Brain imaging data were acquired on a Philips 3T Achieva 
scanner with an 8-element, SENSE, receive-only head coil. 
The fMRI data were acquired in the transverse plane, using an 

EPI sequence: repetition time (TR) = 1.5 seconds, echo time 
(TE) = 25 ms, flip angle = 60°, 36 slices/volume, 289 volumes/
run, slice thickness = 4 mm with no gap, interleaved acquisition 
inferior to superior, and acquisition matrix = 64 voxels × 64 vox-
els at 3.44 mm × 3.44 mm. High-resolution anatomical images 
also were acquired for image registration (MPRAGE; 1-mm 
isovoxel; sagittal; TE = 3.7 ms; flip angle = 12°).

Illustration and Evaluation of Regressor Collinearity
Figure 1A.1 illustrates the regressor collinearity problem for 
the go/no-go task. Idealized BOLD signal-change models for a 
typical go/no-go task with fixed SDTs and ITIs are depicted: go 
trials = 80%, no-go trials = 20%, stimulus duration = 250 ms, 
ITI = 1750 ms, and TR = 1.5 seconds for the fMRI acquisition 
sequence (ie, the parameters used in the present study). Each 
idealized go and no-go regressor (Figure 1A.1) was created by 
convolving a canonical HRF with go and no-go stimulus event 
functions (ie, impulse functions occurring at each trial onset), 
see equation (1).

The resulting go and no-go regressors were significantly neg-
atively correlated, r(n = 289) = −.48 (Figure 1A.2), but this 
obtained correlation coefficient actually underestimated the 
strength of the linear relationship between the 2 models due to 
data points at the beginning (circled by a gray solid line) and 
end (circled by a gray dashed line) of each model having undue 
influence on the assessment of the linear relationship. In the 
beginning of the run, the go model increased with no corre-
sponding changes in the no-go model. Afterward, go and no-go 
models become perfectly negatively correlated until the end of 
the run, r(n = 260) = −.99, only reduced from 1.00 due to tem-
poral resampling. At the end of the run, the models then 
become positively correlated as the hemodynamic responses are 
expected to return to baseline.

Three subsequent regression models were evaluated. For 
the first model, deleted trials (DT), trials in which omission 
errors occurred on go trials, commission errors occurred on 
no-go trials, and go trials in which RTs were ±2.5 SDs from 
the mean RT for the participant were excluded from the 
stimulus event functions in building the go and no-go regres-
sors. For the correct go trials, 2 additional regressor models 
were then constructed. For the amplitude modulated (AM) 
model, the heights of the δ-functions were scaled propor-
tional to the participant’s mean RT before the event function 
was convolved with the canonical HRF. That is,

 y t a a h tk k
k
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where t is the time in the time series, k is the trial for the condi-
tion, ak  is the RT for the kth trial, a  is the mean RT, τk is the 
time of the onset of the kth trial for the condition, and 
h t t ek k

t k( ) ( ) . ( )/ .− = − ⋅ − −τ τ τ8 6 0 547 .8 For the amplitude and dura-
tion modulated (A&DM), boxcar functions were created for 
each trial, with the duration of the boxcar lasting from the trial 
onset to the time of the response, and the boxcar functions 
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were convolved with the HRF. For all of the regressors, data 
points corresponding to those deviating from the negative cor-
relations between the full-model go and no-go regressors (see 
above and Figure 1A.1 and 1A.2) were deemed outliers, having 
undue influence on the accurate estimation of the linear rela-
tionships between the go and no-go regressors and were 
excluded from further analysis. In total, 17 points were dropped 
from the beginning and 11 from the end (circled points in 
Figure 1A.1 and 1A.2) of the regressors and time series.

Comparisons of the go regressors (gray) illustrate the 
changes in the models from the full canonical go regressor 

(Figure 1A.1) due to DT (Figure 1B.1), AM (Figure 1C.1), 
and A&DM (Figure 1D.1) of the go models. Comparisons of 
changes in the correlations between the go and no-go (black) 
models illustrate the increased independence of the no-go 
regressor from the go regressor due to dropping trials and RT 
modulation of the go regressor. Across models created for the 
participants, the shared variance (R2) between the go and no-go 
regressors was significantly lower for the A&DM 
(−.87 ≤ r ≤ −.35; mean R2 = 0.53) than for AM (−.90 ≤ r ≤ −.41; 
mean R2 = 0.57) and for DT (−.94 ≤ r ≤ −.72; mean R2 = 0.74) 
models, F2,30 = 41.00, P < .05, and all t’s(15) ≥ 5.60, P’s ≤ .05 

Figure 1. Go and no-go regressors and scatterplots showing correlations between regressors. Regressors were created by convolving a γ-variate 

function with δ-functions depicting go and no-go stimulus onsets: (A.1) with all trials included, (B.1) after deleting incorrect trials and trials with outlier 

reaction times (RT), (C.1) after modulating the amplitudes of the go δ-functions by RT, and (D.1) after modulating the amplitude and width of the δ-

functions by RT. In the figures on the left, go regressors are depicted in gray, and no-go regressors are depicted in black. Scatterplots and correlation 

coefficients showing relationships  between the regressors are shown to the right of the respective models (A.2-D.2). Points circled in solid and dashed 

gray lines (A.1 and A.2) are outliers having undue influence on the linear relationships between the go and no-go regressors, and correlation coefficients 

between the go and no-go regressors both with (ie, rall) and without (ie, rrestricted) these data points are shown in the respective scatterplots.
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(Figure 1B.2 to 1D.2). Thus, amplitude and duration modula-
tion of the go regressor reduced the collinearity between the go 
and no-go regressors to a greater degree than amplitude modu-
lation alone and deleting trials, although amplitude modula-
tion alone also reduced the collinearity between the go and 
no-go regressors to a greater degree than just deleting trials.

The degree of collinearity between the go and no-go regres-
sors for each type of go regressor also was related to the behav-
ioral measures used to induce variability between the regressors. 
The strength of the correlations between the go and no-go 
regressors for the DT regressor, but not for the AM and 
A&DM regressors, was significantly correlated with the num-
ber of DTs (r(n = 16) = .73, P < .05; r(n = 16) = .001; and 
r(n = 16) = .05, respectively). However, the strength of the cor-
relations between the go and no-go regressors for the AM and 
A&DM regressors, but not for the DT regressor, was signifi-
cantly correlated with mean RT and with coefficient of varia-
tion (r(n = 16) = .53, P < .05; r(n = 16) = .52, P < .05 and 
r(n = 16) = .28, respectively; SDRT/MRT r(n = 16) = .71, P < .05; 
r(n = 16) = .70, P < .05; and r(n = 16) = .13, respectively). Thus, 
deleting trials, longer mean RT, and greater RT variability led 
to reductions in the collinearity between the go and no-go 

regressors, but with the AM and A&DM regressors, longer 
mean RT and greater RT variability were key to reducing the 
collinearity.

Evaluation of “Detected” No-Go Effects
Imaging analyses were performed using AFNI software.20 The 
data for individual participants were corrected for slice-timing 
offset and motion, spatially smoothed (Gaussian kernel full 
width at the half maximum = 8 mm), and scaled so that the 
deconvolution parameter estimates would be expressed in 
terms of percent signal-change (ie, 100*y(t)/M(y), where y(t) is 
the BOLD signal in a given voxel at time t in the time series 
and M(y) is the mean of the time series within that voxel). 
Three separate percent signal-change estimates for the no-go 
responses were then obtained through separate regression anal-
yses for models that included the DT, AM, and A&DM go 
regressors. Nuisance regressors for the motion correction 
parameters and linear, quadratic, and cubic trends were included 
in the regression models. The 3 no-go percent signal-change 
matrices obtained for each participant were spatially normal-
ized (resampled to a 2-mm isovoxel resolution) to Talairach 
space.21 The high-resolution anatomical image was registered 

Figure 2. Histograms and statistical parameter maps showing distributions of z values and clusters of significant signal-change for no-go trials when deleted 

trial (A.1 and A.2), amplitude-modulated (B.1 and B.2), and amplitude and duration–modulated go regressors were included in the regression analyses. (A.1) 

Histogram of z values from all voxels used in the group-level analyses and corresponding (A.2) color-scaled, 1-sample, z-statistic maps for no-go percent 

signal-change estimates obtained via regression modeling with go and no-go regressors having incorrect and outlier reaction time (RT) trials deleted. As 

shown, lower voxel-wise and cluster-wise statistical criteria were used for the deleted trials modeling because no significant effects were found when 

family-wise error–corrected criteria were used (see text). (B.1) Histogram of z values from all voxels used in the group-level analyses and corresponding (B.2) 

color-scaled, 1-sample, z-statistic maps for no-go percent signal-change estimates obtained via regression modeling that included the RT-based amplitude-

modulated go regressor. (C.1) Histogram of z values from all voxels used in the group-level analyses and corresponding (C.2) color-scaled, 1-sample, 

z-statistic maps for no-go percent signal-change estimates obtained via regression modeling that included the RT-based amplitude and duration–modulated 

go regressor. For all 1-sample z statistic, no-go mean percent signal-change was compared with 0. Positive values in the histograms and red-yellow voxels 

on z-statistic maps indicate that the mean percent signal-change was greater than 0, and negative values in the histograms and blue-cyan voxels on 

z-statistic maps indicate that the mean percent signal-change was less than 0. Brain images shown in neurological convention, right=right.
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with an anatomical template via 6-parameter affine transfor-
mation and subsequent nonlinear registration, using FLIRT 
and FNIRT in FSL v4.1.5,22 and the transformation parame-
ters were then applied to the percent signal-change matrices. 
Group-level analyses were performed on the spatially normal-
ized percent signal-change matrices. Group-level analyses con-
sisted of voxel-wise 1-sample z statistics calculated to determine 
which brain regions showed significant, group-level no-go 
effects for the different regression models. Cluster thresholding 
to control family-wise error (FWE) rates involved computing 
residuals for the contrast of interest, generating a null distribu-
tion by randomizing the signs of the residuals per subject, itera-
tively (k = 10 000) generating z statistics on the residual 
matrices, and then using the z-statistic matrices to determine 
false-positive probabilities of clusters of a given size with dif-
ferent voxel-wise P value thresholds,23 thus addressing con-
cerns regarding inflated false-positive rates in fMRI studies.24

Voxel-wise 1-sample z statistics were calculated to deter-
mine which brain regions showed significant, group-level 

no-go effects when the DT, AM, and D&AM go models were 
included in the subject-level regression analyses. Histograms 
of the distributions of z values extracted from all voxels 
included in a whole brain mask (k = 167 149 voxels) show that 
the distribution was negatively shifted from 0 for analyses that 
included the DT model (Figure 2A.1) but positively shifted 
from 0 for the analyses that included the AM (Figure 2B.1) 
and D&AM (Figure 2C.1) models. After FWE correction, 
the analyses with the DT model failed to show significant 
clusters associated with no-go trials. At a reduced threshold, 
however, voxel-wise P < .01 (reduced only for the analysis of 
no-go effects when the DT model was included), clusters of 
no-go–related negative signal-change were observed in right 
parietal (k = 141) and right cingulate (k = 138) regions (Figure 
2A.2 and Table 1). After FWE correction, for the analysis 
with the AM model, 2 significant clusters were observed 
(Figure 2B.2 and Table 1), both showing positive signal-
change. One cluster (k = 185) extended from right inferior 
parietal cortex (BA40) to right precentral gyrus, and the other 

Table 1. Descriptive statistics for clusters found for analyses including different go regression models.

MoDEl ClUSTER SIzE PEAK voXEl

z vAlUE TAlAIRACH CooRDINATES BRAIN REgIoN

 x   y  z

Deleted trialsa 141 −4.05 25 −81 36 Right occipital-
parietal BA7/19

138 −4.14 9 −3 36 Right cingulate 
BA24

Amplitude 
modulated

185 4.01 43 −23 34 Right inferior 
parietal BA40

173 4.20 49 −63 −4 Right occipital-
temporal 
BA19/37

Amplitude and 
duration 
modulated

1837 5.14 59 −31 14 Right superior 
temporal BA22

491 4.65 −39 −43 −26 left cerebellum

310 4.89 −11 13 28 left cingulate 
BA24

253 4.24 −51 −71 −4 left occipital-
temporal 
BA19/37

156 3.94 31 −83 22 Right occipital 
BA19

137 3.90 −13 −51 52 left parietal BA7

131 4.16 −45 −27 28 left inferior 
parietal BA40

120 4.46 21 −67 52 Right parietal 
BA7

Abbreviation: BA, Brodmann area.
a For the deleted trials model, the voxel-wise α = .01 (raised from voxel-wise α = .001 for the amplitude-modulated and amplitude and duration–modulated models) and the 
2 clusters were not significant at cluster-wise α = .05.
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cluster (k = 173) was in the right occipital-temporal region 
(BA37). For the D&AM model, 8 significant clusters at the 
FWE-corrected threshold were observed (Figure 2C.2 and 
Table 1), and all showed positive signal-change. A large cluster 
(k = 1836 voxels), with a peak z value within right superior 
temporal gyrus, extended from inferior parietal cortex (BA40) 
ventrally across middle temporal gyrus to the occipito-tempo-
ral region (BA37). Both of the clusters found for the analysis 
including the AM model were encompassed within this large 
cluster. The 7 additional clusters only were observed when the 
D&AM model was included—first (k = 491) extended on the 
left from the cerebellum into inferior temporal cortex, second 
(k = 310) was within left cingulate cortex (BA24), third 
(k = 253) encompassed the left occipito-temporal junction 
(BA37), fourth (k = 156) was at the right occipito-parietal 
junction, fifth (k = 137) was within left superior temporal cor-
tex (BA7), sixth (k = 131) was within left inferior parietal cor-
tex (BA40), and seventh (k = 120) was within right superior 
temporal cortex (BA7).

Conclusions
The results show the efficacy of using RT-based modulation 
in the regression analysis of fMRI data to reduce collinearity 
between regressors when invariant SDTs and ITIs are required 
to elicit the engagement of targeted cognitive processes. In 
addition to reducing collinearity between the go and no-go 
regressors, RT modulation improved the detection of no-go 
effects in group-level analyses. In fact, without RT modula-
tion, significant no-go effects were not detected when conven-
tional FWE-correction criteria were applied. In addition, 
RT-based amplitude and duration modulation of the go 
regressor led to the detection of more clusters showing signifi-
cant no-go–related signal-change.

The results suggest that other trial-level measures (eg, 
RTs from binary responses) can be used to build modulated 
regressors and increase regressor independence when invari-
ant SDTs and ITIs are required, assuming that the measures 
are more accurate indices of the timing of the cognitive pro-
cesses of interest than, for instance, SDTs. However, when 
RT-based modulation was used, the association between the 
go and no-go regressors was found to vary with mean RT and 
RT variability. The correlations then suggest potential limi-
tations in the use of the modulation approach. For example, 
group differences in potential regressor modulator means or 
variabilities could differentially bias the ability to detect sig-
nal-change in the groups, and such biases could then lead to 
artifactual group differences or contribute to error in esti-
mating differences in signal-change magnitudes between 
groups. Thus, the potential of moderators to induce artifac-
tual group or condition differences in BOLD signal-change 
estimates needs to be carefully considered.
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