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Identification of 15 novel risk loci 
for coronary artery disease and 
genetic risk of recurrent events, 
atrial fibrillation and heart failure
Niek Verweij   1, Ruben N. Eppinga1, Yanick Hagemeijer   1 & Pim van der Harst1,2,3

Coronary artery disease (CAD) is the major cause of morbidity and mortality in the world. Identification 
of novel genetic determinants may provide new opportunities for developing innovative strategies to 
predict, prevent and treat CAD. Therefore, we meta-analyzed independent genetic variants passing 
P <× 10−5 in CARDIoGRAMplusC4D with novel data made available by UK Biobank. Of the 161 
genetic variants studied, 71 reached genome wide significance (p < 5 × 10−8) including 15 novel loci. 
These novel loci include multiple genes that are involved in angiogenesis (TGFB1, ITGB5, CDH13 and 
RHOA) and 2 independent variants in the TGFB1 locus. We also identified SGEF as a candidate gene 
in one of the novel CAD loci. SGEF was previously suggested as a therapeutic target based on mouse 
studies. The genetic risk score of CAD predicted recurrent CAD events and cardiovascular mortality. 
We also identified significant genetic correlations between CAD and other cardiovascular conditions, 
including heart failure and atrial fibrillation. In conclusion, we substantially increased the number of loci 
convincingly associated with CAD and provide additional biological and clinical insights.

Coronary artery disease (CAD) is a major burden of morbidity and mortality to Western society1. CAD is driven 
by a complex interplay of multiple genetic and environmental factors that jointly give rise to a plethora of molec-
ular interactions resulting in a complex and heterogeneous phenotype. The hallmark of CAD is the development 
and progression of atheromatous narrowing of the coronary artery with an increasing risk of plaque rupture, 
resulting in acute coronary occlusion. Current preventive therapy for individuals at risk is directed towards the 
management of their lipid profile, blood pressure and promoting a healthy lifestyle. Genome-wide association 
studies (GWAS) have rapidly expanded our knowledge and provided novel leads to gain insights into human 
biology, optimize risk management and devise new therapeutic strategies2. To date, 57 loci have been reported by 
genome-wide association studies for CAD, mainly driven by efforts of the CARDIoGRAM- and C4D-consortia3. 
These genetic associations have identified genes that are among the targets of known and possible novel CAD 
therapies such as LDLR and HMGCR (HMG-coA reducatase inhibitors, statins), PCSK9 (PCSK9 inhibitors) and 
IL6R (Tocilizumab)4, 5. Genetic association analyses have also identified therapeutic targets for many other con-
ditions as well (reviewed by Plenge et al.4).

To further build upon our biological knowledge of CAD, to facilitate the identification of additional thera-
peutic targets, and to gain novel insights in the causal relationships between other cardiovascular phenotypes, 
continuous efforts directed at expanding the number of genetic regions associated with CAD are of paramount 
importance. Therefore, we set 3 goals. 1) Validate and identify novel loci by follow-up of the top-signals identified 
in the previous GWAS by the CARDIoGRAM-C4D consortium 2) determine biological pathways and candidate 
genes underlying the genome wide associated loci and 3) evaluate the association of the variants with common 
risk factors of CAD and common cardiovascular disorders to gain more insight into potential mediators of CAD 
per locus and trait.
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Results
First, we identified UK Biobank individuals with and without CAD. The prevalence and incidence of CAD con-
ditions and events was captured by data collected at the Assessment Centre in-patient Health Episode Statistics 
(HES) and at any of the visits. A detailed definition of CAD can be found in the methods section and supplemen-
tary material.

Naturally, non-CAD individuals defined the control population but to improve statistical power we excluded 
individuals from the control population if their mother, father or sibling was reported to suffer from ‘heart dis-
ease′. We validated this approach by constructing a genetic risk score based on the 57 previously reported loci 
weighted with the effect estimates of the CARDIoGRAMplusC4D 1000 Genomes analysis assuming an addi-
tive model. The genetic risk score was associated with a family history of heart disease (ncases = 71,263, ncon-

trols = 76,535, p = 3 × 10−128) in UK Biobank. Moreover, increased significance was observed for the association 
between the genetic risk score and CAD after excluding participants in the control group based on a family 
history (p = 5 × 10−183), compared to including these individuals (p = 2 × 10−147). Indicating that incorporating 
family history into the phenotype definition increases statistical power to detect associations between genetic 
variants and CAD.

This approach identified a total of 10,898 CAD cases and 76,535 non-CAD controls in UK Biobank that were 
imputed to the 1000 Genomes and UK10K reference panel6. The average age for CAD identified participants was 
61.5 years and 55.8 for the controls. Detailed baseline characteristics are presented in Supplementary Table 1. To 
account for potential population stratification and genotyping differences, all associations in this manuscript were 
adjusted for the first 15 principle components, genotyping chip, gender and age.

Replication and identification of novel CAD loci.  To date, 57 loci have been associated with CAD3. We 
performed logistic regressions between CAD status and these 57 previously reported CAD loci: 42 loci replicated 
at FDR < 0.05 in UK Biobank (Supplementary Table 2). A schematic overview of the 2-stage design to identify 
new CAD loci is presented in Fig. 1. We first clumped genetic variants on LD (r2 < 0.05, 1000 Genomes phase 1 v3 
European panel) that reached a P value of < 1 × 10−5 in the latest CARDIoGRAMplusC4D GWAS. This resulted 
in 161 independent sets of variants sharing 120 independent loci (defined as 1 MB at either side of the sentinel 
genetic variant; Supplementary Table 3). Seventy-one genetic variants in 52 loci were significantly associated 
(FDR < 0.05) with CAD in UK Biobank, were directionally concordant with CARDIoGRAMplusC4D, and were 
genome wide significant (p < 5 × 10−8) in the joint (meta-) analysis of UK Biobank and CARDIoGRAMplusC4D. 
Of these 52 loci, 37 were previously reported as genome-wide significant loci for CAD leaving 15 novel genome 
wide significant loci (Table 1, Supplementary Figure 1). All of the 15 novel loci were common. The minor allele 
frequency was above 7.6% with relatively weak effect sizes.

Candidate genes and pathway analyses.  We prioritized 104 candidate genes in the 52 loci: 70 genes 
were prioritized based on proximity (the nearest gene and any additional gene within 10 kb), 13 genes by coding 
genetic variants in linkage disequilibrium (r2 > 0.8) with the sentinel genetic variant (Supplementary Table 4) and 
51 genes based on expression quantitative trait loci (eQTL) analyses (Supplementary Table 5). Finally, 25 candi-
date genes were prioritized based on DEPICT analyses7 (Supplementary Table 6). The DEPICT framework also 
identified 458 reconstituted gene sets that can be captured in 48 meta-genesets (Fig. 2), the most significant gene 
set was ‘abnormal vitelline vasculature morphology’ (Supplementary Table 7); ‘Arteries’ was the only significantly 
prioritized tissue-type (FDR < 0.01, Supplementary Table 8). Network analysis identified ‘regulation of cell motil-
ity’ as the meta-geneset that was most central among all meta-genesets, together with ‘negative regulation of cell 
motility’ and ‘blood vessel development’, suggesting these pathways play an important role in CAD. More specific 

Figure 1.  Flowchart of the study design.
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processes identified by DEPICT included hemostasis, anemia and increased leukocyte cell number. The function 
of each novel candidate gene has been summarized in the Supplementary Note.

Mediating effects of CAD variants.  CAD is a complex multifactorial disease, sharing biology with other 
atherosclerotic manifestations and vascular diseases. Therefore, we examined the association between genetic 
risk for CAD and several common cardiovascular phenotypes. We constructed a weighted genetic risk score 
by summing the number of CAD increasing risk alleles after multiplying the alleles with the corresponding β 
(based on the CARDIoGRAMplusC4D GWAS3). The genetic risk score that was based on the 71 independent 
genetic variants was associated with multiple other cardiovascular phenotypes and risk factors in UK Biobank 
(Table 2). At baseline, the genetic risk score was significantly associated with BMI, height, systolic blood pressure, 
mean arterial pressure, pulse pressure and heart rate. The genetic risk score was also associated with the presence 
of heart failure, hypertension, smoking, device implantation, cerebral infarction (including transient ischemic 
attack), atrial fibrillation and diabetes; whereas cardiomyopathy, diastolic blood pressure and arterial stiffness 
index were not significantly associated. We also tested whether the genetic risk score could predict cardiovascular 
mortality, death from coronary artery disease, death from myocardial infarction, and death from heart failure. 
The genetic risk score significantly predicted these outcomes in cox’s proportional hazards models (Table 3). In 
addition, the genetic risk score predicted recurrent CAD events (n = 3,733) in participants with a history of CAD 
(n = 6,440; HR = 1.10, Confidence interval 1.03–1.19, p = 0.009). Results were the same for a genetic risk score 
based on 57 previously known loci (Supplementary Table 9).

BOLT-REML8 was used to assess the cumulative contribution of common genetic variants to CAD risk, and 
to estimate the degree of genetic correlation between CAD and other cardiovascular phenotypes in UK Biobank. 
We estimated the heritability of CAD by genome wide genetic variants, h2

g, to be 0.063 (SE = 0.0046), which is 
0.22 on the liability scale (with a prevalence of 0.076, based on UK Biobank). CAD and almost all other studied 
cardiovascular phenotypes were genetically correlated, which led to comparable conclusions as our genetic risk 
score analyses. Narrow sense heritability estimates of all studied cardiovascular phenotypes and estimates of 
shared genetic correlations with CAD are available in Table 4.

To gain further insights into potential mediating mechanisms at the genetic variant level, we queried the 
GWAS-catalog for previously reported genome wide associations: for the novel loci, genetic variants in linkage 
disequilibrium (r2 > 0.5) with rs10857147 (FGF5) was previously associated with blood pressure and serum urate 
levels; rs2244608 (HNF1A/OASL) with a wide range of biomarkers including lipids and urate levels; rs3832966 
(TMED10/NEK9) with adult stature; rs1351525 with menarche; rs33928862 with pulmonary function; and 
rs8108632 (B9D2/TGFB1/AXL) with migraine and colorectal cancer risk (Supplementary Table 10). Furthermore, 
we performed association testing in the CAD controls of UK Biobank (N = 76,535) to reduce potential reverse 
causation of CAD for the following traits: systolic- and diastolic blood pressure, mean arterial pressure, pulse 
pressure, arterial stiffness index, heart rate, smoking and diabetes. We also performed lookups in previously pub-
lished datasets of large GWAS: lipids9, BMI10, Hip circumference11, waist-hip ratio11 (adjusted for BMI), results 
are presented in Supplementary Table 11. Of the 71 genetic variants, 63 were nominally associated (p < 0.05) 
with one or more phenotypes. These lookups confirmed our findings of the GWAS-catalog query; rs2244608 
is highly associated with total cholesterol and LDL (p = 9 × 10−21), rs10857147 (FGF5) is associated with blood 

Region Genetic variant EA/NEA EAF OR (95% CI) P Value Gene

1q21.3 rs11810571 G/C 0.787 1.069 (1.05-1.09) 1.72 × 10−10 TDRKHn,e

3p21.31 rs7623687 A/C 0.859 1.069 (1.04-1.09) 3.28 × 10−08 RHOAn, AMTn, TCTAn, CDHR4c, KLHDC8Bd

3q21.2 rs142695226 G/T 0.136 1.078 (1.05-1.10) 1.70 × 10−10 UMPSn,e, ITGB5n,d

3q25.2 rs433903 G/A 0.857 1.081 (1.06-1.11) 6.06 × 10−10 SGEF(Arhgef26)n, DHX36e

4q21.21 rs10857147 T/A 0.269 1.061 (1.04-1.08) 4.29 × 10−10 PRDM8n, FGF5n

4q27 rs11723436 G/A 0.305 1.053 (1.04-1.07) 7.01 × 10−09 MAD2L1n, PDE5Ae

4q31.21 rs35879803 C/A 0.702 1.051 (1.03-1.07) 3.83 × 10−08 ZNF827n,e

6p22.3 rs35541991 C/CA 0.312 1.049 (1.03-1.07) 2.57 × 10−08 HDGFL1n

11p15.2 rs1351525 T/A 0.674 1.049 (1.03-1.07) 4.09 × 10−08 ARNTLn,c,e

12q13.13 rs11170820 G/C 0.076 1.098 (1.06-1.13) 4.09 × 10−08 HOXC4n

12q24.31 rs2244608 G/A 0.349 1.056 (1.04-1.07) 1.86 × 10−10 HNF1Anc, OASLd

14q24.3 rs3832966 I/D 0.458 1.054 (1.04-1.07) 5.80 × 10−10 TMED10n,e, ZC2HC1Ce, RPS6KL1e, NEK9e, 
EIF2B2e, ACYP1e

16q23.1 rs33928862 D/I 0.506 1.049 (1.03-1.07) 2.47 × 10−08 BCAR1n,e,d

16q23.3 rs7500448 A/G 0.772 1.069 (1.05-1.09) 4.83 × 10−11 CDH13n,e,d

19q13.2 rs138120077 D/I 0.140 1.072 (1.05-1.10) 9.44 × 10−09 HNRNPUL1n,e, TGFB1e,d, CCDC97e

19q13.2 rs8108632* T/A 0.484 1.052 (1.03-1.07) 9.54 × 10−09 TGFB1n,d, B9D2n

Table 1.  Fifteen novel genome wide associated loci for coronary artery disease. Data presented here is from the 
meta-analysis; full summary statistics are available in supplementary Table 3. Abbreviations: EA = effect allele, 
NEA = Non-effect allele,, EAF = effect allele frequency, OR = Odds Ratio, CI = confidence interval, I = Indel, 
D = Deletion. Candidate gene superscripts indicate the method of identification (n = nearest gene, c = coding 
gene, d = depict gene, e = eQTL gene). *Denotes the secondary signal in locus of region 19q13.2.
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pressure (p = 2 × 10−13) but also identified novel associations for the novel loci such as rs7500448 (pulse pres-
sure, p = 4 × 10−11), rs1351525 (Systolic blood pressure p = 7 × 10−7) and rs33928862 (Systolic blood pressure 
p = 5 × 10−4). It also highlighted 21 of 71 variants without any association (P > 0.05) with blood pressure or lipid 
traits (Supplementary Table 11).

Discussion
Using a 2-stage design, adding 10,898 new cases and 76,535 controls to the 60,801/130,681 controls/cases pre-
viously studied by the CARDIoGRAMplusC4D consortium, we identified 15 novel loci reaching genome wide 
significance3. The variants of these 15 loci were common, with generally low effect sizes. In keeping with previous 
observations, our strategy did not reveal CAD variants of low frequency (MAF < 1-0.05%), suggesting that even 
other reference sets, techniques or larger sample sizes are required3. We added a relatively modest increase in 
cases (17.9%) compared to CARDIoGRAMplusC4D data but the number of additional controls was substantially 
higher (58.6%) and by filtering on a family history of ‘heart disease’ we might have decreased the number of 
misclassifications. These aspects of our strategy may have contributed to the relative large number of novel CAD 
loci compared to the latest CARDIoGRAMplusC4D that identified 10 new loci. Within UK Biobank we observed 
that the genetic risk score significantly predicts - and has a shared heritability with - a range of cardiovascular 
phenotypes, illustrating for example that genetically predicted CAD also increases risk for heart failure and atrial 
fibrillation, in line with observations from clinical practice.

Of the novel prioritized candidate genes, some have been previously reported for their involvement in blood 
vessel development. For example, RHOA, part of the Ras protein family, is involved in a multitude of cellular pro-
cesses via the Rho-kinase pathway which has a primary role in the regulation of contraction in vascular smooth 
muscle cells and promoting development of vascular remodeling12. CDH13 which encodes T-cadherin, is a reg-
ulator of vascular wall remodeling, angiogenesis and is essential for adiponectin’s vascular actions13. TGFB1, one 
of the most widely studied genes, is crucial in embryonic development and tissue homeostasis. The role of TGFB1 
in angiogenesis is a fact and long thought to play a role in CAD development, but the exact molecular pathways 
are hard to tackle due to the complex and multifactorial nature14. Rs2241718 near TGBF1 has been prioritized 
previously as a functional regulatory variant15 but is in low linkage disequilibrium (r2 < 0.05) with the two signals 
identified here. Identifying two independent variants in this locus provides new opportunities to study the role 
of TGFB1 in CAD. The product of ITGB5, integrin β5 has been studied in some detail for its role in cell adhesion 
and integrin-mediated signaling. It is believed that ITGB5 is able to exert pro-angiogenic effects by enhancing 

Figure 2.  Gene-networks of the meta gene-sets that DEPICT prioritized at FDR < 0.05. Sizes of the nodes 
reflect the eigenvector centrality, an indicator of a node’s centrality in the network.
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the binding capacity of circulating angiogenic cells to endothelial cells16. Our pathway analyses also suggest that 
factors related to angiogenesis (‘blood vessel development’ and ‘regulation of cell motility’) are indeed central 
among the CAD loci, supplementing previously performed pathway analyses17.

We also identified a novel CAD locus (rs433903) harboring SGEF. SGEF has been described to contribute to 
the formation of ICAM-1-induced endothelial docking structures that facilitate transendothelial migration and 
adhesion of leukocytes18. This process has an unfavorable role in atherosclerosis: SGEF-/- mice demonstrate a sig-
nificant reduction in the formation of atherosclerotic plaque and was suggested as a novel therapeutic target, also 
since there appeared to be no other negative phenotypes18, 19. Here, we demonstrate that rs433903 near SGEF is 
associated with CAD in humans and is not convincingly associated with other phenotypes such as blood pressure 
and lipids. Future studies are necessary to determine the exact molecular mechanisms underlying rs433903 and 
whether this variant is causally implicated in CAD through mechanisms of SGEF to further establish SGEF as a 
new candidate target for therapy.

Phenotype N individuals (%)
Beta (linear Regression) or odds 
ratio (logistic regression) (95% CI) P value

Body-mass index 143,442 (99.7%) −0.08(−0.14 to −0.02) 5.80 × 10−03

Height 143,595 (99.8%) −0.16(−0.24 to −0.09) 2.78 × 10−05

Resting heart rate 135,946 (94.4%) −0.45(−0.59 to −0.31) 2.03 × 10−10

Blood pressure

 Systolic 143,770 (99.9%) 0.61(0.40 to 0.82) 1.27 × 10−08

 Diastolic 143,770 (99.9%) −0.02(−0.14 to 0.10) 7.60 × 10−01

 Pulse pressure 143,770 (99.9%) 0.63(0.48 to 0.78) 1.65 × 10−16

 Mean arterial pressure 143,770 (99.9%) 0.19(0.05 to 0.33) 7.14 × 10−03

 Arterial stiffness index 54,184 (37.6%) −0.02(−0.08 to 0.04) 5.38 × 10−01

 Smoking current 18,282 (14.5%) −0.05(0.91 to 0.98) 5.45 × 10−03

Medical Conditions

 Coronary Artery Disease 10,898 (8.2%) 2.21(2.11 to 2.32) 1.76 × 10−237

 Hypertension 48,927 (51.5%) 1.18(1.15 to 1.22) 5.89 × 10−35

 Diabetes 10,486 (7.9%) 1.10(1.05 to 1.16) 5.91 × 10−05

 Myocardial Infarction 5,145 (3.7%) 2.35(2.20 to 2.51) 2.05 × 10−143

 Heart failure 2,143 (1.5%) 1.43(1.29 to 1.58) 2.76 × 10−12

 Cardiomyopathy 522 (0.4%) 1.02(0.84 to 1.25) 8.39 × 10−01

 Atrial fibrillation/flutter 5,279 (3.8%) 1.10(1.03 to 1.18) 2.90 × 10−03

 Cerebral Infarction and TIA 4,043 (2.9%) 1.16(1.08 to 1.25) 4.68 × 10−05

 Device implantation 1,606 (1.1%) 1.51(1.35 to 1.69) 1.76 × 10−12

Medication

 Beta-blockers 10,576 (7.9%) 1.42(1.36 to 1.49) 1.15 × 10−49

 Calcium channel-blockers 10,993 (8.3%) 1.17(1.12 to 1.23) 3.19 × 10−11

Table 2.  Associations in UK Biobank (N = 143,936) between the genetic risk score based on the 71 genome 
wide significant CAD variants and cardiovascular profile. Effect estimates with 95% Confidence Interval (CI) 
are shown as odds ratios for categorical variables (current smoking, cardiovascular disease, atherosclerosis, 
hypercholesterolemia, hypertension, diabetes, myocardial infarction, heart failure, atrial fibrillation/flutter, 
cerebral Infarction and TIA, device implantation, beta-blockers and calcium-channel blockers) and β estimates 
for quantitative variables (body-mass index, resting heart rate, systolic and diastolic blood pressure, pulse 
pressure, mean arterial pressure and arterial stiffness index). Abbreviation: N = Number, CI = Confidence 
Interval, TIA = Transient Ischemic Attack.

Phenotype N deaths (%)
Hazard Ratio 
(95% CI) P value

Coronary Artery Disease 723 (0.5%) 1.75 (1.48 to 2.08) 4.90 × 10−11

Myocardial Infarction 210 (0.1%) 1.93 (1.41 to 2.63) 3.40 × 10−05

Heart failure 219 (0.2%) 1.39 (1.02 to 1.88) 3.69 × 10−02

Cardiomyopathy 40 (0.0%) 1.18 (0.58 to 2.40) 6.48 × 10−01

Cerebral Infarction and TIA 124 (0.1%) 1.32 (0.87 to 1.98) 1.89 × 10−01

All cause mortality 4373 (3.0%) 1.02 (0.95 to 1.09) 5.65 × 10−01

Cardiovascular mortality 
(as primary cause of death) 892 (0.6%) 1.46 (1.26 to 1.70) 9.08 × 10−07

Table 3.  Cox survival model predicting hazard of death using the genetic risk score based on the 71 genome 
wide significant CAD variants. Abbreviations: N = Number, CI = Confidence Interval, TIA = Transient 
Ischemic Attack.
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The majority of preventive CAD medication is currently directed towards lowering LDL cholesterol and blood 
pressure, both of which are also closely associated with CAD on a genetic level, and considered to be causally 
related20–22. Genetic variants lacking any association with blood pressure or lipids might be of increased interest 
to be considered as novel (first in class) therapeutic targets that act independently from blood pressure or lipid 
lowering medication. However, our analyses are limited by the associative nature. To establish further evidence of 
the true causal genes and mechanisms underlying each association, further functional experiments are essential.

We are the first to have observed a significant genetic correlation between CAD and heart failure. The degree 
of shared heritability between CAD and heart failure was estimated to be as high as 0.68. We also observed that 
genetic risk for CAD was strongly associated with the occurrence of heart failure due to CAD, and predicts death 
of heart failure with similar effects. It is well known that CAD plays a major role in heart failure, prevention of 
CAD is essential to maintaining functional myocyte reserve and preventing left ventricular systolic dysfunction23. 
Furthermore, a significant correlation and shared heritability was observed between the genetic risk score of CAD 
and increased risk of atrial fibrillation, perhaps due to atrial infarction but shared mechanisms of inflammation 
may also be responsible24.

We could not only explain death due to CAD using our genetic risk score, in line with other studies25, but 
could even predict progression of CAD as indicated by the significant association with recurrent CAD. A genetic 
risk score may be helpful to discriminate individuals at high risk of CAD and to direct more intensive preventive 
therapies. Future studies should be focused at replicating the newly identified loci and at further elucidating the 
molecular and pathophysiological mechanisms underlying CAD.

In summary, we report 15 novel loci, representing a 20% expansion of loci that are genome wide associated 
with CAD, including 2 independent variants near TGFB1. We also highlight widespread sharing of genetic vari-
ation between CAD and numerous other common cardiovascular diseases including atrial fibrillation and heart 
failure.

Materials and Methods
UK biobank individuals.  UK Biobank recruited participants with an age range of 40–69 years that regis-
tered with a general practitioner of the UK National Health Service (NHS). Between 2006–2010, in total 503,325 
individuals were included. All study participants provided informed consent and the study was approved by 
the North West Multi-centre Research Ethics Committee. Detailed methods used by UK Biobank have been 
described elsewhere.

Phenotype h2g(Se) P-h2g

Genetic 
correlation with 
CAD (Se) P-correlation

Body-mass index 0.316 (0.005) 0 0.289 (0.026) 3.67 × 10−28

 Height 0.614 (0.004) 0 −0.142 (0.019) 5.93 × 10−13

 Resting heart rate 0.204 (0.005) 0 0.099 (0.033) 4.64 × 10−03

Blood pressure

 Systolic 0.198 (0.005) 0 0.380 (0.034) 8.04 × 10−29

 Diastolic 0.197 (0.005) 0 0.316 (0.034) 3.15 × 10−20

 Pulse pressure 0.220 (0.005) 0 0.265 (0.030) 8.08 × 10−18

 Mean arterial pressure 0.191 (0.005) 0 0.380 (0.035) 3.70 × 10−27

 Arterial stiffness index 0.082 (0.012) 2.13 × 10−11 0.075 (0.118) 3.26 × 10−01

 Smoking current 0.238 (0.012) 3.06 × 10−87 0.258 (0.043) 8.30 × 10−09

Medical Conditions

 Coronary Artery Disease 0.216 (0.016) 8.77 × 10−42 — —

 Hypertension 0.310 (0.008) 0 0.577 (0.031) 1.39 × 10−75

 Diabetes 0.345 (0.017) 2.90 × 10−95 0.412 (0.041) 2.88 × 10−23

 Myocardial Infarction 0.190 (0.025) 4.21 × 10−14 1.000 (0.035) 2.40 × 10−174

 Heart failure 0.098 (0.044) 3.49 × 10−02 0.679 (0.158) 4.04 × 10−05

 Cardiomyopathy 0.071 (0.134) 3.47 × 10−01 0.462 (0.483) 2.53 × 10−01

 Atrial fibrillation/flutter 0.238 (0.025) 1.92 × 10−21 0.323 (0.058) 8.29 × 10−08

 Cerebral Infarction and TIA 0.090 (0.028) 2.62 × 10−03 0.635 (0.134) 4.93 × 10−06

 Device implantation 0.074 (0.055) 1.61 × 10−01 0.678 (0.261) 1.36 × 10−02

Medication

 Beta-blockers 0.156 (0.016) 1.94 × 10−22 0.818 (0.053) 6.26 × 10−53

 Calcium channel-blockers 0.251 (0.016) 6.41 × 10−55 0.547 (0.049) 2.76 × 10−28

Table 4.  Heritability estimates for cardiovascular traits and the shared heritability between each trait and 
CAD in all UK Biobank Participants based on common genetic variation under the additive model (h2

g). 
For dichotomous traits, the heritability on the observed 0-1 scale was transformed to h2

g on the unobserved 
continuous liability scale by a linear transformation. Abbreviations: h2g = heritability based on genome wide 
variation, Se = Standard error, TIA = Transient Ischemic Attack (h2g); standard error (SE); N.A. ; not applicable.



www.nature.com/scientificreports/

7Scientific Reports | 7: 2761  | DOI:10.1038/s41598-017-03062-8

Ascertainment of resting coronary artery disease and controls.  The prevalence and incidence of 
coronary artery disease conditions and events were captured by data collected at the Assessment Centre in-patient 
Health Episode Statistics (HES). CAD was defined using the following ICD 10 codes: I21-I25 covering ischaemic 
heart diseases and the following Office of Population Censuses and Surveys Classification of Interventions and 
Procedures, version 4 (OPCS-4) codes: K40-K46, K49, K50 and K75 which includes replacement, translumi-
nal balloon angioplasty, and other therapeutic transluminal operations on coronary artery and percutaneous 
transluminal balloon angioplasty and insertion of stent into coronary artery. The exact phenotype definitions of 
UK Biobank are described in the supplementary note under section “Definitions used for UK Biobank analyses”. 
Individuals from the control group were excluded if their mother, father or sibling were reported to suffer from 
‘heart disease’ to increase the true CAD/non-CAD ratio for our analysis.

Genotyping and Imputation.  Of the 500 thousand individuals with phenotype data in UK Biobank, 
152,249 (25%) are currently genotyped. Genotyping, quality control and imputation was performed by UK 
Biobank and described in detail elsewhere6, 26. Briefly, genotyping of 102,326 individuals was performed using the 
UK Biobank Axiom array (Affymetrix), and an additional 49,923 individuals were genotyped as part of the UK 
Biobank Lung Exome Variant Evaluation (UK BiLEVE) project. The Welcome Trust Centre for Human Genetics 
performed quality control before imputation and imputed the dataset using a merged reference panel of 1000 
Genomes Phase 3 and UK10K6. The imputed dataset consisted of 72,355,667 genetic variants. For this work, 
genetic variants were included only if the imputation quality was greater than 0.3 and MAF > 0.005 in line with 
the CARDIoGRAMplusC4D analysis, leaving 12,248,858 genetic variants. Participants were excluded based on 
gender mismatch, high missingness and high heterozygosity (n = 662). We also removed 8,874 individuals based 
on relatedness (3rd degree or closer6), one of each related pair was excluded based on the highest missingness.

Statistical Analysis.  We selected genetic variants for replication from the CARDIoGRAMplusC4D3 GWAS 
(downloaded from: http://www.cardiogramplusc4d.org/downloads) by filtering on p < 1 × 10−5 and linkage dis-
equilibrium using the PLINK clumping procedure (‘–clump-kb 5000 –clump-r2 0.05’, 1000 Genomes phase 1), 
after which we determined the number of 2-Megabase-loci, by assigning 1 Megabase regions at either side of the 
highest associated variant per locus (designated the sentinel genetic variant). Logistic regression analyses between 
genetic variants and the 10,898 CAD cases and 76,535 controls in UK Biobank were performed after adjustments 
for age, sex, the first 15 Principal Components to control for population stratification, and the genotyping array 
used. To account for multiple testing and declare novel loci we applied a replication p of FDR < 0.05 in UK 
Biobank and a genome wide significance threshold of p < 5 × 10−8 in the inverse-variance meta-analysis between 
the summary statistics of UK Biobank and CARDIoGRAMplusC4D.

Pathway analyses.  The DEPICT Framework was used to identify enriched pathways, prioritize candidate 
genes at each loci and selects relevant tissues/cell types from co-expression networks of genes underlying the asso-
ciated loci7 (see Pers et al.7 for a detailed description). We applied DEPICT on CARDIoGRAMplusC4D results 
at p < 1 × 10–5 which identified 194 independent loci using default settings (PLINK parameters, ‘–clump-p1 1e-5 
–clump-kb 500 –clump-r2 0.01’), containing 489 genes. The gene prioritization, gene set enrichment and tissue/
cell type enrichment analyses were run using the default settings in DEPICT (1000 G dataset). We applied the 
affinity propagation method27 to identify correlated genesets and for each correlated group the exemplar-geneset, 
which was named ‘meta-geneset’, and used Gephi (www.gephi.org)28 to visualize the pearson correlation between 
pathways and calculate the centrality measures of each node (Fig. 2).

Genetic risk score analyses & (shared) heritability of CAD.  To study the relationship of CAD with 
other cardiovascular phenotypes, we created a weighted genetic risk score by summing the number of CAD 
risk-increasing alleles weighted (multiplied) for its β (estimated using the 1000 genomes meta-analysis3) of each 
associated genetic variant; assuming an additive effect. We performed a linear or logistic regression adjusted for 
age, gender, principle components and genotyping chip between the genetic risk score and cardiovascular pheno-
type. Cox regression analysis adjusted for age, gender, principle components and the genotyping chip was used to 
evaluate the predictive power of the genetic risk score on mortality and recurrent CAD events. Bivariate REML 
analyses were performed using BOLT-REML8 to estimate the heritability of CAD and the genetic correlation of 
CAD with other cardiovascular traits. All directly genotyped variants that passed quality control were extracted 
from the imputed dataset (to ensure 100% call rate) and pruned on linkage disequilibrium (r2 < 0.05) to obtain 
roughly 500 k variants, as recommended8. Liability scale was estimated for dichotomous traits using linear trans-
formation29. Gender, age, principle components and genotyping chip we included as covariates in all analyses.

Identification of candidate genes.  We prioritized candidate genes for each of the 71-genome wide signif-
icant variants that were shared in 52 loci, based on the following criteria:

	(1)	 The nearest gene or any gene located within 10 kb of the sentinel genetic variant
	(2)	 Any gene containing protein coding variants in linkage disequilibrium (r2 > 0.8, UK Biobank) with the 

sentinel genetic variant (Supplementary Table 4).
	(3)	 Expression QTL (eQTL) analyses in cis; we search for eQTLs (sentinel genetic variants or genetic variants 

in linkage disequilibrium, r 2 > 0.8, UK Biobank) in an eQTL dataset that was compiled from multiple tis-
sues, including those of GTEX v630, STARNET31 and large eQTL datasets of blood32–34 (see Supplementary 
Table 5). We only considered eQTLs for which the top-eQTL was in linkage disequilibrium (r 2 > 0.8, UK 
Biobank) with the sentinel genetic variant and for which the eQTL p < 1 × 10−6.

	(4)	 DEPICT-genes (see section “pathway analyses” for more details and Supplementary Tables 6–8).

http://www.gephi.org
http://4
http://5
http://6
http://8
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