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Abstract

Background

The Investment Framework Enhanced (IFE) proposed in 2013 by the Joint United Nations
Programme on HIV/AIDS (UNAIDS) explored how maximizing existing interventions and
adding emerging prevention options, including a vaccine, could further reduce new HIV
infections and AIDS-related deaths in low- and middle-income countries (LMICs). This arti-
cle describes additional modeling which looks more closely at the potential health impact
and cost-effectiveness of AIDS vaccination in LMICs as part of UNAIDS IFE.

Methods

An epidemiological model was used to explore the potential impact of AIDS vaccination in
LMICs in combination with other interventions through 2070. Assumptions were based on
perspectives from research, vaccination and public health experts, as well as observations
from other HIV/AIDS interventions and vaccination programs. Sensitivity analyses varied
vaccine efficacy, duration of protection, coverage, and cost.

Results

If UNAIDS IFE goals were fully achieved, new annual HIV infections in LMICs would decline
from 2.0 million in 2014 to 550,000 in 2070. A 70% efficacious vaccine introduced in 2027
with three doses, strong uptake and five years of protection would reduce annual new infec-
tions by 44% over the first decade, by 65% the first 25 years and by 78% to 122,000 in
2070. Vaccine impact would be much greater if the assumptions in UNAIDS IFE were not
fully achieved. An AIDS vaccine would be cost-effective within a wide range of scenarios.

PLOS ONE | DOI:10.1371/journal.pone.0146387 January 5, 2016

1/18


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0146387&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.9r35r

@’PLOS ‘ ONE

Modeling the Impact of an AIDS Vaccine within the Enhanced UNAIDS Investment Framework

Competing Interests: The authors have declared
that no competing interests exist.

Interpretation

Even a modestly effective vaccine could contribute strongly to a sustainable response to
HIV/AIDS and be cost-effective, even with optimistic assumptions about other interventions.
Higher efficacy would provide even greater impact and cost-effectiveness, and would sup-
port broader access. Vaccine efficacy and cost per regimen are critical in achieving cost-
effectiveness, with cost per regimen being particularly critical in low-income countries and
at lower efficacy levels.

Introduction

Since its discovery in the early 1980s, HIV has infected almost 80 million people across the
world and 40 million have died from AIDS-related causes. Strong international commitments,
generous funding, remarkable advances in treatment and prevention, and broad social mobili-
zation have bent the epidemic’s trajectory, with 2014 showing a 42% decrease in annual AIDS-
related deaths since their peak in 2004, and a 35% decrease in new infections since 2000. How-
ever, in 2014 2 million people were newly infected with HIV, with 36.9 million people living
with HIV overall. 1.2 million died of AIDS-related causes in 2014 [1]. Low- and middle-income
countries (LMICs) are the most severely affected, especially in Sub-Saharan Africa, where 70%
of new HIV infections and AIDS-related deaths occurred in 2014 [1]. Prevalence in the general
adult population can be as high as South Africa’s 18% and Swaziland’s 27% [2]. Incidence in
young women and girls in sub-Saharan Africa is twice that of boys and men their age [1]. In
other countries with lower rates in the overall population, prevalence among commercial sex
workers, men who have sex with men, transgender people and injecting drug users can be 12—
19 times higher than that of the general global population [1, 3].

Antiretroviral treatment (ART) has saved millions of lives from AIDS and can also help
reduce new infections by decreasing the amount of virus circulating in the body [4]. However,
ensuring ART access and adherence represents a logistical, financial and behavioral challenge,
with even high-income countries seeing a wide disparity between the number of people living
with HIV and those knowing their status, accessing and adhering to treatment to the point of
viral suppression [5]. Recent updated guidance by the World Health Organization (WHO) rec-
ommends initiation of ART at the time of a positive HIV diagnosis, and 15.8 million people liv-
ing with HIV (less than half of the total) accessing treatment by June of 2015 [6, 7]. With 2
million new infections a year contributing to the mounting number of people living with HIV,
accelerating necessary progress will require enhanced roll-out of available prevention options,
such as such as male and female condoms, oral pre-exposure prophylaxis (PrEP), and volun-
tary medical male circumcision, and of new options, including other forms of PrEP, treatment
as prevention (TasP), microbicides, and a vaccine.

Developing an AIDS vaccine is a huge scientific challenge. HIV mutates very rapidly, allow-
ing the virus to escape the body’s immune responses while giving rise to multiple clades that
circulate around the globe. Further, HIV establishes persistent infection quickly following
transmission, suggesting that the opportunity to prevent or abort an infection is short-lived. Of
the few vaccine candidates that have progressed to late-stage clinical trials most have failed to
demonstrate efficacy [8, 9]. In 2009, combining the ALVAC and AIDSVAX candidates reduced
new infections by 31% after three years of follow-up in the Phase ITI RV144 trial in Thailand
[10]. An efficacy study of a redesigned version of this candidate is planned to start in late 2016
in South Africa, including modification to clade C, a new protein boost, different adjuvants,
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and additional booster shots intended to improve both strength and durability of protection
[11]. In addition, there are currently more than 30 earlier-stage clinical studies underway
around the world to investigate other vaccine candidates aiming at eliciting strong, broad, and
lasting efficacy [12].

Models combining epidemiological information, effectiveness of existing and new interven-
tions, and cost help guide rational, strategic decision-making on the expansion of HIV/AIDS
programs. In 2011, the UNAIDS Investment Framework (IF) was published, providing guid-
ance to donors and LMICs of varying epidemic types toward enhancing existing prevention
and treatment options to further reduce new HIV infections and AIDS-related deaths by 2015
[13]. UNAIDS’ Investment Framework Enhanced (IFE; developed between 2012-13) included
further scale-up of ART according to revised WHO guidelines and explored potential contribu-
tions of emerging prevention technologies (NPTs), including PrEP, TasP, and a potential AIDS
vaccine [14]. In 2014, UNAIDS’ “90-90-90” campaign proposed that by 2020 90% of all people
living with HIV know their HIV status, 90% of those HIV-positive people who know their sta-
tus receive ART, and 90% of all people receiving ART have achieved and sustained viral sup-
pression [7].

This modeling study builds on UNAIDS’ IFE, as detailed in Stover et al. 2014, to provide a
more detailed analysis of the potential impact and cost-effectiveness of a vaccine in reducing
new HIV infections and AIDS-related deaths in order to help inform decision-making by
donors, policymakers and researchers toward investment and critical success factors in AIDS
vaccine research and development.

Methods
Vaccine model

This project utilizes the same Goals model (part of the Spectrum software package) and core
primary assumptions as the UNAIDS IFE [13, 14]. Goals models the potential impact of differ-
ent interventions in 24 countries accounting for 85% of new HIV infections in LMICs based on
UNAIDS estimates. Goals is a compartment model that categorizes sub-populations by behav-
iors, in this case sexual contact and needle-sharing, and simulates the transmission of HIV. Its
structure is similar to other compartment models (although the specific population groups
included differ across models) and it differs from microsimulation models that create discrete
populations of individuals and characterize each individual with randomly assigned character-
istics based on population data [15]. The model is fit to the historical epidemic from 1970 to
2013. A previously developed vaccine module was utilized to conduct vaccine-specific follow-
on modeling to further explore the potential impact and cost-effectiveness of a vaccine in
reducing new HIV infections and AIDS-related deaths in LMIC:s, sensitivity to basic product
and implementation characteristics, corresponding impact on ART needs and total costs of the
HIV/AIDS response [16]. A more detailed description of the Goals model as utilized in the
UNAIDS IFE can be found in the supporting information for Stover et al. 2014 [14].

For generalized epidemics we assumed a temporary catch-up vaccination of older age
groups in addition to vaccination of those at or above the target age for routine vaccination.
Temporary catch-up programs have been a common characteristic of many vaccination pro-
grams to accelerate health benefits. However, the benefits from this investment will take years
to fully materialize. The model projects out to 2070, in order to adequately capture the health
and cost implications of an AIDS vaccine over time. As a comparison, modeling of the health
impact and cost-effectiveness of human papillomavirus (HPV) vaccines has projected out to a
period of 100 years [17].
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The Goals model focuses on individuals of reproductive age (15-49), and includes new
infections occurring due to mother-to-child transmission, but does not yet allow exploration of
interventions for individuals younger than 15. Thus, these analyses do not include sexual trans-
mission that may take place before the age of 15. The introduction of vaccination programs in
individuals younger than 15 (starting at age 10) required a “delayed” entry into the model of
vaccinated individuals as they reached that age. Further, the model did not utilize purely differ-
entiated age tiers as stated in the assumptions, so a calculation of the total average population
coverage was used in the model to approximate these tiers. While future iterations of the model
will allow for such tiering by age to provide a more granular representation of vaccination pro-
grams, this limitation does not overly distort the model’s results.

Background scenarios

The UNAIDS IFE represents the most comprehensive global HIV/AIDS investment frame-
work published in peer-reviewed literature, and thus was used as the primary fundamental
framework for this vaccine modeling. Three iterations derived from UNAIDS IFE were
explored as background scenarios:

o A Current Trends scenario assumes that incremental linear scale-up of ART and prevention
of mother-to-child transmission (PMTCT) from 2010-2013 continues linearly into the
future, offsetting the natural increase in new infections associated with population growth in
LMICs after 2015 and resulting in a steady annual rate of new HIV infections. Future cover-
age is capped at 80% for ART and 95% for PMTCT. Eligibility for ART remains at CD4
counts <350 cells/mm?, so most countries reach 80% coverage quickly but do not progress
to much higher numbers on ART as seen in the IFE, which utilizes more aggressive treatment
scale-up thresholds recommended by the WHO in 2012, but which have yet to be imple-
mented in many LMICs [18].

50% Scale-up of IFE assumes that UNAIDS IFE targets are only achieved halfway. The 50%
Scale-up of IFE scenario is based on linear scale up from 2013 coverage to the 50% of IFE tar-
get levels in 2020.

The Full Scale-up of IFE scenario assumes that UNAIDS IFE targets are fully achieved, and
is based on linear scale up from 2013 to the target levels in 2020. Detailed assumptions for
the IFE, including scale-up targets for specific interventions, can be found in Stover et al.
2014 [14].

Assumptions of vaccine and vaccination characteristics, and sensitivity
analysis

Characteristics of an eventual AIDS vaccine and of vaccination programs remain unknown,
and assumptions were developed in order to provide estimates around which to base analyses
(see Table 1). Assumptions are not based on any particular candidate in the current global
pipeline. Our assumptions seek to carefully balance the potential promise of a vaccine against
the remaining scientific challenges in AIDS vaccine research and development, the potential
evolution of the broader HIV/AIDS response, the structural realities in relevant health care
systems and the potential issues in sustainably reaching targeted populations, which may

be further influenced by vaccine efficacy, required number of doses, costs, and duration of
protection.
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Table 1. Assumptions.
Parameter*

Introduction year

Efficacy

Doses (primary vaccination)
Booster vaccination

Target coverage—generalized epidemics

Base assumption Variables for Sensitivity
2027 2025, 2030

70% 30, 40, 50, 60, 80, 90

3 2,4

5 years (returning individual to full modeled efficacy 3, 10, none necessary (lifetime
for life) immunity)

* Routine: 10 year olds: 70% +/- 10, 20% for each tier

¢ Catch up: 11-14 year olds: 60%
* Catch up: 15-17 year olds: 55%
e Catch up: 18—49 year olds: 50%

Target coverage—high risk populations in concentrated 50% 30, 70
epidemics
Cost per regimen ¢ LMICs: US $20 (US $5/dose + US $5 See Table 2
implementation)
¢ MICs: US $55 (US $15/dose + US $10
implementation)
Rate at which target coverage is met (both epidemics) 6 years 5,10

*These parameters are illustrative and not tied to any specific vaccine candidate under current development.

doi:10.1371/journal.pone.0146387.t001

Assumptions were developed by drawing on internal IAVI perspectives (including robust
industry experience in launching new vaccines) and advice from experts in modeling, vaccine
marketing and delivery, public health, and HIV/AIDS programs, including Gavi, the Vaccine
Alliance, Global Fund to Fights AIDS, TB, and Malaria, Wits Reproductive Health and HIV
Institute in South Africa, Bill and Melinda Gates Foundation, HIV prevention and vaccine
researchers in sub-Saharan Africa, including KA VT Institute of Clinical Research, Uganda
Virus Research Institute, and Aurum Institute in South Africa, and vaccine companies such as
Merck, Sanofi Pasteur, Sanofi Pasteur MSD, and GlaxoSmithKline. A review of existing litera-
ture on uptake, compliance and cost of other vaccination programs and HIV/AIDS interven-
tions as proxies further informed assumptions.

This study focused on a single base-case vaccine scenario instead of high/low scenarios used
in the UNAIDS IFE in order to allow for independent variation of individual characteristics for
focused interpretation of observed results. These sensitivity analyses covered a wide range of
assumptions for individual product and program characteristics while maintaining other base
case assumptions constant. However, we did not conduct comprehensive sensitivity or uncer-
tainty analyses varying several parameters at the same time to explore the potential impact of
interdependencies because of the large number of parameters and country simulations
involved. High or low limits are not meant to represent the authors’ prediction of thresholds
that regulatory agencies may require for licensure. Varying parameters in a wide range enables
comparisons of which characteristics most strongly correlated to impact and cost-effectiveness
(Table 1) and also provides a context similar to the use of high and low scenarios in the
UNAIDS IFE.

The ALVAC and AIDSVAX HIV vaccine candidates reduced new infections by 60% after
one year of follow-up and by 31% after three years of follow-up in the RV144 trial [19]. The
illustrative base efficacy assumption of 70% efficacy in this modeling study assumes scientific
innovation and progress will help enhance and sustain efficacy of future AIDS vaccines, and
is consistent with optimistic goals for AIDS vaccine target product profiles [20]. Although
the number of late-stage clinical trials remains low, the AIDS vaccine research field has
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incorporated the lessons of past challenges and has maintained a diversified product pipeline
that holds the promise to produce an efficacious vaccine acceptable to regulators and policy-
makers as well as to the populations most in need. Nevertheless, we varied vaccine efficacy
between 30% and 90% in sensitivity analysis. (In the model, 70% efficacy means that 100% of
those vaccinated receive a 70% reduction in susceptibility to HIV infection.) We modeled
reduced susceptibility to infection but not reduced transmission. The model further assumes
a vaccine’s efficacy is sustained for the entirety of the durations modeled (five years for base
case; three years, ten years and life-long in sensitivity analysis), but note that that modeling
analyses of AIDS vaccines of waning immunity have previously been performed [21]. We fur-
ther assume that vaccine efficacy is similar across different subtypes of HIV prevalent in differ-
ent regions and epidemic types but acknowledge this as a limitation.

The base assumptions of three doses with a booster every five years seek a balance between
complex vaccination regimens tested in both past and forthcoming AIDS vaccine clinical trials
with strong recommendations from vaccination and public health experts that an AIDS vac-
cine regimen should be short, simple, and of minimal booster doses to help ensure strong
acceptability and high levels of uptake and compliance with all required doses, including boost-
ers, based on experience with other vaccination programs (HPV vaccination) and with other
HIV/AIDS prevention or treatment options in reaching the target populations. We assumed
constant coverage rates across all three doses of primary vaccination and booster doses. How-
ever, experience from other vaccinations and broad expert consensus suggest that compliance
to AIDS vaccination will decrease with increasing numbers of primary doses required and also
with the frequency of necessary booster vaccination, in particular in populations that are diffi-
cult to access due to structural, cultural, or social barriers. We explored the impact of these
risks through lowering the coverage rate in our sensitivity analyses (see below) but we acknowl-
edge that reality is more complex and that the influence of coverage rate and especially
compliance to both primary and booster vaccination may be stronger than captured by our
approximations.

Vaccine introduction in the base case of 2027, and in sensitivity analysis of 2025 and 2030
respectively, is consistent with the assumption of vaccine introduction in 2025 (high scenario)
or 2030 (low scenario) in the UNAIDS IFE, and reflects optimism that candidates currently
entering clinical development have the potential to move forward to licensure without signifi-
cant delay. Further, recent mobilization for clinical testing of Ebola vaccine candidates supports
optimism that enhanced international commitment could accelerate AIDS vaccine develop-
ment significantly for promising candidates. While no AIDS vaccine candidates are currently
being tested in preadolescents or adolescents, our assumptions incorporate optimism that an
approach accepted for the more recently introduced HPV vaccine would be acceptable for
AIDS vaccination. Upon demonstration of clinical efficacy in adults, licensure could occur rap-
idly based on relatively short bridging studies demonstrating immunogenicity in preadoles-
cents or adolescents without clinical efficacy studies which would take much longer due to
lower incidence, as well as greater size and complexity.

Coverage rates were assumed to differ depending on epidemic type. Base case coverage
assumptions in generalized epidemics reflect optimism that high levels reached for other vacci-
nation campaigns can also be achieved for AIDS vaccination. Target populations in generalized
epidemics were seen to be analogous to those defined or projected for HPV vaccination, assum-
ing strong delivery mechanisms and commitment from health authorities, ideally through
school-based programs. In concentrated epidemics with high incidence in key specific popula-
tions, coverage of HIV/AIDS prevention, treatment, and care programs were seen as the pri-
mary proxy, acknowledging challenges in reaching such populations due to structural, social,
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and cultural barriers. Coverage sensitivity was calculated by taking base case coverage rates for
generalized and concentrated epidemics and raising or lowering coverage by 10 or 20%.

The base assumption of six years for the rate at which target coverage is reached might also
be considered optimistic, given historical lag in scaling up new vaccines [22]. However, a num-
ber of factors are likely to facilitate rapid AIDS vaccination scale-up, including high awareness
of the severity of HIV/AIDS, existing infrastructure and sustained political support for HIV/
AIDS treatment and prevention, as well as additional infrastructure from HPV vaccine pro-
grams targeting similar cohorts,. Further, the recent scale-up to almost total coverage levels in
just a few years of meningococcal A vaccine in endemic African countries demonstrates how
collaboration and strong planning can greatly accelerate vaccine coverage [23].

Further information on assumptions can be found in the Discussion and the S1 Appendix.

Cost Scenarios

While the cost-of-goods and purchase price of a future AIDS vaccine remain unknown, a
range of assumptions were formulated incorporating vaccine and implementation costs, which
varied between LICs and MICs, in order to perform cost-effectiveness analyses (Table 2).

Cost scenarios are not representative of current candidates in development, but were formu-
lated to provide a range for comparison and were influenced by available data for implement-
ing existing vaccines, such as HPV, in LMICs [24]. This study assumes that tiered pricing for
LICs and MICs will be utilized by industry, with LIC costs based on Gavi/UNICEF pricing for
existing new vaccines. Additional information can be found in the S1 Appendix.

Cost-effectiveness analyses

Quality-Adjusted Life Years (QALY's) measure the number of healthy years of life added by an
intervention, e.g. a vaccine. Cost per QALY gained is a well-accepted measure to determine cost-
effectiveness of that intervention in reducing disease burden. The WHO’s Commission on Mac-
roeconomics and Health has classified interventions that gain a QALY at a cost that is less than a
country’s Gross National Income (GNI) per capita as highly cost-effective, and interventions that
cost between one and three times the GNI per capita as cost effective [25]. While the UNAIDS
IFE aggregates individual epidemic models for LMICs, our model in some cases separates data
for LICs and MICs to simulate differentiated considerations based on significantly different
income level, corresponding to Gavi eligibility criteria. In this model, US$ 1,557 represents the
average GNI per capita across LICs, based on purchasing power parity per capita (current inter-
national dollars) for LICs from the World Bank for 2013 (data were accessed on 10/12/2014).

Results

Results of the model provide detailed estimates of the potential health impact, costs, and cost-
effectiveness of AIDS vaccination in reducing new annual HIV infections and AIDS-related
deaths in LMICs between an illustrative vaccine launch in 2027 and the year 2070. The follow-
ing descriptions focus on the impact on new infections and cost-effectiveness; data on AIDS-
related deaths are available but not shown. All figures are rounded since intrinsic uncertainties
of the assumptions limit precision.

Impact of AIDS vaccination on the number of new HIV infections in
LMICs

In the Current Trends scenario, incremental scale-up of existing HIV/AIDS interventions
results in an eventual flat trajectory of new infections of around 1.6 million annually in 2070
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Table 2. Additional cost scenarios at launch.

Doses Low income countries (LMICs) Middle income countries (MICs)
Per Implementation* Total for Per Implementation* Total*
dose* Regimen* dose*
Launch scenarios
Base 3 5 5 20 15 10 55
Higher price 3 10 5 35 30 10 100
Very high price 3 20 5 65 50 10 160
Middle income price = lower income 3 5 5 20 5 5 20
price
2-dose regimen 2 5 4 14 15 8 38
4-dose regimen 4 5 6 26 15 12 72
10-years-out scenarios
Base 3 3 3 12 10 7 37
Higher price 3 5 3 18 15 7 52
Very high price 3 10 3 33 30 7 97
Middle income price = lower income 3 3 3 12 3 3 12
price
2-dose regimen 2 3 2 8 10 5 25
4-dose regimen 4 3 4 16 10 9 49

*Costs presented in US$.

doi:10.1371/journal.pone.0146387.t002

(Fig 1). Full Scale-up of IFE and 50% Scale-up of IFE would reduce the number of new annual
HIV infections in 2070 to approximately 550,000 and 1 million, respectively. Including an
AIDS vaccine (base-case characteristics, see Table 1) would reduce the annual number of new
HIV infections in 2070 by 85% to around 260,000, by 78% to around 122,000, by 82% to
around 184,000 when implemented with Current Trends, Full Scale-up of IFE, and 50%

20 - In thousand
No vaccine 1,659 95,119
5 With Vaccine 257 52,331
E1 5 A Reduction -1,402 -42,788
> -84.5% -45.0%
i_; No vaccine 1,044 63,242
L With Vaccine 184 36,153
-é Reduction -860 -27,088
€ . —— -82.3% -42.8%
505 A - No vaccine 547 44,442
= With Vaccine 122 28,284
Reduction -424 -16,158
0.0 -77.7% -36.4%

2010 2020 2030 2040 2050 2060 2070

Fig 1. Reduction of new annual HIV infections with and without an AIDS vaccine under different IFE scale-up scenarios between 2010 and 2070.
Vaccine and implementation characteristics are outlined in Table 1.

doi:10.1371/journal.pone.0146387.g001
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Scale-up of IFE, respectively. Overall, an AIDS vaccine would reduce the number of cumulative
HIV infections from 2027 to 2070 by more than 42 million, 16 million, and 27 million if
applied to Current Trends, Full Scale-up of IFE, and 50% Scale-up of IFE, respectively (Fig 1).

Unless noted, the following results on new infections refer to Full Scale-up of IFE as the fun-
damental background scenario. Vaccine impact is higher in 50% Scale-up of IFE and Current
Trends scenarios due to the higher incidence when a vaccine is introduced, but the relative pro-
portion of new infections averted is relatively consistent with the Full Scale-up of IFE scenario
(data not shown).

Adding PrEP, TasP, and an AIDS vaccine individually or in combination to the Full Scale-
up of IFE reduces the number of annual new HIV infections in 2070 by 29%, 34%, 78%, and
91% respectively, with vaccination under base assumptions providing the strongest single ben-
efit despite being introduced at a later stage. The combination of PrEP, TasP, and vaccination
could reduce the number of annual infections with HIV to around 49,000 in 2070 (Fig 2).
Assumptions for PrEP and TasP scale-up are detailed in Stover et al. 2014.

Sensitivity analyses

Vaccine efficacy. There is strong correlation between vaccine efficacy and reduction of
new annual HIV infections (Fig 3, Table 3). While a 70% efficacious vaccine (base-case) would
reduce annual new infections by 78% to around 122,000 in 2070 when added to the Full Scale-
up of IFE, a 30% efficacious vaccine would reduce new infections by 44% to 306,000 in 2070,
and at 90% efficacy the reduction would be 87% to 74,000 new infections in 2070 (Fig 3).

Coverage rate. Higher vaccine uptake correlates to more new HIV infections averted.
While under base-case assumptions new infections would be reduced by 78% to 122,000 in
2070, when added in 2027 to the Full Scale-up of IFE there would be 188,000 (66% fewer) and
225,000 (59% fewer) new annual infections in 2070 if the coverage rate was 10% or 20% lower
than the base case. If uptake was 10% or 20% above base-case scenario there would be 74,000
(87% fewer) and 62,000 (89% fewer) new annual infections, respectively (Fig 4). The cumula-
tive numbers of new annual HIV infections averted in LMICs through an AIDS vaccine by
2070 depending on coverage rate are presented in Table 4.

Cost-effectiveness

Cost-effectiveness related to cost per regimen. In the base case scenarios looking at vari-
able costs for a three-dose regimen, all cost scenarios analyzed are cost-effective (<3x GNI per
capita or US $4,671) in LICs under both Full Scale-up of IFE and 50% Scale-up of IFE. Fig 5
shows that an AIDS vaccine in LICs would need to cost below US $20-25 per regimen under
Full Scale-up of IFE and US $35-40 per regimen under 50% Scale-up of IFE to be considered
highly cost-effective (<1x GNI per capita or US $1,557).

All the following results on cost-effectiveness refer to Full Scale-up of IFE as the fundamen-
tal scenario. Results are more favorable under 50% Scale-up of IFE and Current Trends scenar-
ios (see S1 Appendix).

Cost-effectiveness related to vaccine efficacy. Focusing on LICs, Fig 6 illustrates that, at
base case cost (US $20 per regimen), an AIDS vaccine would be cost-effective (<3x GNI per
capita or US $4,671) under all efficacy sensitivity scenarios (30-90%), and would be highly
cost-effective (<1 GNI per capita or US $1,557) when added to the Full Scale-up of IFE as long
as the vaccine showed at least 60% efficacy. Under the very high price scenario (US $65 per reg-
imen), an AIDS vaccine would need to be at least 60% efficacious to be cost-effective in LICs
and would not be highly cost-effective at any of the assumed efficacy levels. Vaccines of all
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12 \
1.0 Cumulative
é Scenario In thousand
E 08 = Full Scale-up of IFE 547 50,547
z 360 40,357
£ 45 IFE + TasP Reduction 187 10,191
= -34.1% -20.2%
2
% e |FE + PrEP/ 391 44,035
Q2 Microbicides Reduction 156 6,512
T 04 -28.5% -12.9%
E) 122 34,389
IFE + Vaccine Reduction 124 16,158
0.2 -77.7% -32.0%
—— IFE + Combination of 49 26,976
NPTs Reduction 498 23,572
0.0 -91.1% -46.6%

. 2015 2025 2035 2045 2055 2065

Fig 2. Reduction of new annual HIV infections with PrEP, TasP and vaccination added individually
and in combination to the Full Scale-up of IFE between 2015 and 2070. Vaccine and implementation
characteristics are outlined in Table 1. Assumptions on PrEP and TasP can be found in Stover et al. 2014
[14].

doi:10.1371/journal.pone.0146387.9002

efficacy and cost levels modeled were cost-effective in MICs, with most also being highly cost-
effective (see S1 Appendix).

Cost-effectiveness related to vaccine coverage. Fig 7 illustrates that, at base coverage
assumptions (see Table 1), an AIDS vaccine would be cost-effective (<3x GNI per capita or US
$4,671) in LICs under all coverage sensitivity scenarios and would be highly cost-effective or
almost highly cost-effective (<1 GNI per capita or US $1,557) when added to the Full Scale-up

of IFE.
800,000
700,000 Efficacy
600,000
= a—— - 1
2 500,000 - Full Scale-Up of IFE (No Vaccine)
% 30%
@ 400,000 +— e 40%
i)
-— oa— O,
3 300,000 °0%
2 200,000 =70% (Base)
L] O,
100,000 80%
90%
0

2025 2030 2035 2040 2045 2050 2055 2060 2065 2070

Fig 3. Reduction of new annual HIV infections under Full Scale-up of IFE according to vaccine efficacy between 2025 and 2070 (vaccine
introduced in 2027). Other vaccine and implementation characteristics are outlined in Table 1.

doi:10.1371/journal.pone.0146387.9003
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Table 3. Potential new HIV infections averted in LMICs by vaccine efficacy. Other vaccine and imple-
mentation characteristics are outlined in Table 1.

Vaccine efficacy Cumulative number of new HIV infections averted (2027-2070)
30% 8.4 million

40% 10.6 million

50% 12.6 million

60% 14.5 million

70% (baseline) 16.1 million

80% 17.7 million

90% 19.0 million

doi:10.1371/journal.pone.0146387.t003

Cost-effectiveness related to duration of protection. A vaccine with base-case character-
istics is cost-effective in LICs under almost all durations of protection analyzed, with only a
vaccine under the Very High Price assumption and only 3 years duration not achieving cost-
effectiveness. A vaccine of lifetime duration is highly cost-effective in all scenarios within the
range of costs analyzed. Given the significantly higher GNI per capita in MICs (US $4,671),
vaccination would be highly cost-effective at all assumed durations of protection despite being
modeled at significantly higher costs than those in LICs (see S1 Appendix).

Total costs of AIDS vaccination

The estimated total annual costs for implementing an AIDS vaccination program (with base-
case vaccine characteristics, see Table 1) in LMICs under different cost-per-regimen scenarios
(see Table 2) within the Full Scale-up of IFE are explored in Fig 8. During the catch-up phase
the total annual costs spike to US $3.2 billion before stabilizing at a range of US $1 billion (cost
per regimen of US $20/US $20 in LICs/MICs) to US $5 billion (cost per regimen of US $65/US
$160 in LICs/MICs) per year. Over time, the annual vaccination cost increases, which reflects
an increase in the total number of AIDS vaccinations needed to maintain target coverage as
populations increase.

Fig 9 projects costs for both Full-scale-up of IFE alone and Full Scale-up of IFE plus vaccine
(left), as well as the total number of individuals accessing ART within Full Scale-up of IFE in
scenarios both with and without the addition of a vaccine (right, base-case characteristics for
both, see Table 1). This assumes all existing interventions continue at Full Scale-up of IFE levels
after introduction of an AIDS vaccine. Adding an AIDS vaccine, with temporary catch-up vac-
cination, results in a spike in total costs of approximately US $3-4 billion, before total costs
start decreasing as of 2048 thanks to a long-term reduction (50%) in the number of individuals
requiring ART from 20 million to 10 million as new infections are averted by vaccination. By
2070, US $1.5 billion would be saved per year. Cumulatively, adding an AIDS vaccine to the
IFE would require a net investment of US $9 billion between 2027 and 2070.

Discussion

While the accuracy of the presented results is limited by the inherent uncertainties of both the
model itself and the underlying assumptions, these results highlight the significant value of an
AIDS vaccine under a variety of model scenarios and vaccine characteristics. Sensitivity analy-
ses varying individual characteristics in wide ranges with other variables remaining constant
explored the relative contribution of those characteristics. While these analyses do not replace
comprehensive uncertainty analyses to explore the potential for one or more of those charac-
teristics to influence another (e.g. lower efficacy and duration of protection or increasing
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Fig 4. Reduction of new annual HIV infections under Full Scale-up of IFE according to vaccine uptake between 2025 and 2070 (vaccine introduced
in 2027). Other vaccine and implementation characteristics are outlined in Table 1.

doi:10.1371/journal.pone.0146387.g004

number of doses potentially lowering vaccine uptake and compliance with multiple doses),
they illustrate the potential impact of less or more optimistic assumptions on the potential
health impact and cost-effectiveness of future AIDS vaccination.

The High and Low vaccine scenarios utilized in the UNAIDS IFE study provide some addi-
tional context in regard to the potential impact of varying combined assumptions [14]. Added
to a baseline IFE scenario, the High vaccine scenario further reduces annual new infections by
75% from 1.1 million to 140,000 by 2050, and the Low vaccine scenario further reduces annual
new infections by 37% to 340,00. Finally, by largely focusing on Full Scale-up of IFE scenario as
the primary baseline for our results, we provide a conservative set of impact and cost-effective-
ness data for a vaccine assuming the optimistic assumptions of the UNAIDS IFE for all other
interventions are fully achieved.

This analysis does not purport to provide a perfect prediction of either a vaccine’s impact or
of the effectiveness of future AIDS vaccination programs. However, we are confident that these
results provide valuable context to guide necessary decisions pertaining to the research and
development of future AIDS vaccines, its funding, and eventually its delivery.

Table 4. Potential new HIV infections averted in LMICs by vaccine uptake.

Target coverage Cumulative number of new HIV infections averted (2027-2070)
-20% 11.2 million
-10% 13.1 million
Base coverage (see Table 1) 16.2 million
+10% 18.7 million
+20% 20.0 million

doi:10.1371/journal.pone.0146387.t004
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Fig 5. Cost per QALY gained with an AIDS vaccine in LICs added to Full Scale-up of IFE and 50% Scale-up of IFE (discounted at 3% per year).
Vaccine and implementation characteristics (base case) are outlined in Table 1.

doi:10.1371/journal.pone.0146387.9005
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Fig 6. Cost per QALY gained (2027-2070) according to vaccine efficacy under two cost scenarios in LICs (discounted at 3% per year) when a
vaccine is added to Full Scale-up of IFE. Other vaccine and implementation characteristics (base case) are outlined in Table 1. For cost assumptions see
Table 2.

doi:10.1371/journal.pone.0146387.9006
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Fig 7. Cost per QALY gained (2027-2070) according to vaccine coverage under two cost scenarios in LICs (discounted at 3% per year) when a
vaccine is added to Full Scale-up of IFE. Other vaccine and implementation characteristics (base case) are outlined in Table 1. For cost assumptions see
Table 2.

doi:10.1371/journal.pone.0146387.g007
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Fig 8. Estimated total costs for an AIDS vaccination program with base-case characteristics in LMICs under different cost-per-regimen scenarios
(see Table 2). Base-case vaccine and implementation characteristics are outlined in Table 1.

doi:10.1371/journal.pone.0146387.9008
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Fig 9. Costs for both Full Scale-up of IFE as a whole and the ART component with this scale-up and
number of people on antiretroviral treatment both with and without AIDS vaccination (base case-
characteristics). Base-case vaccine and implementation characteristics are outlined in Table 1. For base-
case cost assumptions see Table 2.

doi:10.1371/journal.pone.0146387.g009

The data suggest that under certain circumstances vaccination could prevent more new
infections with HIV than other new prevention options. However, the modeling also confirms
that no single option can solve the problem alone. A variety of prevention and treatment
options can complement each other in ensuring that the specific needs of specific populations
in different circumstances are met in order to maximize the reduction of new HIV infections.
Further, lessons learned in the implementation of other prevention options can help maximize
the success of future AIDS vaccination.

This modeling shows that vaccine impact will depend significantly on vaccine efficacy and
vaccine coverage. First generation AIDS vaccines may not achieve the very high efficacy levels
of most other currently licensed vaccines, and structural, cultural, and social barriers may
make it challenging to meet assumed coverage rates for some target populations, but the model
shows that vaccines of relatively lower efficacy and uptake still have the potential to substan-
tially reduce new HIV infections.

Vaccine cost-effectiveness is strongly linked to cost per regimen, efficacy, coverage, and
duration of protection. Cost-effectiveness is a major consideration by policymakers and imple-
menters of vaccine programs, in particular when healthcare budgets are constrained. Domestic
health budgets and donor funding for health in LMICs should consider cost-effectiveness in
decisions on rationally allocating limited health resources toward interventions across a wide
spectrum of health issues [26]. Further, Gavi eligibility is based on a GNI per capita below or
equal to US $1,580 [27]. We therefore feel strongly that meeting the very similar highly cost
effective threshold by WHO’s Commission on Macroeconomics and Health (US $1,557) will
be important toward ensuring accessibility to future AIDS vaccines, especially in LICs. In this
modeling a vaccine meets the “highly cost effective” threshold in LICs only at the lower costs
modeled whereas a vaccine of base-case characteristics would be highly cost-effective under
even very high cost assumptions in MICs. However, it should be noted that our model does not
capture future increases of GNI per capita in LMICs and the resulting shifts in thresholds for
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Gavi eligibility. Nevertheless, reducing the number of doses and increasing the duration of pro-
tection both increase cost-effectiveness.

Estimated annual spending on the HIV/AIDS response in LMICs totaled US $20.2 billion in
2014 [28]. Resource needs for the UNAIDS IF were estimated at US $22-24 billion annually
and US $31.5 billion per year for the UNAIDS IFE [13, 14]. Estimates of necessary resources to
meet UNAIDS more recent 90/90/90 treatment-focused targets and the prevention and non-
discrimination targets could to reach over US $31 billion annually [7]. This model assumes
that the introduction of an AIDS vaccine would not replace other prevention methods but
would instead provide an addition to the comprehensive response. However, fewer new infec-
tions would result in a reduced number of people living with HIV and in turn reductions in
overall treatment costs, with annual savings eventually outpacing annual costs of vaccination
programs. Nevertheless, when considering cumulative cost, implementing AIDS vaccination
would require an investment. This additional investment should be seen in light of the sizeable
potential health impact in terms of reduced new infections with HIV and in turn less AIDS-
related deaths and human suffering, and in turn a reduction of the obstacles to societal and
economic development HIV/AIDS represents to the most affected countries. Finally, our
modeling of total vaccination cost and total cost of the comprehensive HIV/AIDS response in
the UNAIDS IFE through 2070 did not consider that more targeted and less costly vaccination
and other prevention programs may be warranted with decreasing HIV incidence and correlat-
ing reductions in total treatment cost. While predicting such effects with accuracy is difficult,
comprehensive combination prevention programs have the potential to reduce generalized epi-
demics to smaller concentrated ones, although the risk remains within these concentrations for
the re-emergence of high incidence. Prior exercises have shown the potential to achieve effi-
ciencies and reduce vaccination costs with relatively small impact on reductions in new infec-
tions [29], signaling that cost savings from a vaccine could be higher than the projected US$1.5
billion per year in 2070.

Conclusions

The UNAIDS IFE provides a pathway to continued progress in the fight against HIV/AIDS, but
the achievement of these targets will continue to be challenged by resource and capacity limita-
tions, as well as structural, social, and cultural barriers in reaching most-affected populations.
These projections show that a combined approach scaling up existing HIV/AIDS prevention,
treatment, and care programs in LMICs while incorporating new prevention options, including
a vaccine, provides the greatest benefit in terms of reduced new infections, and that a vaccine
can play a critical role in the comprehensive response toward a sustainable end to AIDS.

A modestly effective vaccine would reduce new infections significantly and be cost-effective,
even if other interventions reach optimistic coverage targets. A highly effective vaccine would
provide even greater impact and cost-effectiveness, and would support broader access. Cost
per regimen, efficacy, coverage, and duration of protection are critical factors to achieve accept-
able cost-effectiveness, particularly in low-income countries. Fewer doses per regimen and
longer duration of protection significantly reduce total vaccination cost. A vaccine could signif-
icantly reduce treatment cost and even be cost-saving over time. An optimal mix of vaccine
characteristics will be critical to ensuring that a vaccine is acceptable and accessible globally,
even in different epidemic types.

Supporting Information

S1 Appendix. Exploring the potential health impact and cost-effectiveness of adding an
AIDS vaccine to the enhanced UNAIDS Investment Framework: Web Appendix. PDF
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