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Abstract

A pattern in which nucleotide transitions are favored several fold over transversions is common in molecular evolution.
When this pattern occurs among amino acid replacements, explanations often invoke an effect of selection, on the
grounds that transitions are more conservative in their effects on proteins. However, the underlying hypothesis of
conservative transitions has never been tested directly. Here we assess support for this hypothesis using direct evidence:
the fitness effects of mutations in actual proteins measured via individual or paired growth experiments. We assembled
data from 8 published studies, ranging in size from 24 to 757 single-nucleotide mutations that change an amino acid.
Every study has the statistical power to reveal significant effects of amino acid exchangeability, and most studies have the
power to discern a binary conservative-vs-radical distinction. However, only one study suggests that transitions are
significantly more conservative than transversions. In the combined set of 1,239 replacements (544 transitions, 695
transversions), the chance that a transition is more conservative than a transversion is 53 % (95 % confidence interval 50
to 56) compared with the null expectation of 50 %. We show that this effect is not large compared with that of most
biochemical factors, and is not large enough to explain the several-fold bias observed in evolution. In short, the available
data have the power to verify the “conservative transitions” hypothesis if true, but suggest instead that selection on
proteins plays at best a minor role in the observed bias.
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Introduction
Of the 12 types of changes from one nucleotide to another, 8
are “transversions” between a purine (A or G) and a pyrim-
idine (C or T), and the other 4 are “transitions.” Early protein
comparisons showed that related proteins often differ by
transitions more than expected by chance (Fitch 1967;
sources cited in Vogel 1972). By the 1980s, this “transition
bias” was well known (Li et al. 1985). By the 1990s, systema-
tists had noted effects on phylogeny inference (Wakeley
1996), and methods were revised to give more weight to
transversion differences (Sinsheimer et al. 1997).

In many early works, this bias is presented as a ratio of
differences, which makes the expected effect a complex func-
tion of the degree of sequence divergence. As the use of rate
models became routine in comparative sequence analysis, the
phenomenon of transition bias was redefined as a bias in
instantaneous rates, relative to a null model of equal rates.
Because every nucleotide site (e.g., a G site) may experience 1
type of transition (G!A) at rate a, and 2 types of transver-
sion (G!C, G!T) at rate b, the aggregate rate ratio of
transitions to transversions has a null expectation of
R =a=(2b) = 0.5. In some contexts, the ratio is expressed dif-
ferently as �=a=b= 1. When considering amino acid
changes, it is more relevant to compare the 116 possible
transitions and 276 possible transversions that change a
codon so as to encode a different amino acid (assuming
the canonical genetic code), leading to a null expectation of

R = 116a/(276b) = 0.42a=b. Thus, the observation of roughly
equal numbers of inferred transitions and transversions in
classic works (Vogel and Kopun 1977), or in the extensive
analysis of mammalian genes in Li (1997, table 7.2), indicates a
bias of over 2-fold. Kumar (1996) estimates 2-fold to 5-fold
rate biases in vertebrate mitochondrial genes (excluding 3rd
positions). Other estimates may be found in the work cited by
Rosenberg et al. (2003), but there is not (to our knowledge) a
systematic contemporary review of this issue.

The causes of the observed bias have not been resolved.
The hypothesis of a mutational cause—a transi-
tion:transversion bias in mutation—was promoted early by
Vogel (1972; see also Vogel and Kopun 1977). This hypothesis
was bolstered when DNA sequence comparisons revealed
that a transition bias is observed in introns, pseudogenes,
and other noncoding regions (Gojobori et al. 1982; Li et al.
1985), suggesting a cause that (like mutation) acts at the level
of DNA, across the entire genome.

The alternative hypothesis that natural selection favors
amino acid replacements via transitions is also common,
and is argued on the grounds that transitions are “less
severe with respect to the chemical properties of the original
and mutant amino acids” (Rosenberg et al. 2003) or “tend to
cause changes that conserve the chemical properties of
amino acids” (Wakeley 1996), or that “the biochemical differ-
ence in the protein product tends to be greater for trans-
versions” (Keller et al. 2007).
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For purposes of evaluation, we can break down either the
mutational hypothesis or the selective hypothesis into 1) a
claim that there is an underlying bias (mutational or selective)
favoring transitions and 2) a claim that this bias accounts for
the observed evolutionary bias. For the mutational hypothe-
sis, the existence of an underlying bias is indicated in direct
studies of mutation (Schaaper and Dunn 1991; Lynch 2010;
Schrider et al. 2013; Zhu et al. 2014), and by many indirect
estimates based on the assumption of neutral sequence di-
vergence (Petrov and Hartl 1999; Rosenberg et al. 2003; Zhao
et al. 2004; Jiang and Zhao 2006; Morton et al. 2006), although
Keller et al. (2007) report a lack of bias in grasshoppers. The
bias typically is 2-fold to 4-fold over null expectations. In
theory, a bias in mutation of magnitude B can cause a
B-fold effect on the rate of evolution (Yampolsky and
Stoltzfus 2001; McCandlish and Stoltzfus 2014). That is, the
observed magnitude of mutation bias appears to be sufficient,
in principle, to account for the observed evolutionary bias.

For the selective hypothesis, arguments to the effect that
transitions are more conservative typically invoke a biochem-
ical factor (or a composite such as the Grantham index) that
correlates with patterns of evolutionary divergence, and is
found to be more conserved by transitions than by transver-
sions (Vogel and Kopun 1977; Zhang 2000). This form of ar-
gument suffers from a logical circularity: if mutation shapes
patterns of evolutionary amino acid replacement, then bio-
chemical factors chosen for their ability to make sense of evo-
lutionary patterns are not independent of mutation.

Presumably no biochemical factor, nor any simple combi-
nation of factors, fully captures the effects of replacements in
complex proteins operating in a complex milieu. Indeed, the
use of biochemical surrogates would seem unnecessary, given
the availability of more direct measurements. Systematic lab-
oratory studies of the effects of amino acid replacements in
proteins have been carried out for 25 years (Kleina and Miller
1990). Although early studies summarized by Yampolsky and
Stoltzfus (2005) typically reported crude measures of bio-
chemical or growth effects (e.g., a 2-valued scale of “�” and
“+”), a number of more recent studies report a continuous
measure of fitness for each mutant (Sanjuan et al. 2004;
Carrasco et al. 2007; Domingo-Calap et al. 2009; Peris et al.
2010; Jacquier et al. 2013; Roscoe et al. 2013; Acevedo et al.
2014; Bloom 2014; Firnberg et al. 2014; Thyagarajan and
Bloom 2014; Wu et al. 2014). Such studies provide direct
evidence on the relative conservativeness of transitions and
transversions that change amino acids.

Here we focus on whether direct measurements of fitness
support the conservative transitions hypothesis, based on a
collection of 8 studies comprising measured fitness values for
544 transitions and 695 transversions that change an amino
acid. We assess the power of each study by comparing
mutant fitnesses for each type of replacement (e.g., Ser to
Pro) with a cross-validation predictor and with 2 existing
measures of amino acid exchangeability called EX
(Yampolsky and Stoltzfus 2005) and U (Tang et al. 2004).
We find that for every mutation study, even the smallest,
there is a significant correlation with one or more of these
predictors; half of the studies show a highly significant

correlation (P< 0.001). More importantly, for most studies,
measured fitness values correlate significantly with a conser-
vative-vs-radical distinction based on EX or U. Specifically, a
replacement designated as “conservative” has a 65 % (EX) or
64 % (U) chance of being more fit than a “radical”
replacement.

However, the same studies typically do not show signifi-
cant conservativeness of transitions. In the combined data, a
transition has a 53 % chance (95 % confidence interval [CI] 50
to 56) of being more fit than a transversion, only slightly
above the null expectation of 50 %. We show that this
effect is not large compared with that of most biochemical
predictors, and is not large enough to explain the several-fold
bias toward transition replacements observed in evolutionary
studies. The mutation-bias hypothesis, though not proven,
remains an obvious possibility, while the selective hypothesis
would seem untenable.

Results
The literature search described in Materials and Methods (see
Supplementary Material online) resulted in the eight data sets
in table 1, each of which provides measures of fitness based
on individual growth or paired growth (Sanjuan et al. 2004;
Carrasco et al. 2007; Domingo-Calap et al. 2009; Peris et al.
2010; Jacquier et al. 2013; Rihn et al. 2013, 2015). We will refer
to these 8 data sets as 8 studies, although they correspond to
7 publications, one of which (Domingo-Calap et al. 2009)
reports separate mutant fitness distributions for 2 different
phages.

Together these studies provide fitness data on 1,239 mu-
tants covering 145 of the 150 possible amino acid changes
that can be accomplished by single-nucleotide changes.
Because measures of fitness from different studies are not
scaled in the same way, we convert fitnesses to within-
study quantiles, for example, the median fitness in a study
is assigned a quantile of 0.5, and the fitness at the 95th per-
centile is assigned a quantile of 0.95. This set of mutants
includes 544 transitions and 695 transversions. The ratio de-
viates from 1:2 because the error-prone polymerase chain
reaction method used in the three largest studies produces
roughly equal numbers of transitions and transversions.

Can Small Idiosyncratic Studies Detect General
Amino Acid Effects?

The usefulness of these data for addressing the conservative-
ness of amino acid replacements in evolution might be lim-
ited for a variety of reasons including measurement error, the
context-dependency of individual mutant effects—in the
context of small numbers of observations from an idiosyn-
cratic set of proteins—the use of artificial laboratory condi-
tions, the fact that replacement mutations have effects other
than the amino acid replacements (e.g., effects on mRNA
stability), and the fact that fitness is not a direct or simple
function of protein properties.

To assess the power of mutation studies individually and
collectively, we correlate observed mutant fitness quantiles
with expected values from three independent predictors: the
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EX matrix (Yampolsky and Stoltzfus 2005), the U matrix of
Tang et al (2004), and a cross-validation predictor. The cross-
validation predictor applied to a given target study is con-
structed from all other studies (i.e., excluding the target
study), and is simply a matrix of mean quantiles for each
type of replacement (e.g., Ala to Val).

EX and U are used on the grounds of being powerful and
mutationally unbiased predictors, whereas various biochem-
ical predictors are less powerful (as will become apparent
below), and various evolution-based measures other than U
(e.g., PAM, BLOSUM), though perhaps powerful, cannot be
used, because they are not known to be free of the mutational
effects that we wish to exclude. The EX matrix, based on a
meta-analysis of early mutation studies (which reported phe-
notypes other than fitness), was designed specifically to serve
as a mutationally unbiased measure of exchangeability in
models that separate selection from mutation. In a compar-
ative evaluation, EX was shown to be as powerful, or more
powerful, than a representative sample of other predictors
(Yampolsky and Stoltzfus 2005). The “universal evolutionary
index” or U matrix of Tang et al (2004) is based on modeling
evolution of thousands of genes, using a method designed to
separate codon-level mutational effects from protein-level
effects. It purports to be a measure of evolutionary accept-
ability that scales directly with the rate of evolution.

The results of using EX, U, and a cross-validation predic-
tor (table 1) indicate that even small studies of mutant
fitnesses have considerable power to reveal generic effects
of amino acid exchangeability. For instance, for the study of
135 HIV capsid mutants by Rihn et al., there is a significant
correlation between the fitness reported for a mutant and
the predictor for the relevant replacement type (e.g., Val to
Ala), whether the predictor is EX, U, or a cross-validation
predictor based on the other studies. This shows not only
that individual studies are powerful, but that there is a
consistency across studies: although most effects of an
amino acid replacement in a protein are very context de-
pendent (which is why the R2 values are small), generic
effects of exchangeability are seen across sites and proteins.

Are Transition Replacements More Conservative?

The conservative transitions hypothesis proposes that transi-
tions collectively are more conservative than transversions.

To assess how well mutant fitness studies distinguish conser-
vative replacements from radical ones, we construct two ver-
sions of this distinction, EXB and UB (“B” indicates a binary
distinction, as opposed to a continuous measure), simply by
designating higher-exchangeability replacements as conserva-
tive and the remainder as radical.

Table 2 shows how well studies of mutant fitness distin-
guish conservative from radical replacements, and how well
they distinguish transitions from transversions (“TiTv”
column). The measure of effect-size denoted “AUC” (Area
Under the Curve) is the chance that a mutant designated
as conservative is more fit than a randomly chosen radical
mutant. This statistic is not affected by the relative sizes of the
2 classes; its range is from 0 to 1, with a null expectation of 0.5;
higher values indicate that nominally conservative changes
are indeed conservative. We call this measure AUC because it
has the same meaning as the area under an ROC (receiver-
operating characteristic) curve for a binary classifier. That is, as
pointed out by Hanley and McNeil (1982), the AUC for a
binary classifier is equivalent to the chance that a randomly
chosen positive instance will be ranked higher than a ran-
domly chosen negative instance (see Materials and Methods).

Even small studies have significant power to distinguish
conservative from radical substitutions based on EXB and UB.
In the combined data set, AUC is 0.65 for EXB and 0.64 for UB.
That is, a conservative replacement according to EXB has a
65% chance of being more fit than a randomly drawn radical
replacement.

However, the same studies typically do not distinguish
transitions from transversions. Only one study shows a mar-
ginally significant result (P = 0.019 for Jacquier et al.). The
combined results for the entire set of 1,239 replacements
are shown at the bottom of table 2. For the combined
data, the AUC is 0.53, with a 95 % CI of 0.50 to 0.56 (based
on 400 bootstrap replicates).

One might object that this approach is framed incorrectly,
in that it uses the entire distribution of mutational effects,
whereas the distribution of changes fixed in evolution is ob-
viously weighted toward more modest effects, because natu-
ral selection removes the most damaging ones whether they
are transitions or transversions. If the changes actually ac-
cepted in evolution are mostly in the top 50 %, or the top
10 %, of the fitness distribution, then this is the fraction that

Table 1. Power of Eight Studies to Discern Generic Effects of Exchangeability.

Cross-validation EX Tang’s U

Name N R2 P value R2 P value R2 P value

Jacquier (TEM1) 757 0.021 1.0� 10�4 ** 0.085 2.9� 10�16 ** 0.053 1.6� 10�10 **

Rihn (HIV integrase) 156 0.040 0.012* 0.069 9.0� 10�4 ** 0.074 6.1� 10�4 **

Rihn (HIV capsid) 135 0.034 0.033* 0.056 5.9� 10�3 ** 0.17 5.6� 10�7 **

Carrasco (TEV) 52 0.097 0.025* 0.045 0.13 0.056 0.091

Peris (f1) 51 0.12 0.014* 0.16 3.1� 10�3 ** 0.21 6.2� 10�4 **

Domingo-Calap (Qbeta) 32 0.13 0.040* 0.10 0.073 0.17 0.018*

Sanjuan (VSV) 32 0.32 1.3� 10�3 ** 0.12 0.053 0.18 0.014*

Domingo-Calap (phiX174) 24 0.24 0.017* 0.37 1.7� 10�3 ** 0.51 9.4� 10�5 **

Combined 1,239 0.047 6.3� 10�7 ** 0.088 9.4� 10�21 ** 0.090 3.2� 10�16 **

NOTE.—P values for the null hypothesis of no correlation. *P< 0.05; **P< 0.01.
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should be examined most closely to test the conservative
transition hypothesis.

The effect of testing for a transition:transversion effect at
successively higher thresholds of fitness is shown in figure 1.
In fact, the AUC does not go up if we filter out the low end,
but stays close to 0.5.

Another way to explore the upper end of the fitness dis-
tributions is to consider studies of mutational effects that
focus on beneficial mutations (Ferris et al. 2007; MacLean
et al. 2010; Miller et al. 2011; Schenk et al. 2012). These studies
are small, with only 15 to 38 mutants. For the combined set of
111 beneficial mutants shown in table 3, the AUC for the
conservative transitions hypothesis is 0.40 (95 % CI 0.28 to
0.51), suggesting that perhaps beneficial transitions are not
more, but less fit than beneficial transversions. We note in
passing that beneficial mutations seem less predictable in
their effects than random mutations. That is, we would
expect from table 2 that a set of 111 random mutants

would show predictable effects of exchangeability, because
most smaller studies show significant effects.

What Is the Expected Evolutionary Effect Size?

As mentioned above, the conservative transitions hypothesis
has 2 parts, a claim that transitions are conservative, and a
claim that this conservativeness accounts for an evolutionary
pattern. The present set of studies suggests that transitions
are more conservative, but only slightly. How important could
an effect of this size be?

One way to ask this question is to compare the transi-
tion:transversion distinction with various biochemical distinc-
tions. Any quantitative property of an amino acid can be used
to create a conservative-vs-radical distinction: for example, for
a measure of the polarity of each amino acid, the conservative
changes will be the ones with the least change in polarity. The
AAindex database (Kawashima and Kanehisa 2000) has data
on nearly 250 biochemical factors (see Materials and
Methods). The results in figure 2 indicate that biochemical
predictors typically are 1) considerably more powerful than
the transition:transversion distinction and 2) considerably less
powerful than EX and U.

Yet, one might object that natural selection has the ability
to amplify small differences into major effects. Perhaps a dif-
ference with an effect size of AUC = 0.53 might translate into
a several-fold bias in terms of evolutionary acceptance.

How do these two relate to each other? The U matrix
illustrates this relationship, because values of U scale with
evolutionary rates, and UB has a known power as a binary
predictor, namely AUC = 0.64. The ratio of U values for

Table 2. The Power of Eight Studies to Detect Various Binary Distinctions.

EXB UB TiTv

Name N AUC P value AUC P value AUC P value

Jacquier (TEM1) 757 0.66 2.8� 10�14 ** 0.61 4.0� 10�8 ** 0.54 0.019*

Rihn (HIV integrase) 156 0.64 2.1� 10�3 ** 0.67 7.2� 10�5 ** 0.54 0.191

Rihn (HIV capsid) 135 0.60 7.1� 10�3 ** 0.63 7.4� 10�4 ** 0.50 0.50

Carrasco (TEV) 52 0.64 0.037* 0.61 0.087 0.50 0.50

Peris (f1) 51 0.60 0.13 0.72 4.6� 10�3 ** 0.54 0.31

Domingo-Calap (Qbeta) 32 0.60 0.16 0.65 0.076 0.75 0.084

Sanjuan (VSV) 32 0.61 0.13 0.75 6.1� 10�3 ** 0.31 0.93

Domingo-Calap (phiX174) 24 0.81 5.8� 10�3 ** 0.94 1.6� 10�4 ** 0.34 0.85

Combined 1,239 0.65 6.5� 10�18 ** 0.64 1.6� 10�12 ** 0.53 0.024*

NOTE.—P values for a one-sided test where the alternative is that nominally conservative replacements, or transitions, are more fit. *P< 0.05; **P< 0.01.

FIG. 1. The conservativeness of transitions when the distribution of
mutant effects is truncated at the low end. The advantage of transitions
(AUC) is shown as a function of threshold quantile for left-truncated
data, for example, the AUC value for x = 0.25 is computed without the
bottom 25 % of the distribution. Under the conservative transitions
hypothesis, one might expect that, even if there is no advantage over
the entire distribution, an advantage will appear at the high end. In fact,
this is not observed. As mentioned in the text, AUC = 0.53 for the
complete set of data, corresponding to a truncation threshold of 0,
that is, no truncation. As the threshold increases, AUC decreases
(rather than increases), although the differences are insignificant.

Table 3. Relative Advantage of Transitions in Four Studies of
Beneficial Mutations.

EXB UB TiTv

Name N AUC P value AUC P value AUC P value

Schenk (TEM1) 38 0.46 0.63 0.40 0.84 0.49 0.53

MacLean (RpoB) 31 0.45 0.68 0.47 0.62 0.35 0.93

Miller (ID11) 27 0.58 0.30 0.62 0.18 0.25 0.96

Ferris (phi6) 15 0.69 0.18 0.64 0.20 0.39 0.76

Combined 111 0.52 0.50 0.50 0.57 0.40 0.95

NOTE.—P values for a one-sided test where the alternative is that nominally conser-
vative replacements, or transitions, are more fit. *P< 0.05; **P< 0.01.
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conservative replacements relative to radical ones is 2.7. That
is, conservative replacements as defined by UB are 2.7-fold
more likely to be accepted in evolution than radical ones.

This pair of values, AUC = 0.64 and evolutionary bias = 2.7,
represents one point in the relationship between evolutionary
acceptability and classification power for mutant fitness ef-
fects. There is another point where AUC = 0.5 (no power) and
evolutionary bias = 1 (no effect). We can fill in the relationship
further by randomizing UB, as shown in figure 3. The results
show that, when about 75 % of the values are randomized, UB

has an AUC of 0.53, equal to that of the transi-
tion:transversion distinction. This corresponds to an evolu-
tionary bias of 1.3. The CI of AUC from 0.50 to 0.56 for the
transition:transversion distinction corresponds to the interval
of 1.0 to 1.6 in evolutionary bias. That is, the expected evolu-
tionary effect of the transition:transversion bias is a 1.3-fold
bias, with a CI of 1.0 (no effect) to 1.6. This makes it unlikely
that selection plays the major role in causing the evolutionary
transition:transversion bias, which typically is several-fold fa-
voring transitions.

Discussion
Based on a collection of eight studies that report fitnesses for
replacement mutations, we have assessed the prospects for
the hypothesis that the conservativeness of replacements via
transition accounts for their increased frequency in evolution.
Even small studies reveal predictable patterns of amino acid
exchangeability, and most have sufficient power to distin-
guish a binary conservative-vs-radical distinction. However,
the same studies typically do not show significant conserva-
tiveness of transitions. Overall, the chance of a transition
mutation being more fit than a transversion is 53 % (95 %
CI 50 to 56). This effect size is not large compared with that of

most biochemical predictors, and is not large enough to ex-
plain the several-fold bias toward transition replacements ob-
served in evolutionary studies.

The finding that the conservativeness of transitions is a
rather weak effect increases the prospects for the alternative
mutational explanation, in which the rate at which new alleles
are introduced by transition mutations is several-fold higher
than for transversions, and this bias predisposes evolutionary
change to happen via transitions (for a general explanation,
see Stoltzfus and Yampolsky 2009).

Although this idea may be familiar, it relates to a rather
substantial and unresolved issue in evolutionary genetics,
which is the extent to which evolution in nature happens
in the “gene pool” regime supposed by the architects of the
Modern Synthesis, in the kind of mutation-driven regime
supposed by early mutationists and later molecular evolu-
tionists, or something in between (McCandlish and
Stoltzfus 2014). The idea of mutation and selection as oppos-
ing forces suggests that mutation bias will be influential only
when selection is absent, thus hypotheses that invoke muta-
tion bias are often interpreted as neutral models (as noted by
Yampolsky and Stoltzfus 2001). Presumably, this is why re-
searchers have pursued selective explanations for transi-
tion:transversion bias among amino acid changes, even
while accepting a mutational explanation for noncoding
changes in the same genes: the proteins are assumed to be
“under selection” and thus not susceptible to mutation bias.
However, this way of depicting mutation and selection as
opposing forces is only justified under the special conditions
of the gene pool regime. Outside of this regime, mutation and
selection can both contribute to orientation or direction in
evolution (Yampolsky and Stoltzfus 2001; McCandlish and
Stoltzfus 2014).

FIG. 3. Relationship between the power to predict mutant fitnesses and
evolutionary effect size. AUC (black line scaled to left axis) and evolu-
tionary acceptance ratio (gray line scaled to right axis) are shown for
increasingly randomized versions of UB. For the unrandomized UB, the
power in predicting mutational effects is AUC = 0.64, and this corre-
sponds to an evolutionary acceptance ratio of 2.7 for conservative versus
radical replacements. To estimate the evolutionary acceptance ratio for
more modest values of AUC, we can weaken UB by randomly reassign-
ing conservative or radical labels to an increasingly large fraction of
replacement types (200 replicates at each level of randomization).
The AUC of 0.53 is reached at about 75 % randomization, where the
evolutionary effect size is 1.3.

FIG. 2. The power of conservative–radical distinctions based on biochem-
ical factors. The 245 biochemical factors from the AAIndex database were
used to construct 245 conservative-vs-radical distinctions, which were
then applied to the prediction of mutant fitnesses from mutation scan-
ning experiments. The AUC is the chance that a nominally conservative
mutant has a higher fitness than a randomly chosen radical mutant. The
range of AUC is thus from 0 to 1, with a null expectation of 0.5 for a
random predictor. Most predictors (84 %) are more powerful than the
transition:transversion distinction (AUC = 0.53), and all are less powerful
than EXB or UB (AUC = 0.65 or 0.64, respectively).
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The results presented here also prompt the question of
how it came to be so widely supposed that transitions are
conservative. In a survey of the literature, we found that,
when the alleged conservativeness of transitions is attrib-
uted to a source, the source is often Zhang (2000), or early
works such as Fitch (1967), Grantham (1974), or Vogel and
Kopun (1977). Grantham (1974) does not address this issue
explicitly, but a genetic code-based calculation shows that
the mean Grantham distance for transition-mediated re-
placements is lower than that for transversions, for exam-
ple, as indicated in table 2 of Xia et al (1998). The study by
Vogel and Kopun is often cited as evidence for the conser-
vative transitions hypothesis, because they present a calcu-
lation that, for three different biochemical measures,
suggests that transitions are more conservative.

These prior studies are inconclusive for two general rea-
sons. The first is that none reports an effect size sufficient to
account for the evolutionary bias. Indeed, Vogel and Kopun
themselves favored a mutational explanation for the evolu-
tionary bias on the grounds that the effect size for conserva-
tiveness of transitions seemed to be too small (see hypothesis
3 on p. 179). Zhang’s (2000) analysis of three possible conser-
vative:radical distinctions finds that the distinction based on
Miyata et al (1979) yields the largest evolutionary effect size,
which is a 2-fold effect, that is, radical replacements are
roughly half as likely to accumulate, relative to null expecta-
tions. However, although the effect of conservativeness is
2-fold, the link reported between transitions and conserva-
tiveness is weak. According to Zhang (2000), the chance that
a transition is conservative by Miyata’s measure is 35 %, com-
pared with 33 % for transversions, a proportional difference of
only 6 % (i.e., 2/33 = 0.06). Miyata-conservativeness may be a
2-fold evolutionary effect, but if transitions are only 6 % more
Miyata-conservative than transversions, the overall bias will
be far less than 2-fold.

Second, none of these works escapes the kind of logical
circularity pointed out by Di Giulio (2001), see also Yampolsky
and Stoltzfus (2005), in which a measure of evolutionary ten-
dencies is invoked to argue for effects of selection rather than
mutation, ignoring the possibility that the pattern of evolu-
tion is itself influenced by mutational effects. This is an indi-
rect (and thus presumably unintended) form of the
Panglossian fallacy, that is, it is formally a fallacy of arguing
that transitions are better simply because they happen more
often, without inquiring into why they happen more often.

The circularity is not avoided by invoking biochemical fac-
tors. The popular composite indices of “biochemical” distance
constructed by Grantham (1974) and Miyata et al (1979) are
based on choosing biochemical factors that fit well with ob-
served evolutionary patterns from earlier protein compari-
sons. Likewise, all three biochemical measures used by
Vogel and Kopun (1977) are based on fitting to protein com-
parisons. The problem with this approach is suggested in
figure 4, which shows the conservativeness of transitions for
biochemical indices in the AAindex database (Kawashima
and Kanehisa 2000). About 3/5 make transitions seem con-
servative, and the other 2/5 make them seem radical.

As figure 2 indicates, this is not because biochemical indi-
ces are generally poor predictors of exchangeability. Instead,
among many moderately powerful predictors, there are ones
that make transitions seem favorable, and others that make
transversions seem favorable. Thus, converting evolutionary
patterns into biochemical descriptors before reapplying them
to the analysis of evolutionary patterns does not allow one to
escape a logical circularity: some biochemical factors can be
invoked to rationalize the conservativeness of transitions,
whereas others can be invoked to rationalize the conserva-
tiveness of transversions.

Materials and Methods

Identification of Studies and Data Sets for Inclusion

An initial core set of studies (Sanjuan et al. 2004; Carrasco
et al. 2007; Roscoe et al. 2013) was expanded by including
other works cited by these studies. Then this set was ex-
panded further by open-ended searches based on keywords
or by tracking citations. In general, no text-based search does
a good job of recovering mutation scanning studies of the
desired type. Narrow searches (e.g., “distribution of muta-
tional effects”) implicate only a fraction of true positives
and did little to expand the core set of studies; broad searches
(e.g., “mutation” plus “fitness”) implicate so many false pos-
itives that they are impractical and were abandoned. Most
relevant studies cite the pioneering work of Sanjuan et al.
(2004) or the seminal review by Eyre-Walker and Keightley
(2007). Candidate studies identified in this manner were
screened for appropriateness, ultimately resulting in the
eight studies listed in table 1. The search covered literature

FIG. 4. The advantage of transitions implied by various biochemical
factors. The 245 biochemical factors from AAindex were used to com-
pute a pairwise similarity measure for amino acids indicating their bio-
chemical similarity, then these measures were used to assess whether
transitions are more conservative than transversions. AUC is the chance
that a replacement due to a transition has a higher similarity score than
a randomly chosen transversion (where the random sampling of tran-
sitions and transversions is based on the pool of actual mutants from
the eight studies). The resulting distribution indicates that transitions
are more conservative according to about 3/5 of biochemical factors
(AUC 4 0.5), and less conservative according to the other 2/5 of fac-
tors (AUC< 0.5).
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published through December 2014 and does not include
more recent studies.

We restricted our attention to studies with 1) a size of at
least 20 replacement mutants (or, for beneficial studies, at
least 10); 2) measures of growth (fitness) rather than bio-
chemical activities; and 3) a random or arbitrary set of mu-
tants. Most excluded studies of mutational effects have only a
few mutants, or they report effects on binding or activity (but
not on fitness), or they are focused on achieving particular
outcomes rather than exploring a random set of variants, or
they use deep sequencing to identify and quantify mutants,
an approach that introduces uncontrolled nucleotide biases
(supplementary material, section 2).

Processing and Management of Mutation Data

Starting from raw data tables supplied by authors (either
directly, or via published supplements), all further processing
and analysis steps were encoded in scripts. For each study
used here, there is an R-Markdown (Rmd) file that (when
executed in an appropriate environment, such as RStudio)
describes and executes the steps (e.g., cleaning, recoding, se-
quence integration) to convert input data into a standard
tabular form in which there is a single row describing each
mutant and its effects. The figures and tables in this article are
generated by further Rmd scripts that operate on the stan-
dardized input data.

Other Data Sources

Values of U are from Tang et al. (2004), and values of EX are
from published supplements. Biochemical indices from the
AAIndex database were accessed via the Interpol package
(Heider 2012) and custom R code.

Note that, although AAindex lists 533 biochemical indices,
less than half are pure biochemical indices. The others are
based on some method of counting occurrences in naturally
evolved proteins, for example, frequency with which an
amino is found in a helix. Because the distribution of an
amino acid in an evolving set of natural proteins will
depend on the distributions of its closest mutational neigh-
bors, such measures are not mutationally unbiased.
They were removed using a custom list of name exclusion
patterns (“[fF]requenc,” “[pP]reference,” “[cC]ompositi,”
“[pP]ropensit,” “[dD]istribution,” “[iI]nformation,” “[wW]
eights,” “[oO]ccurrence,” “[Pp]roportion,” “probability,” “mu-
tability,” “Geisow,” “Janin”), resulting in a set of 245 indices.

Tests of Power and Effect

The results presented here rely mainly on standard statistical
procedures. When P values are reported in table 1 for a linear
predictor, this is from the t-test in the built-in linear model
(lm) function in R. When P values are reported for binary
predictors in tables 2 and 3, this is based on the Wilcoxon–
Mann–Whitney test as implemented in the “wilcox.test”
function of the R “stats” package, using a one-sided test.
When summary P values are reported at the bottom of
a table, these are based on Stouffer’s method of combining

P values. When CIs are given on an AUC value, this is based on
resampling using 400 bootstrap replicates.

The only unfamiliar methods involve the use of binary
predictors. To convert a biochemical index C to a binary dis-
tinction, we first convert it to a pairwise similarity by the
formula Sij = 1� abs(Ci�Cj)/max, where max is the maxi-
mum absolute difference. Converting a continuous measure
of similarity into a binary measure is a simple matter of as-
signing all values above a particular quantile to the conserva-
tive class, and the rest to the radical class. To ensure that a
constructed predictor is comparable with the transi-
tion:transversion distinction, the threshold is chosen so that
the conservative class is the same size as the transition class in
the data to be tested.

As explained above, we can define a measure of effect
size with intuitive properties that we designate as AUC,
based on an application of ROC analysis that may not be
obvious. In ROC analysis of a binary classifier, each instance
has a binary state (e.g., disease vs. nondisease), and the
classifier makes a ranking of instances and predicts the
binary state based on a threshold. The ROC curve plots
the true-positive rate against the false-negative rate as the
threshold varies, and the area under this curve is equivalent
to the chance that a randomly chosen positive instance is
ranked higher than a randomly chosen negative one
(Hanley and McNeil 1982). If we treat the mutant fitness
study as the classifier that supplies a ranking for each
mutant, and the conservative-radical distinction as the
binary state of a mutant, then the AUC is the chance
that a mutant of a nominally conservative type has a
higher fitness than a randomly chosen mutant of a nom-
inally radical type. The relationship of AUC to the
Wilcoxon–Mann–Whitney test is explained by Hanley
and MacNeil (1982). Calculating AUC from the test statis-
tic is an algebraic conversion based on the formula
AUC = (pairs�WMW_statistic(x, y))/pairs, where x and
y are vectors representing the two samples, and
pairs = length(x)� length(y). This formula applies specifi-
cally to wilcox.test in the R stats package (some other im-
plementations define the test statistic in a different way).

Note that converting fitnesses to within-study quantiles
allows us to compare studies, and allows us to combine data
for across-study tests. The use of quantiles rather than abso-
lute fitnesses does not have any effect on a within-study AUC
or Wilcoxon–Mann–Whitney test, which is a nonparametric
statistic based on ranks.

Supplementary Material
Supplementary material and figure S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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