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Purpose of review

The last decades, anesthesia has become safer, partly due to developments in monitoring. Advanced
monitoring of children under anesthesia is challenging, due to lack of evidence, validity and size
constraints. Most measured parameters are proxies for end organ function, in which an anesthesiologist is
actually interested. Ideally, monitoring should be continuous, noninvasive and accurate. This present review
summarizes the current literature on noninvasive monitoring in noncardiac pediatric anesthesia.

Recent findings

For cardiac output (CO) monitoring, bolus thermodilution is still considered the gold standard. New noninvasive
techniques based on bioimpedance and pulse contour analysis are promising, but require more refining in
accuracy of CO values in children. Near-infrared spectroscopy is most commonly used in cardiac surgery
despite there being no consensus on safety margins. Its place in noncardiac anesthesia has yet to be
determined. Transcutaneous measurements of blood gases are used mainly in the neonatal intensive care unit,
and is finding its way to the pediatric operation theatre. Especially CO2 measurements are accurate and useful.

Summary

New techniques are available to assess a child’s hemodynamic and respiratory status while under
anesthesia. These new monitors can be used as complementary tools together with standard monitoring in
children, to further improve perioperative safety.
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Patient safety is the number one issue in anesthesi-
ology. At present, anesthesia is absolutely safe in
uncomplicated patients undergoing low-risk pro-
cedures, as improvement of monitoring modalities
and anesthetics, and the preparation of the peri-
operative process have led to optimization of care.
In general, intraoperative mortality has dramati-
cally decreased in the last decades [1]. This overall
safety has led to a change of the paradigm of
anesthesia, from survival of the surgery and avoid-
ing direct side effects into concepts based on qual-
ity of life and value-based health care. This
requires a new view on monitoring to optimize
organ preservation by controlling local oxygen-
ation and metabolism.

In perioperative monitoring of pediatric patients,
we face specific challenges, which postponed the
development of appropriate age and size-related
pediatric monitors. First, it is not always possible to
get baseline measurements and some equipment is
not validated for children or has size limitations.
Moreover, there is no consensus on safety margins
uthor(s). Published by Wolters Kluwe
in adults has already been established.
Due to rapid hemodynamic and respiratory

changes under anesthesia, continuous and nonin-
vasive monitoring would be favorable. Most param-
eters daily used in anesthesia are only proxies for
end organ function. The brain is perhaps the most
vulnerable, but also the least monitored organ. Due
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KEY POINTS

� Noninvasive continuous blood pressure measurements
are available for children, and show good agreement,
however with some underestimation of SBP.

� For noninvasive measurement of CO in children,
bioimpedance techniques seem promising, although
further refinement in accuracy during anesthesia
is needed.

� Near-infrared spectroscopy is at present the best
available monitor to measure regional tissue-
oxygenation and tissue-perfusion.

� Transcutaneous measurement of carbon dioxide is
complementary to blood sampling and capnography.

Technology, education and safety
to the development of encephalopathy in (ex)pre-
term neonates requiring multiple surgeries, pediat-
ric anesthesiologists are especially interested in
brain perfusion [2]. We know that a short anesthetic
in healthy children is harmless, but if this is still the
case in high-risk neonates and infants undergoing
multiple procedures remains unknown [3

&&

]. It is
unclear what exactly happens within the brain dur-
ing anesthesia, due to changes in fluid status, cere-
bral perfusion pressure, CO2 pressure and unknown
local factors.

The current review focuses on recent develop-
ments and current evidence on noninvasive moni-
toring in noncardiac pediatric anesthesia. We will
concentrate on cardiac output (CO), near-infrared
spectroscopy (NIRS) and transcutaneous blood gas
analysis as monitors that may guide our interven-
tions to optimize end organ function of our patients.
HEMODYNAMIC MONITORING

Blood pressure (BP) measured noninvasively with the
oscillometry technique (NIBP) has a good correlation
with intra-arterial BP (IABP), also in infants and neo-
nates [4].However, changing thesiteofmeasurement
from the arm to another location may provide less
reliable information. Large deviations are common
when NIBP is measured from the leg or forearm in
children under anesthesia, compared with arm NIBP.
Leg NIBPs are usually lower than arm measurements
in children, in contrast to higher leg NIBPs in adults.
In children the soft, compliant pediatric arteries pro-
duce less augmentation of the signal than stiffer adult
arteries. Also a reduced sympathetic tone and a rela-
tively reduced blood volume in the lower limbs of
small children may play a role [5

&

,6–8].
Continuous noninvasiveBP can be measured with

a finger cuff, measuring noninvasive finger arterial
pressure (FINAP) by clamping the finger artery to a
782 www.co-anesthesiology.com
constant volume and varying the counter pressure
[9,10]. With the Nexfin monitor (Table 1), FINAP is
reconstructed into a brachial arterial pulse pressure
waveform. In children, the FINAP was reliable, with a
good level of agreement for DBP and mean arterial
pressure between the Nexfin and IABP. However,
underestimation of Nexfin SBP was observed [11,12].

The CNAP monitor (Table 1) provides beat-to-
beat noninvasive pressure readings. In pediatric
patients, the continuous BP readings were clinically
useful. However, there is some variation in accuracy,
especially with SBPs. Cuff placement was sometimes
problematic, so further development in finger cuffs
for children is necessary [14,15].
CARDIAC OUTPUT MEASUREMENTS

CO is the product of cardiac stroke volume (SV) and
heart rate (HR). CO is measured by transpulmonary
dilution techniques, requiring central venous cathe-
terization [16,17]. Bolus thermodilution is still the
most accepted reference method [18]. Less invasive
techniques have become available, such as pulse con-
tour cardiac output analysis, arterial pressure curve-
based CO measurements, transesophageal Doppler
(TED) and partial rebreathing of CO2. Transthoracic
echocardiography or ultrasonic monitors are nonin-
vasive, but noncontinuous measures [16,17,19–21].

Pulse contour analysis (PCA) of IABP waveforms
can estimate CO continuously [17]. PCA can be
measured noninvasively with devices such as the
Nexfin monitor or Mobil-O-Graph (Table 1). Pediat-
ric studies using this method are limited. The PCA-
derived CO values of the Mobil-O-Graph were mea-
sured in awake adults and children at least 10 years
of age, and showed to be comparable with two-
dimensional echocardiography CO values; however,
the values were not interchangeable [22

&&

]. At low
CO values, PCA-derived data were higher than data
from echocardiography. This type of CO measure-
ment needs further refining in accuracy and preci-
sion, before it can be used in pediatric anesthesia.

Another technique of measuring CO continu-
ously is based on the bioimpedance method. Bio-
impedance cardiography measures changes in
thoracic electrical bioimpedance during the cardiac
cycle via electrodes on the skin, from which SV, and
subsequently CO can be calculated [23]. Several
devices are on the market measuring bioimpedance,
electrical velocimetry or bioreactance (Table 1).

Electrical velocimetry relates the maximum rate
of change of impedance to peak aortic blood accel-
eration during the cardiac cycle. The change in
orientation of the red blood cells in the aorta, from
random during diastole (high-impedance state) to
an aligned or parallel orientation during systole
Volume 33 � Number 6 � December 2020



Table 1. Devices for noninvasive hemodynamic measurements

Measurement
of

Device name
(manufacturer) Technology

Use in pediatric patients
(literature) Method

Cardiac output Mobil-O-Graph (I.E.M.
GmbH, Stolberg,
Germany)

PCA Zocalo et al. [22&&]
Only investigated in

children of 10 years and
older

Oscillometric cuff placed around
the arm, measures peripheral
BP, determines central BP
waveform and quantifies
several parameters including
CO

Cardiac output ICON (Cardiotronic/
Osypka Medical, Inc, La
Jolla, California, USA)

Thoracic
bioimpedance/
Electrical
cardiometry

King et al. [28]
Coté et al. [24]
Observational studies in

children 1 day to
19 years old

In neonates and small infants: 4
EKG electrodes placed on the
left leg, left chest, left neck and
forehead or cheek. Older
patients: 2 EKG electrodes on
the left chest and 2 on the left
side of the neck

Cardiac output Aesculon (Osypka Medical
GmbH, Berlin, Germany)

Thoracic
bioimpedance/
Electrical
velocimetry

Absolute CO values in
children not reliable
(Tomaske et al. [25])

2 EKG electrodes on the left chest
and 2 on the left side of the
neck

Cardiac output NICOM (Cheetah Medical,
Wilmington, Delaware,
USA)

Transthoracic
bioreactance

Not feasible in children
<10 kg (Dubost et al.
[31]; Sun et al. [30])

A current injecting device (high
frequency, 75 kHz alternating
current) and 4 dual sensing
electrodes, placed on the
thorax

Cardiac output IQ, model 101
(Noninvasive Medical
Technologies LLC,
Auburn Hills, Michigan,
USA)

Thoracic
bioimpedance

Martin et al. [13] Prewired hydrogen electrodes on
the skin, and 3 EKG electrodes
on the precordium and each
shoulder. A 100 kHz, 4mA
alternating current is passed
through the thorax by the outer
pairs of electrodes and the
voltage is sensed by the inner
pairs

Cardiac output USCOM (USCOM Ltd,
Sydney, New South
Wales, Australia)

Doppler ultrasound,
transthoracic

Intermittent measurement.
Reliable measurement in
children, when operated
by trained user (Dhanani
et al. [21]; Cattermole
et al. [20])

Transducer/probe placed on the
chest in suprasternal position

Cardiac output NICO (Novametrix
Medical Systems Inc,
Wallingford,
Connecticut, USA)

Partial rebreathing
of CO2,
determines CO
via the Fick
principle

Less accurate in patients
ventilated with <300 ml
tidal volume (Levy et al.
[19])

Via an ETT without leak

Continuous BP Nexfin HD monitor
(BMEYE, Amsterdam, the
Netherlands)

FINAP; finger
volume clamp
method

Accurate for continuous
measurement of MAP in
children, but sometimes
difficult placement of
finger cuff in small
children (Lemson et al.
[12]; Garnier et al. [11])

Finger cuff with infrared
photoplethysmography. Built-in
physiological calibration
method (Physiocal; BMEYE) to
check and adjust the set point
of the clamped artery every 80
heartbeats. Also measures CO
with PCA

Continuous BP CNAP monitor 500
(CNSystems
Medizintechnik, Graz,
Austria)

CNAP values
represent the
arterial pressure
at the brachial
artery

Studies in children �20 kg.
Sometimes difficult
placement of finger cuff
(Tobias et al. [15]; Kako
et al. [14])

Cuff around 2 adjacent fingers on
the same side as an arm cuff;
calibration with upper-arm
oscillometric measurements

BP, blood pressure; CO, cardiac output; ETT, endotracheal tube; FINAP, finger arterial pressure; MAP, mean arterial pressure; PCA, pulse contour analysis.
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Technology, education and safety
(low-impedance state), causes changes in electrical
conductivity and electrical impedance [24]. In pedi-
atric patients studies showed agreement, but not
consistently [25–27]. Observational studies with
the ICON monitor in 402 children, ranging from
preterm neonates to teenagers, showed that contin-
uous cardiovascular parameter assessment was fea-
sible during anesthesia for patients of all sizes and
that it provided useful, real-time information
regarding adverse hemodynamic changes and the
response to interventions [24,28].

Bioreactance is the analysis of the variation in the
frequency spectra of a delivered oscillating current
that occurs when the current traverses the thoracic
cavity. It is less susceptible to interference than bio-
impedance [17,29]. NICOM CO values showed a
good correlation and agreement with echocardiogra-
phy during anesthesia in pediatric patients with nor-
mal heart anatomy, but no agreement in pediatric
patients with a cardiac defect [30]. In children under-
going major abdominal surgery, the NICOM showed
poor correlation between confidence interval values
obtained by bioreactance and TED [31].

A meta-analysis of CO monitoring devices in
adults found that no noninvasive device or technol-
ogy was interchangeable with bolus thermodilu-
tion; the percentage of error was 42% for
bioimpedance and 45% for noninvasive PCA, where
a maximum of 30% percentage of error is considered
acceptable [32]. Still, the noninvasive CO monitors
could be interesting bedside monitors, as the per-
centage of error was similar to that of minimally
invasive CO monitors, such as FloTrac (Edward Life-
sciences Corp., Irvine, California, USA).
NEAR-INFRARED SPECTROSCOPY

Almost 30 years after the introduction of the first
commercially available NIRS monitor the value of
NIRS and its applicability in pediatric anesthesia are
still a matter of debate.

NIRS is still misunderstood while a short intro-
duction to its technical background would help to
use it in the best interest of patients at risk of
inadequate tissue oxygenation [33,34

&

,35]. NIRS
provides blood flow independent real time informa-
tion regarding regional tissue oxygenation (r-SO2),
and the oxygen uptake/consumption balance. It
should not be confused with pulse oximetry.

Cerebral NIRS monitoring has become a stan-
dard monitoring tool in many pediatric cardiac
centers and neonatal ICUs. In noncardiac pediatric
anesthesiology, however, NIRS has not yet become
part of the standard monitoring equipment, and the
price of the disposables certainly requires careful
patient selection.
784 www.co-anesthesiology.com
Despite significant scientific efforts during the
last two decades aiming at the definition of normal
ranges [36,37] and lower safety margins [38–41] of
cerebral r-SO2 in children, consensus regarding
these important targets has not yet been reached.
Many pediatric anesthesiologists have adopted com-
mon adult patient intervention limits like baseline r-
SO2 �20% or an absolute value less than 55% [35].
Gómez-Pesquera et al. [42

&&

] recently demonstrated
the association of a decrease in cerebral r-SO2 of less
than 20% and negative behavioral changes on post-
operative day 7 in noncardiac pediatric patients.

Kamata et al. [43
&

] reported a decrease in cerebral
r-SO2 values during laparoscopic surgery in children,
not reaching awake baseline levels, while hemody-
namic and respiratory parameters remained
unchanged. Costerus et al. [44

&

] reported decreases
in cerebral r-SO2 (�10% from baseline) during neo-
natal thoracoscopic surgery and favorable neuro-
developmental outcome within 24 months despite
severe intraoperative acidosis.

Two recent studies conducted in infants found
no evidence of an effect of awake caudal [45

&

] and
spinal [46] anesthesia on cerebral r-SO2.
RECENT DEVELOPMENTS IN NEAR-
INFRARED SPECTROSCOPY MONITORING

The list of new applications of NIRS monitoring in
pediatric anesthesiology is continuously growing.

Combined cerebral and peripheral (muscle)
NIRS monitoring is a new trend, with some initial
evidence of its capability to detect early stage cen-
tralization [47].

The calculation of fractional regional tissue oxy-
gen extraction [FTOE¼ (SaO2� rSO2)/SaO2] [48], a
composite parameter reflecting the regional oxygen
delivery/consumption balance is also becoming
increasingly used.

Jildenstål et al. [49
&

] found an acceptable level of
agreement between frontal and occipital recordings
of cerebral rSO2, introducing the possibility to apply
NIRS during surgical procedures where the forehead
is not available for sensor placement.

Neunhoeffer et al. [50] found a positive effect of
red blood cell transfusion on FTOE and cerebral r-
SO2 in postsurgical infants, suggesting the feasibility
of both parameters as transfusion triggers.

Smarius et al. [51
&

] observed a significant reduc-
tion in cerebral r-SO2 induced by hyperextension of
the neck during positioning for cleft palate repair
surgery in children.

Lang et al. [52
&

] found initial evidence of addi-
tional value of perioperative cerebral NIRS monitor-
ing as a measure of intracranial pressure in
symptomatic pediatric hydrocephalus patients.
Volume 33 � Number 6 � December 2020
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NEAR-INFRARED SPECTROSCOPY
DIRECTED HEMODYNAMIC MANAGEMENT

We recently developed a hemodynamic manage-
ment algorithm using cerebral r-SO2 as the single
target parameter, using BP, PaCO2, HR and SaO2 as
major contributing parameters [34

&

]. A preinduction
awake baseline r-SO2 is defined as the lowest accept-
able value during the anesthetic. Our experience
from several hundred patients has confirmed the
feasibility of this approach.
TRANSCUTANEOUS BLOOD GAS
ANALYSIS

The principles of transcutaneous blood gas analysis
have already been described in the late fifties by Clark
and Stow-Severinghaus [53,54]. Although continu-
ous and noninvasive, it was prone to errors compared
with simpler techniques such as pulse oximetry. As
the introduction of user-friendly transcutaneous sen-
sors, their use is increasing. Especially, measurement
ofCO2 is reliable. This isparticularly important due to
the increaseofvideo-assistedprocedures. Insufflation
of CO2 could lead to an increase in arterial CO2,
which is a highly vasoactive substance. This is espe-
cially the case in neonates, whose brains are very
sensitive for changes in CO2 [55]. However, arterial
blood gasanalysis, despite the risksof invasivearterial
lines, and capnography remain the gold standard.
Transcutaneous CO2 measurement could also be use-
ful during endoscopic airway procedures or in spon-
taneously breathing children without a definitive
airwayduring procedural sedation.Therefore, further
developments on the use of continuous and nonin-
vasive measurements would be favorable.
TECHNIQUE

Transcutaneous sensors locally heat the skin
improving diffusion of oxygen and CO2 through
the skin [56]. This results in a close approximation
of arterial values, although accuracy on oxygen
measurements is restricted due to limited diffusion
capacity and due to increasing skin thickness with
age [57

&

,58]. It is mostly used on neonatal and
pediatric ICUs. However, its use in the pediatric
operation theatre is limited and concerns still
remain on the accuracy of measured oxygen values
and its usability. Membranes of the device must be
switched carefully and calibration has to be taken
into account afterwards. Furthermore, a short equil-
ibration time of 10 min after skin attachment is
necessary, before measurements can be interpreted
safely. Nevertheless, due to improvements in sensor
application [57

&

], its use perioperatively has
increased. During an operation, changes in
0952-7907 Copyright � 2020 The Author(s). Published by Wolters Kluwe
hemodynamics or fluid status and anesthetic agents
as well as vasoactive medication could have effect on
transcutaneous measurements by influencing the
microcirculation, so doubts remain about the peri-
operative validity of measurements.
RECENT FINDINGS

Only few studies have been published on this sub-
ject. Nosovitch et al. [59] performed the first periop-
erative study in children in 2002. They concluded
that of noninvasive measurements of CO2, transcu-
taneous values were slightly more accurate than
end-tidal measurements. Dullenkopf et al. [60] com-
pared end-tidal and transcutaneous measurements
of CO2 in 60 children under general anesthesia and
found no significant difference in accuracy between
the two methods. Karlsson et al. [61] concluded on a
relatively small group of neonates under general
anesthesia that measurements where technically
possible but not yet accurate.

Recently, Chandrakantan et al. [62
&&

] compared
end-tidal and transcutaneous CO2 to venous blood
gas values in children under 10 kg and showed that
transcutaneous measured CO2 has good correlation
to venous values which are slightly better than
standard end-tidal CO2. May et al. [63

&

] reported
similar results comparing single CO2 values simul-
taneously obtained during arterial, venous, transcu-
taneous and end-tidal analysis in 47 children (mean
age 13.4�7.8 years old) with cystic fibrosis during
anesthesia. Transcutaneous monitoring was more
accurate and closer to PaCO2 than capnography.
DISCUSSION

The ultimate monitor should be easy to set up and
should provide the pediatric anesthesiologist of con-
tinuous, noninvasive, accurate, reproducible and
real-time measurements. Ideally, this would display
end organ function.

So far, this monitor has not yet been available.
Some techniques, however, seem very promis-

ing. Regarding BP measurements and CO monitor-
ing improvements are being made with regard to
availability and accuracy in children. Further devel-
opment of finger cuffs for smaller children is neces-
sary. Although the bioimpedance technique seems
very promising, drawbacks are that in young chil-
dren the electrodes may be difficult to place, elec-
trocautery induces loss of data, and arrhythmia or
pleural effusion may limit its use [24,29,31]. Most
importantly, more research needs to be conducted
on the accuracy of the absolute CO values of these
devices before it can be applied routinely during
anesthesia in pediatric patients.
r Health, Inc. www.co-anesthesiology.com 785
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NIRS is not the holy grail, but it is the best
currently available to continuously and noninva-
sively measure regional tissue-oxygenation and tis-
sue-perfusion. Using the r-SO2 as the single outcome
parameter in hemodynamic monitoring requires a
paradigm shift in pediatric anesthesia toward tissue
oxygenation, away from BP. Additional muscle NIRS
monitoring may become the ultimate addition to
ensure adequate oxygenation of all tissues.

Transcutaneous measurements are complimen-
tary to, and not a replacement of other modalities. It
is, however, a great advantage that noninvasively
and continuously measurements are now available.
But the gold standard for assessment of gas
exchange remains blood gas analysis, and for correct
tube placement capnography. In the near future
more studies are required confirming validity in
children under anesthesia and in areas where these
measurements can contribute to safety such as
laryngeal surgery, video-assisted procedures and
procedural sedation.
CONCLUSION

Small steps are being made to improve the monitor-
ing modalities in pediatric anesthesiology as new
techniques are available to assess a child’s hemody-
namic and respiratory status while anesthetized. As
perioperative safety is high nowadays, we face the
challenge to take these small steps and use these new
monitors as complementary tools together with
standard monitoring in benefit of the most
vulnerable patients.
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