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Abstract: Ongoing concerns with single-ventricle palliation morbidity and poor outcomes from
primary biventricular strategies for neonates with borderline left heart structures have led some
centers to attempt alternative strategies to obviate the need for ultimate Fontan palliation and limit
the risk to the child during the vulnerable neonatal period. In certain patients who are traditionally
palliated toward single-ventricle circulation, biventricular circulation is possible. This review aims
to delineate the current knowledge regarding converting certain patients with borderline left heart
structures from single-ventricle palliation toward biventricular circulation.
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1. Introduction

Ongoing concerns with single-ventricle palliation morbidity and poor outcomes from
primary biventricular strategies for neonates with borderline left heart structures have
led some centers to attempt alternative strategies to obviate the need for ultimate Fontan
palliation. The objective of this manuscript is to review the current literature on gaining
successful biventricular circulation in patients with borderline left heart structures with
patency of the aortic and mitral valves.

2. Definition of Borderline Left Heart Structures

A satisfactory definition of what constitutes “borderline left heart structures” is com-
plicated by the fact that it is a diagnosis of exclusion. There is universal agreement about
some amalgamations of morphologies that are biventricular, i.e., bicuspid aortic valve
without stenosis and coarctation, or univentricular, i.e., HLHS with aortic and mitral atresia.
Large portions of the diagnoses along the continuum between these two morphologies are
managed very differently amongst centers. Part of the issue is that the definition of biven-
tricular is a matter of the success of the postoperative functional status of repair, depending
on both ventricles providing adequate cardiac output with low left atrial pressures, for
which we have limited preoperative predictors. Because of the potential dire consequences
of choosing a biventricular strategy and failing [1], reasonably, many centers have chosen
to take most “borderline” cases down the univentricular palliation pathway, as it has a
confirmed set of outcomes and risks.

This difficulty in the inter-center prediction of biventricular success is evident in the
poor external validity of scoring systems, such as the Rhodes score [2] and the CHSS
score [3]. In a study by Tami et al. [4], the neonates in their study had a left ventricular
adequacy score that would have predicted a high risk of mortality with biventricular repair.
There were no early or late deaths at a follow-up of 38 ± 16 months after the operation, and
only 4 patients (20%) had mild symptoms. The rest of the patients were asymptomatic.
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The Rhodes and CHSS scores were specifically validated for patients with critical aortic
stenosis. Other anatomic substrates of hypoplastic left heart variants, such as unbalanced
atrioventricular septal defects (uAVSD), posterior mal-aligned ventricular septal defects,
etc., may not be appropriate to utilize these scores. Since the early 2000s, there have been
multiple studies utilizing echocardiography to predict the postnatal surgical outcome. In
a retrospective study of fetal echocardiographic images by Jantzen et al. [5], researchers
attempted to use such fetal images to distinguish postnatal biventricular vs. univentricular
surgical management. The fetal echocardiographic parameters that best distinguished
between the two surgical strategies included mitral valve annulus z-score (univentricular
−3.3 ± 1 vs. biventricular −2.6 ± 1.4, p = 0.048), left ventricular end-diastolic dimension
z-score (univentricular −3.3 ± 1 vs. biventricular −2.6 ± 1, p = 0.04), aortic valve annular
dimension z-score (univentricular −3.1 ± 1 vs. biventricular −2.4 ± 0.94, p = 0.04), and
ascending aortic diameter z-score (univentricular −3.2 ± 0.7 vs. biventricular −2.6 ± 0.9,
p = 0.02). A mitral valve z-score ≥−1.9 or a tricuspid: mitral valve ratio ≤1.5 suggests
a high probability of biventricular repair; whereas, a right: left ventricular end-diastolic
dimension ratio ≥2.1 confers a likelihood of single-ventricle palliation.

In a study to identify preoperative parameters that predict intervention-free survival
with biventricular circulation after primary aortic arch repair [6], infants who underwent
aortic arch repair, with an aortic and/or mitral valve z-score ≤−2, were analyzed. A
total of 51 out of 73 patients (70%) were living with biventricular circulation and had no
re-interventions in a year. In a classification and regression tree analysis, a mitral valve to
tricuspid valve ratio ≤0.66, with an aortic valve z-score ≤−3, had the greatest power to
predict biventricular failure (sensitivity 71% and specificity 94%). When surgical papers
about biventricular conversion or left ventricular recruitment describe their inclusion
criteria, they typically use some combination of left-sided valvar or left ventricular end-
diastolic dimension z-scores of ≤−3 as a cut off for inclusion.

Mart et al. [7] created a scoring system that better discriminates, than the Rhodes or
CHSS score, in predicting biventricular repair in a cohort of neonates with hypoplastic left
heart complex. The formula includes the mitral valve: aortic valve annulus ratio divided by
the left ventricular: right ventricular length ratio, then adding the main pulmonary artery
diameter, indexed to body surface area. Using a cutoff value of ≤16.2, biventricular repair
would have been predicted with a sensitivity, specificity, positive predictive value, and
negative predictive value of 1.0. This 2V-Score needs prospective, multi-center validation.

Differentiating borderline left heart structures is still an imprecise science. Advanced
imaging modalities have the potential to add additional data to help with decision making.
Computed tomography (CT) can add to the precision of the assessment of ventricular
columns and morphometric parameters [8]. Several studies have identified a left ventricular
end-diastolic volume between 20 and 50 mL/m2 as potentially adequate ventricles to
maintain biventricular circulation [9–11].

Other anatomies, such as uAVSD, may have straightforward preoperative features to
guide the surgical pathway. A multi-institutional study from the CHSS used an echocar-
diogram to define the limits of uAVSD [12]. An atrioventricular valve index (AVVI), left
atrioventricular valve area/total atrioventricular valve area, centimeters squared, was used
to discriminate the transition from balanced to unbalanced, and correlate that with the
surgical strategy. Patients with an AVVI < 0.19 uniformly underwent univentricular repair.
The strategies for patients with borderline left heart structures with an AVVI between
0.19 and 0.39 had very heterogeneous management. Lugones et al. [13] refined an indexed
ventricular septal defect measurement to attempt to clarify the borderline patients with
0.19 ≤ AVVI ≤ 0.39 from the CHSS study. This includes the VSD size compared to the
atrioventricular valve size to the CHSS AVVI, to distinguish uni- vs. biventricular surgical
strategies.

Unfortunately, despite the advances in echocardiographic imaging, these modalities
frequently have inadequate sensitivity. We have found that before committing a child to
single-ventricle palliation, it is frequently prudent to perform intracardiac exploration. We
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and other groups have found that, frequently, preoperative imaging may underestimate
the actual size of structures, especially when the subvalvar mitral apparatus is normal [14].

3. Left Ventricular Recruitment

There is a concern that patients with borderline left heart structures, who are forced
into biventricular circulation before they are ready, may have left atrial hypertension and
poor cardiac output that can lead to death or to poor future candidacy for univentricular
conversion or heart transplant [1]. For these patients, a strategy was devised to harness the
heart’s intrinsic growth potential toward a more adequate left heart by “force volume load-
ing” the left side using an approach they termed “staged left ventricular recruitment.” [15].
This can include endocardial fibroelastosis resection, left-sided valvuloplasty, atrial septal
defect restriction, and the augmentation of pulmonary blood flow. Thirty-four patients
with borderline left heart structures, defined as left-sided heart structure z-scores between
−5 and −0.5, with aortic and mitral valve patency, were compared to similar patients
who had undergone traditional single-ventricle palliation. Atrial septal defect restriction
was determined by the presence of a transseptal gradient >5 mmHg, which was usually
achieved by restricting the atrial septum down to an approximately 4 mm opening. The
determination of how restrictive to make the atrial septum is performed with consideration
of the mitral valve size and the left ventricular size. In an attempt to increase left ventricular
preload, a systemic to pulmonary artery shunt or a right ventricular to pulmonary artery
(RVPA) conduit is added. Figure 1 is a pictorial description and intraoperative picture of a
patient undergoing LV recruitment with an RVPA conduit.
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Figure 1. A patient undergoing a left ventricular recruitment procedure with (a) an operative
picture and (b) a pictorial description of the same operation. Ao = aorta, DKS = Damus–Kaye–
Stansel anastomosis, LPA = left pulmonary artery, PAB = pulmonary artery band, RA = right atrium,
RPA = right pulmonary artery, RV = right ventricle, SVC = superior vena cava.

This was an asymmetric cohort study with a mix of historical and contemporary
controls, leading to the possibility of some selection bias. In fact, the staged LV recruitment
cohort had a trend toward a larger left ventricular end-diastolic volume (LVEDV) z-score
(−2.5 ± 1.2 vs. −2.9 ± 0.2, p = 0.07), and they were more likely to have had a balloon aortic
valvuloplasty at some point, preoperatively. Twelve of the nineteen patients (63%) with
significant ASD restriction would receive catheter-based balloon dilation or stenting for
significant left atrial hypertension. As a recurring theme that will be observed consistently
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in all of these series of left ventricular recruitment and biventricular conversions, there was
a need for more reinterventions with left ventricular recruitment and a longer length of
hospital stay. The median cumulative duration of all hospitalizations from stage 1 single-
ventricle palliation to the most recent follow-up was 94 days (range 37 to 518 days) in the
left ventricular recruitment group, and 54.5 days (range 8 to 348 days) in the single-ventricle
palliation group (p = 0.006). The wide range underscores how these patients can differ
among themselves, and stresses, once more, the need for individualized, personalized care.

Luckily, there is an overall increase in the ejection fraction between the postnatal
echocardiogram and the echocardiogram before biventricular conversion (p = 0.004). There
was improved freedom from death or transplant with the left ventricular recruitment
strategy over single-ventricle palliation (88.2% vs. 76.5%, respectively). Thirteen patients
(38%) achieved biventricular circulation after left ventricular recruitment. At catheterization,
before biventricular conversion, the mean left atrial pressure, with balloon occlusion of
the atrial septal defect, was 14 ± 4.7 mmHg. At a median follow-up of 2.9 years (range
1 to 6 years), all of these patients were alive. As a proof of concept, this manuscript
demonstrated significant success. The LVEDV and left ventricular long-axis z-scores
were not significantly different between groups before stage 1 palliation, but there were
significant increases in size in the left ventricular recruitment group before bidirectional
Glenn (p < 0.005) and before Fontan or biventricular repair (p < 0.01). Of note, restriction of
the atrial septum was the only predictor of an increase in LVEDV (p < 0.001). It is possible
to increase the left heart dimensions by using a left ventricular recruitment strategy, by
“force volume loading” the left heart in a stepwise manner.

Figure 2 shows the enlargement of the left ventricular volume, from before left ventric-
ular recruitment and after full biventricular conversion, in one of the patients at our center
who underwent the staged ventricular recruitment pathway. Note the interventricular
septal shift that leads to near-normal relative ventricular volumes. It seems that there is
more change than just increased preload leading to septal shift alone. In some studies, the
increase in left ventricular dimensions is not associated with a simultaneous decrease in the
size of the right ventricle [16]. On top of the volume increases, the indexed left ventricular
mass increased, and there was a decrease in the left ventricular mass–volume ratio, since
the ventricle responds to volume, as well as to pressure load. The Boston left ventricular
recruitment study excluded patients with ventricular septal defects (VSDs). The group
at Chiba Children Hospital in Japan discussed their staged biventricular repair-oriented
strategy in borderline candidates with VSDs [17]. Importantly, recognizing the limitations
of the strategy, they chose patients to undergo biventricular repair by using a risk profile for
single-ventricle palliation, rather than by a purely anatomical possibility. They were more
likely to follow the staged biventricular repair strategy if there were features that had the
potential for increased pulmonary hypertension, i.e., Kartagener syndrome or Trisomy [18].
This was an approach reinforced by Boston, with the evolution of their biventricular re-
pair and left ventricular recruitment program [19]. They performed a study to determine
the effect of ASD restriction without VSD closure on ventricular growth in patients with
borderline right or left ventricles and VSDs. There were increases in the median indexed
ventricular diastolic volume (31.7 mL/m [IQR, 24.5–37.1] to 48.5 mL/m2 [IQR, 38.4–58.0];
p < 0.01) and median indexed systolic volume (13.3 mL/m2 [IQR, 9.7–18.7] to 19.5 mL/m2

[IQR, 16.8–29.7]; p < 0.01). Biventricular conversion was performed in 14 patients (67%),
with 2 deaths (14%).

Along with staged ventricular recruitment, initial palliation with a hybrid Norwood
and keeping the atrial septal defect somewhat restrictive has also led to adequate growth in
the left heart structures. Yerebakan et al. [20] and the team in Giessen, Germany, described
their patients with hypoplastic left heart variants who underwent hybrid Norwood, and
then eventual biventricular repair. Similar to staged ventricular recruitment, the median
aortic valve z-scores (−2.13 [range, −7.14 to 0.77] to −1.21 [range, −8.87 to −0.08]; p = 0.04)
and mitral valve z-scores (0.52 [range, −2.97 to 2.42] to 0.98 [range, −2.35 to 2.64]; p = 0.05)
increased after the hybrid Norwood procedure. They did not report LV length z-scores,
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but there was no change in the LV/RV ratio. Of interest, in looking toward facilitating
LV growth in these patients, they maintained a restrictive interatrial communication. Left
atrial pressure up to 15 mmHg and a gradient across the ASD between 5 and 10 mmHg
seemed to be tolerable. The patients in this study were included if they underwent a hybrid
Norwood and biventricular repair. No comparison could be made with patients who had
the anatomy for potential biventricular repair, but who were unable to achieve adequate
left-sided growth to attempt biventricular repair. Furthermore, other centers have shown
the potential for left heart growth after the hybrid Norwood procedure [18,21–23]. In yet
unpublished results at our center, we have found excellent growth of the left heart with
LV recruitment after single-ventricle palliation. The median LV long-axis z-score increased
from −4.65 (−4.9 to −3.4) to −1.75 (−4.7 to −1.3) after LV recruitment (p < 0.05) (Figure 3).
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Figure 2. Comparison of left ventricular volumes on magnetic resonance imaging (a) before left ven-
tricular recruitment: left ventricular end-diastolic volume (LVEDV) 12.9 mL, indexed left ventricular
end-diastolic volume (LVEDVi) 20.2 mL/m2 and (b) after full biventricular conversion: LVEDV 54 mL
and LVEDVi 72 mL/m2.
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Surgical Techniques

The valvar and left ventricular outflow tract operative techniques are similar to other
strategies performed on pediatric patients. As observed above, restriction of the atrial
septal defect is consistently the most significant maneuver to help grow the left-sided
cardiac structures. A patch with a fenestration in it or a partial primary closure can be used.
The residual shunt has been anywhere between 2 and 6 mm, depending on the perceived
sizes of the mitral valve, aortic valve, and left ventricle. Our center and other centers use
judicious balloon septostomy as needed, to keep the left atrial pressure ≤15 mmHg. To
further strengthen the argument, inter-atrial communication that is left open at the time of
aortic arch augmentation in neonates with biventricular physiology is predictive of a need
for reintervention on the left ventricular outflow tract [24].

The other key surgical piece of left ventricular recruitment is the augmentation of
pulmonary blood flow. A Sano or modified Blalock-Taussig shunt are employed in a
standard fashion. If there is a bidirectional Glenn (BDG) present, then we may choose
to place a pulmonary artery band between the shunt and BDG to prevent the reversal
of flow in the superior vena cava. It is not at all evident that augmentation adds to left
heart growth. It makes intuitive sense, but, in fact, Qp and Qp: Qs were not found to
be statistically significant predictors in the development of left heart growth [19]. The
need for a shunt >6 mm was predictive of heart transplant or death after left ventricular
recruitment. Despite this, we are not aware of any center, including ours, that does not add
more pulmonary blood flow during left ventricular recruitment. Many of the patients have
a BDG and are around the age that they would undergo Fontan. They would probably
become too cyanotic to tolerate waiting the additional 6–12 months, without the added
pulmonary blood flow before biventricular conversion.

4. Biventricular Conversion

Six-to-twelve months after left ventricular recruitment, when the left heart structures
look adequate echocardiographically, we then test the patients’ readiness for biventricular
conversion. We obtain an MRI to assess ventricular volumes, valvar morphology, and, if
present, ventricular septal defect orientation to the systemic semilunar valve. To assess
hemodynamic tolerance, we also obtain cardiac catheterization to assess Qp: Qs and to
balloon occlude the atrial septal defect, to check what the left atrial pressures would be
after septation with a Qp: Qs near one. If all of this is adequate, then the patient will
be recommended for biventricular conversion, after multidisciplinary discussions with
pediatric cardiology, pediatric radiology, and pediatric cardiac surgery. Biventricular
conversion includes the takedown of aortopulmonary amalgamation; the takedown of a
cavopulmonary connection; ventricular septation, if necessary; and separation of the left
and right ventricular outflow tracts by direct re-anastomosis, conduit reconstruction, or
pulmonary autograft translocation.

Kalish BT et al. [25] described the short-term outcomes of 28 patients with the presence
of one or more small left heart structures or significant left ventricular dysfunction, who un-
derwent initial Norwood as palliation and then had biventricular conversion. The patients
were reported as HLHS, uCAVSD, and interrupted aortic arch. Risk factors for single-
ventricle palliation were present in 14 (50%) patients. Seventeen (61%) patients required
re-intervention after biventricular conversion. After biventricular conversion, the LVEDV
at echocardiogram increased to 91.33 mL/m2 (56.6 to 251.5 mL/m2) from 58.1 mL/m2

(26.6 to 97.5 mL/m2) in the HLHS group, and to 58.5 mL/m2 (45.7 to 69 mL/m2) from
28.1 mL/m2 (16 to 86.2 mL/m2) in the uCAVSD group; p < 0.05 in both groups. The left
ventricular end-diastolic pressure (LVEDP) increased to 17 mm Hg (9 to 29 mm Hg) from
12 mm Hg (6 to 20 mm Hg) in the HLHS group; p < 0.05. The LVEDP non-significantly
increased to 11 mm Hg (8 to 24 mm Hg) from 8 mm Hg (7 to 10 mm Hg) in the uCAVSD
group; p = 0.079.

Further investigation of preoperative parameters and postoperative outcomes in
patients with HLHS or uCAVSD, undergoing biventricular conversion, was performed [26].
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Multivariable Cox regression showed that LVEDP ≥ 13 mm Hg (adjusted hazard ratio, 4.00;
p = 0.037) and postoperative right ventricular pressure > 3

4 of the systemic pressure (adjusted
hazard ratio, 21.75; p < 0.001) were significantly associated with the primary composite
endpoint of death, heart transplant, or biventricular repair takedown. Of 51 patients,
11 (22%) experienced the primary endpoint. Patients with HLHS were more likely to
experience this endpoint compared to those with uCAVSD (30% vs. 6%, p = 0.03). A total of
25 (49%) patients required surgical re-intervention after biventricular conversion. There
was a transplant-free survival of 80% at 3 years. The survival rate was 85% for the group
with LVEDP < 13 mm Hg and 60% for the group with LVEDP ≥ 13 mm Hg (p = 0.037). This
survival rate does not include any patients who were censored before they were deemed
adequate biventricular conversion candidates. Considering the survival and reoperation
rates, the question arises as to whether a focus on patient selection for those patients with
risk factors for single-ventricle palliation, or outright single-ventricle palliation failure,
should trump strict anatomic and functional criteria [27].

To help address the concerns with this question, Boston looked specifically at pa-
tients with uAVSD [28]. These patients were divided into three groups. The groups were
those who had undergone single-ventricle palliation, those who underwent primary or
staged biventricular repair, and those who underwent biventricular conversion from single-
ventricle palliation. The median length of follow-up was 35 months (range 1–192 months).
In the multivariable analysis, the single-ventricle palliation and biventricular conversion
groups had a higher risk for catheter-based re-interventions, and this was worse in het-
erotaxy patients. There was a survival advantage, by Kaplan–Meier estimates, with the
biventricular and biventricular conversion/biventricular repair group compared to the
single-ventricle palliation group (log-rank p = 0.005).

As for patient selection, in 23 patients who underwent biventricular conversion for
Fontan failure, the 2-year survival rate was 72.7% (95% confidence interval, 37–90%) [29].
This is similar to orthotopic heart transplant outcomes in patients for failing Fontan. All
the elective Fontan takedown patients survived, with a median follow-up of 1.1 years
(IQR, 0.2 to 2 years). Long-term follow-up will be important in biventricular conversion
patients, because even after the LVEDV z-scores reached normal or elevated ranges, diastolic
dysfunction was common and progressive. Median LVEDP increased from 12 mm Hg
before biventricular conversion to 22 mm Hg at the last follow-up. We found similar
significant LVEDP increases in our biventricular conversion patients, with the median
LVEDP increasing from 5.5 mm Hg (4 to 10 mm Hg) to 10 mm Hg (6 to 20 mm Hg) [30].
In the six patients for whom the right ventricular pressure (RVP) could be estimated by
a tricuspid valve jet, the RVP was less than half the systemic pressure in all of those
patients. One or more risk factors for single-ventricle palliation were present in three (23%)
patients. There was a 92% survival rate at a median follow-up of 22.6 months (range, 0.3 to
36.4 months). Our patients were carefully selected and included both patients with Fontan
failure and with well-functioning single-ventricle palliation. This may explain the improved
survival over the biventricular conversions for purely Fontan failure described above.

5. Conclusions

In certain patients who are traditionally palliated toward single-ventricle circulation,
biventricular circulation is possible. The short- and medium-term results are satisfactory.
This circulation offers the prospect to prevent the well-known Fontan morbidities at the
consequence of greater re-interventions, left atrial hypertension, and unknown long-term
outcomes. Further studies and follow-ups are needed to assist in refining optimal patient
selection, improved surgical techniques, and proper postoperative management.
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