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ABSTRACT Streptococcus pneumoniae (the pneumococcus) is a human pathogen of global
importance, classified into serotypes based on the type of capsular polysaccharide produced.
Serotyping of pneumococci is essential for disease surveillance and vaccine impact measure-
ment. However, the accuracy of serotyping methods can be affected by previously undis-
covered variants. Previous studies have identified variants of serotype 14, a highly invasive
serotype included in all licensed vaccine formulations. However, the potential of these
variants to influence serotyping accuracy and evade vaccine-induced protection has not
been investigated. In this study, we screened 1,386 nasopharyngeal swabs from children
hospitalized with acute respiratory infection in Papua New Guinea for pneumococci. Swabs
containing pneumococci (n = 1,226) were serotyped by microarray to identify pneumococci
with a divergent serotype 14 capsule locus. Three serotype 14 variants (‘14-like’) were iso-
lated and characterized further. The serotyping results of these isolates using molecular
methods varied depending on the method, with 3/3 typing as nontypeable (PneumoCaT),
3/3 typing as serotype 14 (seroBA), and 2/3 typing as serotype 14 (SeroCall and quantita-
tive PCR). All three isolates were nontypeable by phenotypic methods (Quellung and latex
agglutination), indicating the absence of capsule. Illumina and nanopore sequencing were
employed to examine their capsule loci and revealed unique mutations. Lastly, when incu-
bated with sera from vaccinated individuals, the 14-like isolates evaded serotype-specific
opsonophagocytic killing. Our study highlights the need for phenotypic testing to validate
serotyping data derived from molecular methods. The convergent evolution of capsule
loss underscores the importance of studying pneumococcal population biology to monitor
the emergence of pneumococci capable of vaccine escape, globally.

IMPORTANCE Pneumococcus is a pathogen of major public health importance. Current
vaccines have limited valency, targeting a subset (up to 20) of the more than 100 capsule
types (serotypes). Precise serotyping methods are therefore essential to avoid mistyping,
which can reduce the accuracy of data used to inform decisions around vaccine introduction
and/or maintenance of national vaccination programs. In this study, we examine a variant of
serotype 14 (14-like), a virulent serotype present in all currently licensed vaccine formulations.
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Although these 14-like pneumococci no longer produce a serotype 14 capsule, widely used
molecular methods can mistype them as serotype 14. Importantly, we show that 14-like
pneumococci can evade opsonophagocytic killing mediated by vaccination. Despite the high
accuracy of molecular methods for serotyping, our study reemphasizes their limitations. This
is particularly relevant in situations where nonvaccine type pneumococci (e.g., the 14-likes in
this study) could potentially be misidentified as a vaccine type (e.g., serotype 14).

KEYWORDS serotype, capsule, pneumococcus, Streptococcus pneumoniae, variant,
pneumococcal conjugate vaccine

S treptococcus pneumoniae (the pneumococcus) is a bacterial pathogen of global im-
portance, as it causes a range of diseases, including pneumonia, sepsis, and meningitis

(1). Pneumococci are also carried in the nasopharynx, which is typically an asymptomatic
event but is important for transmission and progression to disease (2, 3). The capsular poly-
saccharide is a major virulence determinant and is the basis for pneumococcal classifica-
tion. Over 100 pneumococcal serotypes have been described, but currently licensed pedi-
atric vaccines only confer protection against a subset (up to 20) of these serotypes.
Pneumococcal serotyping is essential for disease surveillance and vaccine impact. Molecular
approaches used to infer the serotype have increased in popularity and rely on a preexisting
database of reference capsule locus (cps) sequences (4). Unfortunately, there are limited
genomic data from pneumococci from low and middle-income countries, particularly in the
Asia-Pacific region. We have previously discovered new genetic variants from this region
that can be ‘mistyped’ using common molecular methods (5). This reduces the accuracy of
the serotyping data used to make decisions around vaccine introduction and around the
monitoring of vaccine impact.

The burden of pneumococcal disease in Papua New Guinea (PNG) is among the highest,
worldwide (6, 7). High-density pneumococcal carriage with a diverse range of serotypes
occurs early in life (6, 7). In contrast with most other settings, randomized controlled trials in
PNG showed pneumococcal vaccines have thus far had a limited impact on vaccine-type
nasopharyngeal carriage (6, 7). Therefore, it is important to identify pneumococcal variants
with the potential to evade vaccine-induced protection in PNG.

Serotype 14 is a highly invasive serotype (8) that is targeted by all currently licensed
pneumococcal vaccines (PCV10, Pneumosil, PCV13, PCV20, and PPSV23). Variants of serotype
14 have been identified in Australia and South Africa. These variants are unable to be sero-
typed by phenotypic methods (‘nontypeable’) because mutations in the serotype 14 cap-
sule locus mean that they no longer produce a capsule (9–11). However, an in-depth investi-
gation of these variants has not been conducted. Molecular typing methods are now
common, but the potential for mistyping these variants as serotype 14 via such methods is
unclear. Additionally, the capacity of these variants to evade the antibody response elicited by
vaccination has not been examined.

Here, we investigate variants of pneumococcal serotype 14 that we isolated from
nasopharyngeal swabs in PNG. We report the source of the divergence and the phenotypic
consequences on capsule production. Importantly, we investigate these variants for their
potential to be mistyped by popular serotyping methods as well as whether they can evade
vaccine-induced protection.

RESULTS

We examined nasopharyngeal swabs from children hospitalized with acute respiratory
infection as part of the PneuCAPTIVE study (12). We tested 1,386 swabs for pneumococci
using lytA quantitative PCR (qPCR). Of these, 1,287 (92.86%) were positive (or equivocal) for
the lytA gene. Following culture, a-hemolytic growth was obtained from 1,226 of the swabs,
which were then serotyped via DNA microarray. Among these, three (0.24%) swabs contained
a putative variant of serotype 14. These ‘14-likes’ comprised 3.29% of swabs where serotype
14 was detected (n = 91). A pneumococcal isolate from each of these samples was purified
(PMP1437, PMP1438, and PMP1514). Each isolate was a distinct, novel genotype as defined
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by microarray arrayCGH, Multi-Locus Sequence Typing (MLST), and Global Pneumococcal
Sequence Cluster (GPSC) (Table 1).

To determine if these 14-like pneumococci are ‘nontypeable’, similarly to those previously
identified in Australia and South Africa (10, 11), we applied phenotypic serotyping methods.
All three isolates were nontypeable using both Quellung and latex agglutination (Fig. 1 and
Table 2). To verify the presence of a defective serotype 14 cps locus in these isolates, we per-
formed whole-genome sequencing. The reads (Illumina and Nanopore) were combined,
and the resultant assemblies for each isolate (GenBank accession: OM328061-OM328063)
were used to interrogate the cps locus (4). Each 14-like isolate has mutations in their cps
locus. PMP1437 has a 6.9 kb deletion, including wchA, wchJ, wchK, wzy, wchL, wchM,
wchN, and part of wzx as well as a 1.3 kb insertion of an IS1380 element in the wzg gene.
The cps locus in PMP1438 has a 4.2 kb deletion consisting of wzg, wzh, wzd, wze, and part
of wchA. Lastly, PMP1514 has a 1.8 kb deletion, including wzd, wze, and part of wchA as
well as disruption of the wchM gene with an IS1380 element (Fig. 2). These findings were
consistent with the microarray results.

To determine the potential for the 14-like pneumococci to be mistyped, we applied
four molecular methods: three whole-genome sequencing methods (PneumoCaT [13],
seroBA [14], and SeroCall [15]) and singleplex qPCR using the CDC serotype 14-specific
qPCR primers and probe (16). PneumoCaT made no serotype call (nontypeable), while
seroBA designated these isolates as serotype 14 (Table 2). Interestingly, SeroCall and
qPCR designated PMP1438 and PMP1514 as serotype 14, whereas PMP1437 was desig-
nated as nontypeable by these methods (Table 2).

As the 14-like pneumococci appear to be unable to synthesize capsule, we hypothesized
they would be able to escape opsonophagocytic killing mediated by the serotype 14 anti-
bodies elicited by vaccination. To test this, we performed opsonophagocytic assays using
sera (with a range of serotype 14-specific IgG values) from individuals vaccinated with PCV7
and/or PPSV23, both of which target serotype 14. All three 14-like isolates evaded serotype-
specific opsonophagocytic killing, in contrast with the capsule producing serotype 14 control
strains (PMP829 and STREP14) (Fig. 3).

TABLE 1 Strain information of serotype 14 variant (14-like) pneumococci identified in this study

MLST

Isolate Source aroE gdh gki recP spi xpt ddl Sequence type GPSC
PMP1437 Nasopharynx of child with acute respiratory infection 7 5 792a 4 6 1 1 17329a 1000b

PMP1438 Nasopharynx of child with acute respiratory infection 1 5 4 8 9 277 1123a 17330a 999b

PMP1514 Nasopharynx of child with acute respiratory infection 1 5 793a 5 9 1 1 17331a 998b

aNovel allele and/or sequence type identified in this study.
bNovel GPSC type identified in this study.

FIG 1 Representative latex agglutination reactions of a serotype 14 positive-control strain PMP829 (A) and 14-like isolates PMP1437
(B), PMP1438 (C), PMP1514 (D). Bacterial suspensions were mixed with a latex reagent that contained serotype 14 antibodies
from type 14 antisera from Statens Serum Institut adsorbed to polystyrene latex beads. A positive reaction is indicated by
visible agglutination and clearing of the suspension, whereas a negative reaction lacks agglutination and remains uniform and
white/opaque.
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DISCUSSION

S. pneumoniae serotype 14 is one of the major capsule types associated with pneumonia
and invasive pneumococcal disease (IPD), and it is included in all licensed pediatric and adult
pneumococcal vaccines (PCV10, Pneumosil, PCV13, PCV20, and PPSV23) as well as in the
new vaccines under development (17). Thus, accurate identification of this serotype is par-
amount for disease surveillance, including the monitoring of vaccine impact. In this study,
we investigate variants of serotype 14 isolated from three children in PNG who were hospi-
talized with an acute respiratory infection. These variants have mutations in the cps locus,

TABLE 2 Summary of serotyping results of serotype 14 variant (14-like) pneumococci from PNG

Serotype resulta

Molecular serotyping methods Phenotypic serotyping methodse

Isolate Microarrayb PneumoCaT (% coverage)c seroBA SeroCall Serotype 14 qPCR (ct value)d Quellung Latex agglutination
PMP1437 14-like Nontypeable

(44.50%)
14 Nontypeable Negative

(no ct)
Nontypeable Nontypeable

PMP1438 14-like Nontypeable
(68.52%)

14 14 Positive
(22.75)

Nontypeable Nontypeable

PMP1514 14-like Nontypeable
(84.21%)

14 14 Positive
(19.78)

Nontypeable Nontypeable

aThe number outside parentheses refers to the serotype call made by that method, e.g., ‘14’ indicates ‘serotype 14’.
bSerotype by DNA microarray was initially determined from a swab following a culture amplification step and was subsequently repeated on the isolates derived from these
samples to validate that the 14-like strains were isolated.

cThe number inside parentheses represents the percent coverage against the serotype 14 cps locus, which was the top cps locus match for all three isolates.
dThe number in parentheses represents the mean cycle threshold (ct) value obtained by quantitative PCR (qPCR) (wzy gene target) from duplicate wells.
ePhenotypic serotyping was performed with all SSI pools and type 14 sera.

FIG 2 Comparison of the capsular polysaccharide loci of 14-like pneumococci PMP1437 (A), PMP1438 (B), and PMP1514 (C) to the reference serotype 14
sequence strain 34359 (4). Schematics of the sequence comparison were generated using Easyfig version 2.2.5 (30).
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resulting in the loss of capsule production. These belong to the Group I lineage of nonen-
capsulated pneumococci, consisting of pneumococci that possess either a partial or full
cps locus but also possess mutations that lead to the inability to produce capsule (18). This
group includes pneumococci with defective serotype 14 cps loci as well as various cps loci
of other serotypes (10, 11, 18).

Although similar variants have been identified previously (10, 11), we have conducted an in-
depth investigation which revealed that these 14-like pneumococci exhibit discrepant serotyp-
ing results, depending on the method employed. Despite the inability of these pneumococci to
produce capsule, most molecular serotyping methods assessed in this study designated these
isolates as serotype 14. Not only were discrepant serotyping results obtained by different meth-
ods, but the mistyping potential was also further complicated by inconsistent serotype calls of
each isolate by the same method (observed for the SeroCall and qPCR methods) (Table 2). The
latter was due to mutations of different length and location across the cps locus of the different
isolates (e.g., the deletion in PMP1437 included wzy, the target for the qPCR method, whereas
this gene is intact in PMP1438 and PMP1514).

Although overlooking mutations in the cps is a known limitation of most molecular
methods for serotyping, the occurrence of these variants in the population raises concerns
around the potential for reducing the accuracy of serotyping data used to make decisions
around vaccination programs. This is particularly relevant for the variants described in the
present study, as their mistyping (as serotype 14) would incorrectly classify them as a vaccine
serotype, despite their ability to evade the opsonizing serotype 14 antibodies induced by
vaccination (Fig. 3). Thus, although molecular methods for serotyping generally perform
well, displaying a high concordance with phenotype, it is important to note their limitations,
particularly in the serotyping of isolates from countries where limited information on genetic
variation in the pneumococcal population is available.

All three 14-like isolates identified in this study belong to different genetic lineages
(Table 1), and the mutations in their cps loci differ in size and location (Fig. 2). This sug-
gests convergent evolution, where mutations have occurred on multiple occasions
within independent lineages of serotype 14 pneumococci. It is plausible that capsule
loss may be advantageous under specific circumstances, such as during initial adher-
ence (19) or in reducing the metabolic burden on the bacterium.

Although nonencapsulated pneumococci rarely cause pneumonia or IPD, they can cause
other diseases including conjunctivitis and otitis media (20). Additionally, nonencapsulated

FIG 3 Opsonophagocytic indices of serotype 14 (PMP829, STREP14), nonencapsulated (PMP1474) and
14-like (PMP1437, PMP1438, and PMP1514) pneumococci. Isolates were incubated with either 007SP reference
sera (red triangles) or sera from individuals vaccinated with PCV7 and/or PPSV23. Each symbol represents an
individual serum sample with black, gray, and white colors representing serum samples with high (.10 mg/
mL), medium (1 to 5 mg/mL), and low (,0.5 mg/mL) serotype 14 IgG titers, respectively. Times specified in
brackets below are the ages of the children at the time of vaccination. Red triangle, 007SP reference sera;
black circle, 1 dose PCV7 (2 years); black square, 1 dose PPSV23 (12 months) 1 1 dose PCV7 (2 years); gray
circle, 1 dose PCV7 (2 years); gray square, 2 doses PCV7 (14 weeks and 2 years); white square, 2 doses PCV7
(6 and 14 weeks) 1 1 dose PPSV23 (12 months). OI 4 (dotted line) or less is defined as negative for
opsonophagocytic killing. Nonspecific killing in this assay was 225%, 212%, 22%, 21%, 2%, and 20% for
PMP829, STREP14, PMP1474, PMP1437, PMP1438, and PMP1514, respectively.
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pneumococci play important roles in shaping the pneumococcal population. Hiller et al.
(21) showed recombination between a nonencapsulated and a serotype 14 strain during a car-
riage episode. Interestingly, the nonencapsulated recombinant had enhanced biofilm-forming
capability compared with its serotype 14 parent. Biofilm formation is important for colonization
and persistence in the nasopharynx. Nonencapsulated pneumococci are more likely to undergo
genetic recombination compared with capsulated strains (20). Chewapreecha et al. (22) identi-
fied higher recombination frequencies in nonencapsulated pneumococci compared with sero-
type 14 isolates of the same genetic background. In PNG, multiple serotype carriage is high
(6), providing optimal conditions for horizontal gene transfer between co-colonizing strains.
Therefore, although the 14-like pneumococci are unlikely to be directly involved in disease,
they have the potential to drive genetic diversity in the PNG pneumococcal population, mak-
ing these variants a concern if they are not efficiently targeted by vaccination.

Pneumococcal serotyping is essential in obtaining reliable data for disease surveillance
and in monitoring vaccine impact. As this information is used by decision-makers to inform
policy, the accuracy of serotyping methods is vital. Our study highlights the potential for
serotype diversity and mistyping, particularly where there is limited genomic information,
such as in low- and middle-income settings. Therefore, it is essential that when putative
variants with divergent capsule loci are detected by molecular serotyping methods, these
results are validated by phenotypic approaches. In this situation, isolates should be exam-
ined further by Quellung and/or latex agglutination, with the final serotype call being based
on the phenotype. Lastly, our study highlights the need to monitor the pneumococcal
population for variants that could escape vaccine-induced protection, including those in IPD
and pneumonia surveillance programs.

MATERIALS ANDMETHODS
Pneumococcal identification and molecular serotyping from nasopharyngeal samples. Cases of

moderate to severe pneumonia (2 to 59 months of age) at the Eastern Highlands Provincial Hospital and
community health care clinics within the Goroka town, as well as their contacts and caregivers, were recruited
as part of the PneuCAPTIVE study (12). Criteria for inclusion in the study have been described previously (12).
Ethical approval for this study was obtained from the PNG Institute of Medical Research Institutional Review
Board (IRB no. 1510), PNG Medical Research Advisory Committee (MRAC 15.19/16.09), and The Royal Children’s
Hospital Human Resources Ethics Committee (HREC reference no. 35249). Following written informed consent,
nasopharyngeal swabs were collected from patients in accordance with World Health Organization guidelines
(23). Swabs were placed in 1 mL skim milk, tryptone, glucose, and glycerol medium (24), then vortexed and ali-
quoted prior to storing at280°C. Samples were then shipped to the Murdoch Children’s Research Institute on
dry ice and stored at 280°C until use. Swabs were screened for pneumococci using qPCR, targeting the lytA
gene (25) as described previously (26). Pneumococci from swabs were cultured on selective media (horse
blood agar supplemented with 5mg/mL gentamicin) for DNA extraction and DNA microarray to infer the sero-
type(s) as described previously (27), using Senti-SPv1.5 microarray slides (BUGS Bioscience).

Bacterial isolates. Pneumococcal isolates were purified from nasopharyngeal swabs by plating sample
aliquots on horse blood agar supplemented with 5mg/mL gentamicin. An a-hemolytic colony from each sample
was purified. These isolates (PMP1437, PMP1438, and PMP1514) were confirmed as pneumococci by optochin
sensitivity testing and whole-genome sequencing (multilocus sequence typing and pathogenwatch ID).

Whole-genome sequencing and molecular serotyping. For all molecular methods, genomic DNA
was extracted from pneumococcal isolates using the QIAcube HT with the QIAamp 96 DNA QIAcube HT Kit
(Qiagen) as described previously (27). Quantitative PCR was performed, targeting the serotype 14 wzy gene.
Primer and probe sequences, concentrations, and cycling conditions were kept as described previously (16).
DNA from the 14-like isolates (and the serotype 14 positive-control strain PMP829) was extracted as described
above. The qPCRs were performed using the GoTaq Probe qPCR Master Mix (Promega), in which each reaction
consisted of 1x master mix, 300 nM forward and reverse primer, 100 nM probe (6-FAM dye and BHQ1
quencher), and 0.5 ng/mL genomic DNA. The reactions were run under the following cycling conditions:
95°C for 10 min, then 40 cycles of 95°C for 15 sec and 60°C for 1 min. Isolates were defined as serotype 14
if a cycle threshold (ct) value less than 40 was obtained.

For whole-genome sequencing, library preparation was performed using the Illumina DNA Prep kit
(Illumina) and sequenced in 2 � 150 bp paired end reads on the NovaSeq platform. For molecular sero-
typing, reads were run through PneumoCaT 1.2 (13), seroBA 1.0.2 (14), (recommended k-mer size of 71)
or SeroCall 1.0 (15), using the default parameters.

To fully characterize the cps locus in the isolates from this study, long read nanopore sequencing was
conducted. Genomic DNA (1 to 2 mg) was prepared using the Ligation Sequencing Kit with Native Barcoding
Expansion (Oxford Nanopore Technologies), followed by sequencing on a MinION SpotON flow cell (R9.4.1)
(Oxford Nanopore Technologies). Short- and long-read data were then filtered with Trim Galore v.0.6.4 (28) and
qcat v.1.1.0 (Oxford Nanopore Technologies), respectively. The combining and assembly of short- and long-reads
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was performed with Unicycler v.0.4.8, using the default settings (29). Schematic comparisons of the 14-like cap-
sule locus sequences to the serotype 14 reference (4) were conducted using Easyfig version 2.2.5 (30).

Phenotypic serotyping. Serotyping by Quellung and latex agglutination was performed against all SSI
pneumococcal pools and type 14 antisera. For Quellung serotyping (31), antisera from the Statens Serum Institut
(SSI) (https://ssidiagnostica.com) was used. Pneumococci were cultured on horse blood agar plates and incubated
at 37°C with 5% CO2 overnight. A slightly turbid bacterial suspension (2 McFarland standard) was prepared from
these cultures in saline. On a glass microscope slide, 1mL of the suspension was mixed with 1mL of the antisera of
interest. The mixture was then examined under a microscope (400� magnification). A positive reaction with the
antisera of interest was defined as cells with a ‘swollen’ appearance that were more visible under the microscope.

For serotyping by latex agglutination (32), latex reagents were prepared by adsorbing SSI antisera to
polystyrene latex beads as described previously (33). A saline suspension of the pneumococcal culture
was prepared (4 or 5 McFarland standard). On a glass microscope slide, 10mL of the bacterial suspension
was mixed with 10 mL of the latex reagent and rotated on an orbital shaker at ;140 rpm for 2 min. A
positive reaction was indicated by visible agglutination and clearing of the suspension.

Opsonophagocytosis assay. Sera from a cohort of healthy individuals vaccinated with either one or two
doses of PCV7 and/or PPSV23 from the Fiji Pneumococcal Project (FiPP) (34) were inactivated at 56°C for 30 min
and serially diluted 1:2, with 10mL placed into each well. Aliquots of each pneumococcal strain were thawed and
diluted to ;5 � 104 CFU/mL, and 20 mL of this suspension was added to each well and then incubated for
15 min at 37°C, 5% CO2 to allow opsonization to occur. Into each well, 10mL of complement and;4� 105 differ-
entiated HL60 cells (a neutrophil cell line, previously washed twice with Hanks’ balanced salt solution1 0.2% BSA)
were added and incubated, shaking at 37°C, at 220 rpm for 45 min to promote killing of opsonized pneumococci.
After chilling on ice, 5 mL of each reaction were spotted, allowed to form drips onto Todd-Hewitt agar supple-
mented with 0.5% (wt/vol) yeast extract, and allowed to dry prior to the addition of an overlay with 2,3,5-triphenyl-
tetrazolium chloride (TTC) and incubation at 37°C, 5% CO2 overnight. The next day, the number of pneumococcal
colonies was counted and used to determine the viable count and to calculate the opsonophagocytic index (OI),
defined as the interpolated dilution of serum that shows 50% of serotype-specific killing of pneumococci. The
lower limit of detection in the assay is 4. The OIs of samples that do not kill 50% of bacteria were reported as 4 for
analysis purposes. A positive response was defined as an OI of.4. Nonspecific killing was assessed by comparing
the viable count of pneumococci incubated with complement versus heat-inactivated complement.

Data availability. The 14-like capsule locus sequences have been deposited in GenBank (accession
nos. OM328061-OM328063).
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