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Abstract

An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and
reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to
prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated
the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury.
Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast
Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2.95%) to induce lung injury. The therapeutic effects of
EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24,
48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-29-
deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable
before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were
significantly decreased on day 2 (P,0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the
mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%,
which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD
treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema
and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a
hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce
oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).
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Introduction

Acute lung injury (ALI) and its severe form, acute respiratory

distress syndrome (ARDS), are common causes of morbidity and

mortality in intensive care units. ALI occurs as a result of direct

intra-alveolar injury or indirect injury following systemic inflam-

mation. ALI is characterized by refractory hypoxemia due to

widespread alveolar flooding after insult. Currently, the primary

management of ALI includes treatment for underlying diseases,

adequate hemodynamic support and mechanical ventilation with

lung-protective strategies [1]. To maintain adequate tissue

oxygenation, higher levels of supplemental oxygen are often

required.

In most mammalian species, exposure to hyperoxia can result in

lung injury and commonly produces pathological changes similar

to those seen in ARDS. Although similar findings have not been

reproduced in humans with healthy lungs, most clinicians suspect

that oxygen may exacerbate and even cause ALI in critically ill

patients [2]. A recent study revealed that even moderate hyperoxia

(FiO2 = 50%) exacerbates ventilator-induced lung injury (VILI) in a

rabbit model [3]. Clinical studies have supported the important role

that oxidative stress plays an in the pathogenesis of ALI and other

lung diseases, including pulmonary fibrosis, chronic obstructive

pulmonary disease, and bronchopulmonary dysplasia [4–6].

Oxygen toxicity is mediated by reactive oxygen species (ROS)

[7] including superoxide anion (O2
2), hydrogen peroxide (H2O2),

and hydroxyl radicals (?OH). ROS can cause lipid peroxidation,

oxidation of proteins and DNA damage, which can all induce

cellular dysfunction and even cell death [8]. To counteract ROS, a

complex network of antioxidants, including enzymatic and non-

enzymatic antioxidants, exists in biological systems. Enzymatic

antioxidants, which include superoxide dismutase (SOD), catalase,

and glutathione peroxidase, provide the first line of defense against

ROS.

Superoxide dismutases are a group of isoenzymes that function

as key antioxidants in the metabolism of oxygen free radicals.
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They catalyze the dismutation of superoxide to oxygen (O2) and

hydrogen peroxide, thereby maintaining a low concentration of

the toxic superoxide free radical. Superoxide dismutases are

metalloenzymes and exist in three different forms in mammals.

Copper-zinc SOD (CuZn-SOD or SOD1) is found in the

cytoplasma and nuclei of cells, manganese SOD (Mn-SOD or

SOD2) is found in the mitochondria, and Cu/Zn-containing

extracellular SOD (EC-SOD or SOD3) is predominantly found in

the extracellular matrix of tissues [8,9].

EC-SOD has been reported to be a multimeric glycoprotein

composed of at least four identical 30 kD subunits with het-

erogeneous affinity for heparin in extracellular matrix (ECM) and

cell surfaces [10]. EC-SOD activity has been reported to be

markedly increased in the lung compared with other vital organs,

such as the liver, kidney, heart, and brain [8]. EC-SOD has been

proposed to play an important role in reduction of extracellular

oxidative stress resulting from direct exposure of the lung to the

external environment [11]. A recent report using Cre-lox

technology revealed that an acute 50% reduction of EC-SOD

led to a five-fold increase in lung superoxide anions, acute lung

injury and 85% mortality within 7 days in the presence of room

air [12]. An overexpression of EC-SOD in the airway of

transgenic mice attenuates the acute inflammation and protects

the lung against hyperoxia [13]. An exposure to 100% oxygen

for 72 h can induce proteolysis and depletion of EC-SOD

and enhance oxidant/anti-oxidant imbalance in alveolar spaces

[14].

heterogeneousA rational strategy for prevention of oxygen

toxicity is the augmentation of antioxidant enzyme activity in the

respiratory system. Administration of recombinant human CuZn-

SOD and Mn-SOD by an aerosol delivery system has been found

to protect the lungs against hyperoxic injury [15,16]. Recombi-

nant human EC-SOD (rhEC-SOD) was expressed and purified in

both E. coli and the milk of rabbits [17,18], but no in vivo activity

studies have been performed. In this study, we produced rhEC-

SOD in Pichia pastoris, a methylotrophic yeast, and tested the

hypothesis that aerosolized rhEC-SOD could protect against

oxygen toxicity in a hyperoxic model. We also investigated

whether 8-oxo-dG was a useful biomarker for hyperoxic injury. In

doing so, we found that rhEC-SOD attenuated hyperoxic lung

injury, reduced systemic oxidative stress and increased survival in

hyperoxia.

Materials and Methods

Production of human EC-SOD in Pichia pastoris
The construction, screening, and production of human EC-

SOD have been described in detail elsewhere [9]. Briefly, the

hSOD3 cDNA fragment was amplified by PCR and cloned into

pPICZaA yeast expression vector (Figure 1A). After electropora-

tion-stimulated transformation into P. pastoris, selected the

pPICZaA-hSOD3-transformed colonies with high levels of

Zeocin. Recombinant hEC-SOD protein was produced and

secreted into the culture medium under the induction of methanol.

Three liters of culture medium were concentrated by stirred-cell

ultrafiltration (YM-10, Amicon, Danvers, MA). The precipitate

was resuspended in a 5 mM Tris buffer (pH 7.4) containing

50 mM NaCl and dialyzed against the same buffer. The desalted

fractions were separated and purified by a fast protein liquid

chromatography (FPLC) system (AKTA purifier 10, Amersham

Pharmacia Biotech., Arlington Heights, IL) [9]. The activity unit

of rhEC-SOD antioxidant was assayed with a water-soluble

tetrazolium salt (WST-1) kit (Dojindo Molecular Technologies,

Inc., Rockville, MD) as described [9].

Experimental animals
Six- to eight-week-old female CD-1 strain mice weighing 20–

30 g were purchased from BioLASCO Taiwan, INC. The mice

were housed in an SPF-grade animal facility under a 12-h light/

12-h dark cycle with a constant temperature (2561uC). Mice were

provided with food and water ad libitum throughout the

experiment. This study was conducted according to institutional

guidelines and approved by the Institutional Animal Care and

Utilization Committee of National Chung-Hsing University,

Taiwan (IACUC No. 96-52).

Oxygen exposure and aerosol delivery system
Mice were exposed to hyperoxic conditions (FiO2 .95%) in a

36620620-cm plexiglass chamber with a hole (2 cm in diameter)

to allow the continuous flow of 100% oxygen (1 L/min) and

aerosol into the chamber. Oxygen level was very stable (97–99%,

showed in Figure S1) when monitored every hour in light cycle of

housing with an oxygen analyzer (MiniOX I, MSA Canada, Inc.,

Canada). Two ultrasonic nebulizers (SUMO V15, Taiwan) were

used for the aerosolization of the study drugs, and they were

connected to the oxygen delivery system.

Experimental protocol
The first aim of the experiments was to demonstrate the time

course of lung injury and oxidative stress by examining the effects

of hyperoxic conditions at 24, 48, 72, and 96 h. At each time

point, six mice in each group were sacrificed for the following

studies including bronchoalveolar lavage, wet/dry ratio, lung

histology, and 8-oxo-dG determination in lung and liver tissues

(n = 6 in each group). The second aim of the experiments was to

test the hypothesis that aerosolized EC-SOD and CuZn-SOD

could reduce systemic oxidative stress and lung injury after 96 h in

hyperoxic conditions. The mice were divided into three groups: 1)

SOD1 inhalation (10,000 units/day, bovine CuZn-SOD from

Sigma, USA), 2) SOD3 inhalation (10,000 units/day, rhEC-SOD

produced by this study), 3) albumin inhalation (890 mg/mL in

PBS, equal to the SOD3 concentration, as a non-SOD control),

and 4) PBS inhalation (as a control). At least six mice were

recruited in each group. SODs or albumin solved in PBS 70 mL

or PBS 70 mL alone was delivered by this aerosol system in 8 h

per day. About 36% of the weight of solutions was left in the

system 8 hours after aerosolization. The health of mice was

monitored daily throughout the experimental period. The survival

rate was also monitored daily, and at least six mice from each

group were sacrificed at 96 h for the experiments.

Bronchoalveolar lavage
The trachea was exposed with a midline incision and

cannulated with a modified 21-gauge needle. After preliminary

test, bronchoalveolar lavage (BAL) was performed four times with

2.5 mL PBS per time. At least 1 mL was recovered after each

lavage. The BAL fluid was mixed and centrifuged at 5006 g for

10 min at 4uC. Cell pellets were resuspended in 1 mL PBS, and

cell counts were performed [16]. The supernatant was submitted

to total protein analysis using a bicinchoninic acid (BCA) protein

assay (Pierce, Rockford, IL).

Lung wet/dry weight ratio
After euthanasia of the mice, the lungs were surgically dissected

away from the heart, trachea, and main bronchi. Each lung was

blotted dry, weighed, and dried to a constant weight by placing the

lung specimen in an oven at 70uC for 48 h. The ratio of the wet

lung to the dry lung was calculated to assess lung edema.

Aerosolized EC-SOD Prevents Lung Injury
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Lung pathology and immunohistochemical staining of
EC-SOD

After sacrificing the mice, the left lobes of the lung were

dissected and inflated with 0.6 mL of 10% formalin for histological

study. Paraffin sections prepared from the lungs were stained with

hematoxylin and eosin for evaluation. We assessed the degree of

alveolar congestion, hemorrhage, leukocyte infiltration, and the

thickness of the alveolar wall [19]. For immunohistochemical

(IHC) staining of EC-SOD, the lung tissue was fixed with

paraformaldehyde and embedded in O.C.T. compound (Tissue-

TekR; Sakura, Japan), then frozen and microdissected for IHC

analysis [20]. Briefly 5 mm section placed on slides were incubated

with rabbit anti-rhEC-SOD polycolonal first antibody (1:200

dilution; EMD Millipore, Billerica, MA) and biotin-labeled anti-

rabbit IgG antibody (1:2,000 dilution; Abcam, Cambridge, MA).

The Vectastain ABC kit (Vector Laboratories, Burlingame, CA)

was used for rhEC-SOD staining.

8-oxo-dG analysis of lung and liver tissues
Mice were sacrificed to get lung and liver tissues for quantitative

determination of 8-oxo-dG. Deoxyribonucleic acid extractions

were performed as previously described [21], and DNA digestions

were performed by following the Dig-1 protocol as described

previously [22]. Artificial oxidation was minimized by the NaI/2-

propanol method. Isotope-dilution liquid chromatography-tandem

mass spectrometry (LC-MS/MS) with on-line solid-phase extrac-

Figure 1. Production and secretion of rhEC-SOD in Pichia pastoris. A. Structure of the P. pastoris a-factor/human-EC-SOD secretion cassette.
The hSOD3 cDNA fragment was cloned into pPICZaA vector The AOX1 gene can easily be induced by methanol. B. Representative SDS-PAGE analysis
of time course of rhEC-SOD expression and secretion in the yeast cultures after methanol induction. C. Western blot analysis of secreted rhEC-SOD
with a mouse anti-human EC-SOD monoclonal antibody. The amount of rhEC-SOD was determined quantitatively by ELISA. Results are representative
of three experiments. D. The purification of rhEC-SOD by FPLC system. The purity and molecular weight of purified rhEC-SOD (fraction No. 10) was
checked by 12% SDS-PAGE.
doi:10.1371/journal.pone.0026870.g001
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tion was used to measure 8-oxo-dG as previously described [23].

After the addition of 15N-labeled 8-oxo-dG as an internal

standard, the samples were analyzed within 10 min.

Data analysis
All experimental results were expressed as mean 6 SE. The

Levene test was used to determine whether values were normally

distributed. After this assessment, either the Mann-Whitney U test

or the Student’s t test was applied (StatView, Abacus). Differences

with p,0.05 (*) or p,0.01 (**) were considered to be statistically

significant.

Results

Recombinant human EC-SOD expression and purification
To produce bioactive rhEC-SOD antioxidant, a synthetic

secretion cassette for human EC-SOD in yeast vector was

constructed and transformed into P. pastoris. Twenty-four hours

after induction, the amount of rhEC-SOD in the yeast culture was

significantly increased as shown in the SDS-PAGE (Figure 1B).

The secreted dimeric rhEC-SOD (70 kD) in the culture medium

was further assayed by western blot and ELISA (Figure 1C). After

purification with FPLC, the pure dimeric rhEC-SOD was

collected from fraction No. 10 (Figure 1D) with a specific activity

of 251.72 U/mg. A total activity of 10,000 units/mL of rhEC-

SOD was prepared for the experiments.

Effect of oxidative stress on lung injury and mortality
after hyperoxia

When CD-1 mice were exposed to hyperoxic conditions (FiO2

.95%), 100% of the mice died by day 5 (Figure 2A). The wet/dry

weight ratio, which was used as a marker of lung edema, remained

stable before day 2 but increased significantly after day 3 and day

4 (P,0.05) (Figure 2B). The levels of 8-oxo-dG (Figure 2C) in the

lungs decreased significantly at day 2 (P,0.01) and increased

gradually after day 3. Similarly, the level of 8-oxo-dG in liver

tissue, which has been proposed as a measure of systemic oxidative

stress, decreased before day 2 and increased at day 3 (P,0.05).

The abrupt elevation of 8-oxo-dG in the liver tissue on day 3 was

concurrent with the development of lung edema and a decline in

the survival curve.

Aerosolized rhEC-SOD increased survival from hyperoxia
The survival rate of the PBS inhalation group was 57.1% after

72 h of hyperoxia (Figure 3). Treatment with aerosolized rhEC-

SOD increased the survival rate to 95.8% at 72 h after hyperoxia

exposure, which was significantly higher than that in the control

(57.1%, P,0.01), albumin (33.3%, P,0.01), and CuZn-SOD

(75.0%, P,0.05) groups. Aerosolized CuZn-SOD seemed to

increase the survival, but the results were not significant compared

with the control group (P = 0.098). Mice that survived beyond day

3 in the PBS group were clearly impaired and had limited

movement. In contrast, the mice in the rhEC-SOD group

demonstrated remarkable tolerance to hyperoxia (as shown in

the Video S1).

Aerosolized rhEC-SOD and CuZn-SOD reduced hyperoxic
lung edema

The wet/dry weight ratios of the lungs from the SOD-treated

groups (Figure 4A) were significantly lower than the ratios in the

PBS control group (P,0.01), but there was no significant

difference between the CuZn-SOD and rhEC-SOD groups. The

total cell count in the BAL fluid, a marker of lung injury, was also

significantly lower in the SOD-treated groups compared with the

PBS or albumin control group (P,0.01; Figure 4B). In addition,

the total cell count in the BAL fluid of the rhEC-SOD group was

even lower than that in the CuZn-SOD group (P,0.05).

Protective effect of rhEC-SOD against hyperoxic lung
injury was greater than the effect of CuZn-SOD

To further confirm the protective effect of rhEC-SOD,

histopathological examination of lungs was performed after 96 h

of hyperoxia. Pulmonary edema and alveolar infiltration of

neutrophils were evident in the PBS, albumin, and CuZn-SOD

groups (Figure 5). Mice from the group that received aerosolized

rhEC-SOD exhibited less neutrophil infiltration and lung edema

(Figure 5A and 5B). Immunohistochemical staining of EC-SOD

was performed to assess the efficiency of this aerosol system and

the distribution of EC-SOD in lung after aerosolization. In the

EC-SOD treatment group, EC-SOD was expressed diffusely in

lungs, including epithelium of airway, alveolar space, and even

interstitium (Figure 6B). Because of the cross reaction of the

polyclonal antibodies with endogenous EC-SOD, EC-SOD was

found in the epithelium of bronchi and bronchiole in the PBS

control group (Figure 6A).

Protective effect of rhEC-SOD against systemic oxidative
stress was greater than that of CuZn-SOD

To test the hypothesis that aerosolized rhEC-SOD reduced

systemic oxidative stress and increased survival following hyper-

oxia, we measured the levels of 8-oxo-dG in lung and liver tissues

after 72 h and 96 h in hyperoxic conditions. The levels of 8-oxo-

dG in the lung tissues at day 3 (Figure 7A) and day 4 (Figure 7B)

were reduced by treatment with aerosolized rhEC-SOD and

CuZn-SOD. The difference between the protective effects in the

rhEC-SOD (P,0.01) and CuZn-SOD (P,0.05) groups was

shown in the liver tissues, but did not reflect the equivalent

reduction of 8-oxo-dG in the lung tissues under 96 h hyperoxic

condition (Figure 7B).

Discussion

There were two new findings in this study. First, aerosolized

human EC-SOD administration in mice protected against acute

lung injury and systemic oxidative stress caused by hyperoxia

(FiO2.95%). Extracellular superoxide dismutase aerosol therapy

reduced the severity of lung injury, which was demonstrated by the

wet/dry weight ratio and histopathology, as well as the systemic

oxidative stress, which was demonstrated by 8-oxo-dG in the liver.

In addition, EC-SOD reduced the mortality rate. The protective

effect of rhEC-SOD against oxygen toxicity was greater than the

effect of bovine CuZn-SOD in this animal model. Second, we

found that 8-oxo-dG could be used as an oxidative biomarker in a

hyperoxic model. Systemic oxidative stress, demonstrated by 8-

oxo-dG in the nuclei of liver tissue, was concurrent with the

development of pulmonary edema, the decline in the survival

curve and the protective effects of aerosol SODs.

Numerous studies have shown that oxidants are important

mediators of ALI, and augmentation of antioxidant enzymes is

protective in animal models of ALI. SODs, especially EC-SOD,

have been found to play an important role in the pathogenesis of

ALI. EC-SOD knockout mice have exaggerated inflammation in

response to hyperoxia [24] and lipopolysaccharide (LPS) challenge

[25]. On the other side, an overexpression of EC-SOD in the

airway of transgenic mice attenuates ALI and protects the lung

against hyperoxia [13]. The role of EC-SOD was further

confirmed by the report that an acute reduction of EC-SOD in

Aerosolized EC-SOD Prevents Lung Injury
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Figure 2. Effects of oxidative stress on lung injury and survival in hyperoxia (FiO2 .95%). A. The survival of untreated mice after
exposure to hyperoxic conditions (n = 24). B. Pulmonary edema was measured based on the wet/dry weight ratio of the lungs (n = 6 in each group).
C. Time course of oxidative stress in lung and liver tissues after exposure to hyperoxic conditions (n = 6 in each group). The oxidative marker 8-oxo-
dG was determined with LC-MS/MS with on-line SPE. Values are expressed as the amount of 8-oxo-dG per 106 dG.
doi:10.1371/journal.pone.0026870.g002
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adult mice led to ALI and mortality even in room air [12]. In the

same report, intraperitoneal injection of the SOD mimetic

MnTBAP and intranasal administration of CuZnSOD-containing

polyketal microparticles reduced the lung injury and mortality

[12]. Mn-SOD knockout mice usually die within ten days after

birth, whereas transgenic mice overexpressing human CuZn-SOD

or Mn-SOD show increased tolerance to oxygen toxicity [26–28].

One clinical study revealed that subcutaneous injection of bovine

CuZn-SOD may be helpful in reducing bronchopulmonary

dysplasia in preterm infants [7]. To the best of our knowledge,

this study is the first report of the protective effects of aerosolized

hEC-SOD in hyperoxia.

Superoxide anion plays a key role in oxygen toxicity.

Superoxide can undergo SOD dismutation to H2O2, which is

comparatively stable, or react with nitric oxide (NO) to form

peroxynitrite (ONOO2). Superoxide anions can even participate

in Fenton reactions to produce hydroxyl radicals (OH2). The

relatively insufficiency of EC-SOD caused by overproduction of

superoxide or proteolysis of EC-SOD induced by hyperoxia [14]

has been shown to direct the reactions towards the formation of

ONOO2 and OH2, which are highly reactive products and

important mediators of hyperoxia-induced lung injury [29]. The

activities of glutathione peroxidase and catalase, which catalyze

H2O2 to H2O, have been shown to increase after continuous

exposure to hyperoxic conditions [30]. An exogenous EC-SOD

supplement like the aerosol therapy in this experiment could

prevent accumulation of superoxide anions and its associated

oxidants and increase oxygen tolerance in hyperoxia. Another

important protective effect of EC-SOD involves its ability to

inhibit inflammation [13,31]. ROS can induce fragmentation of

several components of ECM (collagen, hyaluronan, and syndecan-

1, a heparan sulfate proteoglycan) and then the following

chemotaxis of neutrophils and inflammation. One of the anti-

inflammatory mechanisms of EC-SOD is by the binding to the

components of ECM and preventing their degradation [32–34]. In

ischemia and peritonitis models, EC-SOD gene transfer reduces

inflammatory cell migration by reducing the expression of

adhesion molecules and proinflammatory cytokines [31].

The anti-inflammatory effect at the cell surface and the

chemical properties of EC-SOD may in part be why aerosol

therapy with EC-SOD is more effective than treatment with

CuZn-SOD in protection against oxygen toxicity. Superoxide

produced in the mitochondria or released extracellularly by

activated neutrophils is important for the pathogenesis of

hyperoxia-induced lung injury, while the role of cytoplasmic

superoxide in oxygen toxicity is limited [29]. The anti-oxidant

effect of EC-SOD occurs at the surface of alveolar and endothelial

cells. EC-SOD prevents the cells from absorbing free radicals,

even into the lung parenchyma. Such an ‘‘antioxidant screen’’

outside of alveolar cells could reduce the cell damage as much as

possible. EC-SOD protein has been shown to be very stable and

displays marked resistance to high temperature [9]; thus, it was

suitable for aerosol therapy.

The delivery of aerosol drugs to the respiratory tract has some

advantages, including rapid onset, smaller required doses, and a

local pulmonary effect with fewer systemic side effects; addition-

ally, it is painless and relatively convenient. In this study, we

proved the fact that EC-SOD can be aerosolized effectively

and then be absorbed into alveoli and lung parenchyma by

IHC staining. The significant higher survival rate of EC-SOD

Figure 3. Effects of aerosolized CuZn-SOD and rhEC-SOD on
survival after 72 h of hyperoxia. Phosphate-buffered saline (PBS)
inhalation was used as the hyperoxia-induced lung injury control group.
The three treatment groups were Albumin, SOD1 (CuZn-SOD), and
SOD3 (rhEC-SOD) (n = 24 in each group). The albumin treated group
was added as a non-SOD inhalation control group.
doi:10.1371/journal.pone.0026870.g003

Figure 4. Effects of aerosolized CuZn-SOD and rhEC-SOD on
lung injury after 96 h of hyperoxia. A. Pulmonary edema
demonstrated by the wet/dry weight ratio of the lungs (n = 6 in each
group). B. Total cell count in BAL fluid (n = 6 in each group; * P,0.05;
** P,0.01).
doi:10.1371/journal.pone.0026870.g004

Aerosolized EC-SOD Prevents Lung Injury
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treatment group than that of PBS control, albumin, and CuZn-

SOD treatment groups revealed the protective effect against

oxygen toxicity of aerosolized EC-SOD. Total cell counts in BAL

fluid [35] and pathology of lung revealed that EC-SOD is more

effective than CuZn-SOD for reducing lung injury, but the same

effect could not be demonstrated by the wet/dry ratio of lung. The

aerosolized proteins deposited in lungs are equal in two treatment

groups may account for the insignificant difference of wet/dry

between EC-SOD and CuZn-SOD groups. The results imply that

aerosol therapy may be an effective route of administration of EC-

SOD for protection against oxygen toxicity when high oxygen

concentration is needed in critically ill patients.

The use of biomarkers for oxidative stress may provide early

detection and further evaluation of oxidative damage. Several

biomarkers of oxidized lipids, proteins and DNA have been found.

8-OHdG was recently demonstrated as a useful biomarker of

oxidative stress in various tissues [36] and even the marker in urine

is significantly correlated with the outcome of critically septic

patients [37]. When anti-oxidant systems are overwhelmed by

external oxidative stress, DNA can be damaged by ROS and then

strand breaks and modifications of various bases can occur. The 8-

OHdG adduct and its tautomer, 8-oxo-dG, can easily formed in

Figure 5. Effects of aerosolized CuZn-SOD and rhEC-SOD on lung morphology after 96 h of hyperoxia. Effects are shown as overview of
full lung organ (A), and histological lung section with H&E staining (B). The control group of mice fed in normal oxygen condition (Normoxia) was
shown in left panel. Following by inhalations of PBS, Albumin, SOD1 (CuZn-SOD), and SOD3 (rhEC-SOD) treated groups (n = 6 in each group) under
the hyperoxia condition (FiO2.95%). The scale bars represent 500 mm.
doi:10.1371/journal.pone.0026870.g005

Figure 6. The distribution of aerosolized rhEC-SOD in lung
tissue by immunohistochemical (IHC) staining after 96 h of
hyperoxia. A. The image representative the PBS inhalation control
group. Only a few of endogenous EC-SOD can be detected in the
bronchial epithelia as indicated by open arrows. B. The image
representative the rhEC-SOD (SOD3) aerosolized group. The exogenous
rhEC-SOD can be strongly detected in the bronchial epithelia, alveoli
and lung parenchyma as indicated by solid black arrows. Scale
bar = 100 mm.
doi:10.1371/journal.pone.0026870.g006

Figure 7. Effects of aerosolized CuZn-SOD and rhEC-SOD on
oxidative stress in lung and liver tissues after 72 h and 96 h of
hyperoxia. The levels of the oxidative stress biomarker 8-oxo-dG in
lung and liver tissues, measured with LC-MS/MS with on-line SPE, after
72 h (A) and 96 h (B) hyperoxia treatments. Values are expressed as the
amount of 8-oxo-dG per 106 dG (PBS was used as the control group;
n = 6 in each group; * P,0.05; ** P,0.01).
doi:10.1371/journal.pone.0026870.g007
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large quantities. The 8-OHdG adduct can mismatch with adenine

instead of cytosine, which could cause GC-to-TA transversion and

lead to point mutations. The 8-OHdG adduct is cytotoxic by itself

because it can induce apoptosis through downregulation of bcl-2,

an antiapoptotic protein [38,39].

In this study, 8-oxo-dG in the lung tissue initially decreased

before it increased at day 3. A similar pattern was observed in liver

tissue, but there was a more dramatic elevation at day 3. The time

course of 8-oxo-dG in liver tissue was compatible with the

development of lung edema and the decline in the survival curve.

This trend implies that the antioxidant systems compensated well

at first, but prolonged oxygen exposure resulted in an elevation of

systemic oxidative stress. The levels of 8-oxo-dG were consistent

with the protective effect of the SODs. The initial decrease of 8-

oxo-dG could have been caused by increased activity of

antioxidants and/or activation of the DNA repair system or 8-

oxoquanine glycosylase 1 (OGG1). The later decompensation

could be the result of the proteolysis of antioxidant enzymes and/

or shutdown of the DNA repair systems. Further studies are

necessary to determine the mechanism.

Transgenesis using P. pastoris as a bioreactor to produce

functional protein therapeutic drugs is a promising direction in

biotechnology and medicine. Pichia pastoris is uniquely suited for

expressing transgenic proteins because of its ability to synthesize

large amounts of recombinant proteins. In addition, its glycosyl-

ation abilities are very similar to those of animal cells. The

recombinant proteins made by P. pastoris are unlikely to induce

immune reactions if they are injected into the bloodstream [40].

Aerosolized human CuZn-SOD in a sheep model and bovine

CuZn-SOD for preterm infants were found to be safe throughout

the course of treatment [7,41]. No side effects were found in this

aerosolized EC-SOD study, but this preparation will require

further investigations before clinical use.

In conclusion, we have successfully expressed human EC-SOD

in P. pastoris cells. Aerosolized recombinant hEC-SOD protected

against oxygen toxicity and reduced mortality in a mouse

hyperoxic model. The results of this study are encouraging, and

aerosol therapy with rhEC-SOD may permit patients with severe

hypoxemic respiratory failure, including ARDS, to receive high

levels of oxygen with less oxidative injury.

Supporting Information

Figure S1 The plot of oxygen levels in hyperoxia chambers

measured by oxygen analyzer (MiniOX I, MSA Canada, Inc.,

Canada) every hour during the housing of light cycle (6:00 am–

18:00 pm) for four days.

(JPG)

Video S1 The video of the health condition of mice behavior

observed during hyperoxia experiment. Mice that survived beyond

day 3 in the Albumin control group were clearly impaired and had

limited movement (right panel). In contrast, the mice in the rhEC-

SOD group demonstrated remarkable tolerance to hyperoxia (left

panel).

(MOV)
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