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Abstract: Metastases from different cancer types most often affect the lung parenchyma. Moreover,
the lungs are among the most frequent sites of growth of metastatic masses of uncertain/unknown
lineage of origin. Thus, with regards to pulmonary neoplastic parenchymal nodules, the critical
issue is to determine if they are IN the lung or OF the lung. In this review, we highlight the clinical,
instrumental and molecular features which characterize lung metastases, mainly focusing on recently
advancing and emerging concepts regarding the metastatic niche, inflammation, angiogenesis,
immune modulation and gene expression. A novel issue is related to the analysis of biomechanical
forces which cooperate in the expansion of tumor masses in the lungs. We here aim to analyze the
biological, genetic and pathological features of metastatic lesions to the lungs, here referred to as site
of metastatic growth. This point should be a crucial part of the algorithm for a proper diagnostic and
therapeutic approach in the era of personalized medicine.
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1. Introduction

Metastatic dissemination is a feature of highly malignant progression which is responsible for
poor prognosis of affected patients and eventually leads to their death. The molecular and cellular
mechanisms underlying the different proclivities of metastatic spreading are the topic of constant debate
and intense research efforts because they have important implications for our ability to predict, identify
and eradicate life-threatening advanced disease. Most often, cancer diagnosis is made when multiple
lesions have already spread from the primary tumor site. Growing evidence suggests that cancer
cells can remotely prepare distant sites for subsequent colonization, by modulating organ-seeking
vesicles [1] and pro-inflammatory cytokines [2]. On the other hand, the application of phylogenetic
analysis to cancer metastatic subclones could be helpful in dissecting evolutionary history of cancer
lineages [3]. The latter could ultimately lead to the identification of driver genetic lesions that will
impact on clinical management of advanced disease.

The lungs are the second most frequent site of metastatic growth from extra-thoracic malignancies,
with pulmonary secondary lesions being detected in 20–54% of cases [4]. They result from both
lymphatic and hematogenous spread. In the adult population, the most common primary tumors to
result in pulmonary metastases include breast, colorectal and renal carcinoma, uterine leiomyosarcoma
and head and neck carcinoma, whereas endobronchial lesions most often derive from colorectal, renal
and lung cancer as well as being related to lymphomas. In some cases, the origin remains undetermined
or cannot be identified at all. The latter should be classified as cancer of unknown primary (CUP).
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Here, we discuss and analyze the clinical, radiological and specific molecular features of secondary
pulmonary masses as well as point out the biological and biomechanical properties of the lungs as
sites of metastatic seeding.

2. Clinical and Radiological Presentation of Pulmonary Metastases

Lung metastatic disease might display heterogeneous clinical characteristics and can occur with or
without signs or symptoms. Similar to primary lung cancer, clinical manifestations of lung metastases
are related to local growth of neoplastic masses and paraneoplastic syndromes. The characterization
and follow-up of lung nodules in patients with known malignant disorders represent daily items in
radiological practice. The imaging of pulmonary metastases is generally centered on surveillance
with computed tomography (CT) (Figure 1, panel A). [5]. Lung metastatization is most often
related to an endovascular spread of tumor cells nesting in the distal arterial pulmonary circulation.
Due to this pattern of spread, lung metastases tend to be more abundant in basal and peripheral
regions. Physiologically, as expressed by the ventilation/perfusion index, the basal regions are more
highly vascularized, whereas the upper regions are more highly ventilated. Ultimately, this leads to
hematogenous metastases being more numerous in the basal region. Details are described in Figure 1,
panel B. The detection of a single pulmonary nodule in a patient with known malignancy may occur and
a biopsy is required to differentiate between primary lung cancer and a solitary metastasis. Low-dose
CT (LDCT) has constantly increased its performance in terms of image quality and dose reduction. Its
use in substitution of chest-X-ray has been advocated since the early 2000s [6] but with mixed reports [7].
A more widespread use was made possible by the introduction of iterative reconstruction algorithms
which became commercially available in 2009, and during the following decade have improved in
availability and efficiency. Iterative reconstruction imaging protocol boosts the decrease in imaging
noise at lower kV allowing a strong dose reduction with better image quality. An even stronger benefit
is expected from the development of artificial intelligence reconstructed images [8]. The use of LDCT
for lung tumor screening is already codified in the National Comprehensive Cancer Network NCCN
guidelines [9] and is expected to be included in the future into guidelines to replace chest X-rays (CHR)
in low-risk oncologic patients. For high-risk patients—receiving regular full-dose CT—the benefit of
LDCT remains unclear but a more accurate evaluation over time without a significant dose increase
may lead to inclusion into guidelines in the future.

Magnetic resonance imaging (MRI) is becoming more and more sensitive in the diagnosis and
follow-up of pulmonary metastases thanks to faster and more robust sequences for pulmonary use
even with free-breathing approaches [10]. Ultrasound (US) plays no diagnostic role in the lung and can
only support interventional transthoracic procedures—e.g., for lesions reaching the pleural surface-
or for an endobronchial approach (EBUS). Imaging is not only used for diagnosis and follow-up of
lung metastases but can also support and guide local treatment such as thermal treatments (generally
CT-guided), namely radiofrequency, microwave, cryotherapy [11]. Nuclear medicine, especially
with radiologic imaging fusion—positron emission tomography-computed tomography (PET-CT)
and positron emission tomography-magnetic resonance imaging (PET-MRI), allows the coupling of
morphologic data from imaging with physiological data on the uptake of radiotracers [12].
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Figure 1. Lung metastases: imaging and immunostaining. In patients with known primary tumors, 
the appearance of multiple bilateral pulmonary nodules is highly suggestive of metastatic 
dissemination and no further invasive procedures are generally required to confirm diagnosis. Chest 
X-Ray (CXR) has shown little sensitivity over the years, relegating it to marginal use in low-risk 
patients or to be abandoned entirely as a surveillance method. While lung metastases can still be 
detected by CXR in specific scenarios, such as incidental findings in the emergency room, computed 
tomography is the main imaging modality employed for detection and follow-up of lung metastases. 
Panel (A) CT scan presentation of lung metastases: (a) usual features of lung metastases from 
colorectal cancer, (b) squamous cell lung cancer of unknown primary (CUP), (c) miliary distribution 
of secondary lesion from ovarian cancer, (d) multiple metastatic nodules from breast cancer. 
Hematogenous spread to the lungs most often characterizes those tumors which arise in organs with 
anatomical venous drainage towards the lungs, such as head and neck, thyroid, adrenals, kidneys, 
testes, melanoma, and osteosarcoma. Panel (B) Computed tomography (CT) presentation of lung 
metastases. Computed tomography is the main imaging modality employed for detection and follow-
up of lung metastases. They generally appear as round and non-calcific nodules of variable 
dimensions, with smooth margins and a variable degree of vascularization. However, more unusual 
patterns can be detected as well (such as a miliary distribution or metastatization in the form of a 
single lung nodule). CRC= colorectal cancer, SCC= squamous cell carcinoma, CUP = Cancer of 
unknown primary. 
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Figure 1. Lung metastases: imaging and immunostaining. In patients with known primary tumors,
the appearance of multiple bilateral pulmonary nodules is highly suggestive of metastatic dissemination
and no further invasive procedures are generally required to confirm diagnosis. Chest X-Ray (CXR)
has shown little sensitivity over the years, relegating it to marginal use in low-risk patients or to be
abandoned entirely as a surveillance method. While lung metastases can still be detected by CXR
in specific scenarios, such as incidental findings in the emergency room, computed tomography is
the main imaging modality employed for detection and follow-up of lung metastases. Panel (A) CT
scan presentation of lung metastases: (a) usual features of lung metastases from colorectal cancer,
(b) squamous cell lung cancer of unknown primary (CUP), (c) miliary distribution of secondary
lesion from ovarian cancer, (d) multiple metastatic nodules from breast cancer. Hematogenous spread
to the lungs most often characterizes those tumors which arise in organs with anatomical venous
drainage towards the lungs, such as head and neck, thyroid, adrenals, kidneys, testes, melanoma, and
osteosarcoma. Panel (B) Computed tomography (CT) presentation of lung metastases. Computed
tomography is the main imaging modality employed for detection and follow-up of lung metastases.
They generally appear as round and non-calcific nodules of variable dimensions, with smooth margins
and a variable degree of vascularization. However, more unusual patterns can be detected as well
(such as a miliary distribution or metastatization in the form of a single lung nodule). CRC = colorectal
cancer, SCC = squamous cell carcinoma, CUP = Cancer of unknown primary.
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Determining the Origin

In case of detection of well differentiated malignant cells, their resemblance to the
conventional morphology of non-cancerous cells can be helpful in identifying the lineage of origin;
more commonly however, the metastases consist of moderately or poorly differentiated cells. Thus,
immunohistochemistry (IHC) plays a crucial role in suggesting the site of origin. If the origin remains
still evasive, an exhaustive diagnostic work-up should be initiated to determine the putative primary
origin versus a metastatic dissemination from an occult site. In the case of lung lesions from an
unknown primary site of origin, the pathologic approach should be ad excludendum to possibly identify
the primary cancer of early metastatic dissemination. Nevertheless, tumor sequencing and gene
signature profiling to determine the putative tissue of origin is still not recommended for routine clinical
workup [9]. Morphology and IHC represent the more significant tools for the pathologist. In the era of
molecular medicine, immunohistochemistry plays a relevant role in classifying tumor lineage (Figure 2):
a screening IHC panel to analyze the major lineage of origin (epithelial, mesenchymal, lymphoid
and melanocytic) most often provides major information to define the nature of an undifferentiated
tumor. Many procedural algorithms related to IHC staining are available in the literature regarding
both the identification of primary lung cancer [13] and the putative origin of secondary pulmonary
lesions [14]. In case of epithelial-derived lesions, the expression of thyroid transcription factor 1 (TTF-1)
is a highly specific marker for primary lung adenocarcinomas (ADCs) and it must be included in a
panel of antibodies for the differential diagnosis between primary and metastatic adenocarcinomas of
the lung [15]. TTF-1 is a tissue-specific homeodomain-containing transcription factor that plays an
important role in the early embryonic differentiation and morphogenesis of both lung and thyroid.
It regulates the expression of surfactant apoproteins (A, B, C) and Clara cell antigens. In adults, it is
almost exclusively expressed in thyroid and pulmonary epithelial cells. TTF-1 expression can be easily
determined by IHC and it is highly specific in differentiating lung epithelial cancer (TTF-1 positive)
from lung metastases [16]. It should be underlined that TTF-1 is reported to be positive in about 75%
of adenocarcinoma (ADC) but not in squamous cell carcinoma (SCC). Moreover, regarding ADCs,
TTF-1 expression is associated with solid and invasive mucinous subtypes and a lower frequency
of epidermal growth factor receptor (EGFR) mutations. Overall, it defines a subgroup of lung ADC
characterized by unfavorable prognosis. Napsin A is an aspartate protease and upregulated by TTF-1
in type II pneumocytes. Its expression has been shown to be useful in combination with TTF-1
in differentiating primary lung carcinoma from pulmonary metastases of extra-thoracic origin [17].
It should be underlined that some ADC markers may also be expressed in a small minority of lung
metastases of distant primary epithelial tumors. For instance, TTF-1 expression has been documented
in breast [18], ovarian [19] and hepatocellular [20] cancers. Similarly, increased EGFR expression
occurs in a fraction of patients who have renal cell carcinoma (RCC) with an unfavorable histologic
phenotype [21]. Overall, this behavior may be problematic when those staining tools are used in
differential diagnosis between lung cancer and lung synchronous/metachronous metastases from
different site of primary origin.
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Figure 2. Immunohistochemical evaluation to detect the major origin of metastatic lesions: Panel (A) key 
screening antibody panel to detect the lineage of origin. It should be noted that melanoma is positive for 
vimentin but not for desmin, except for rare cases such as osteogenic melanoma which might express 
desmin [22] and sinovial mucosal melanoma [23]. In sarcoma desmin is not always expressed. For instance, 
solitary fibrous tumors and hemangioperycitoma like tumors are generally negative for desmin, as well as 
epitheliod sarcomas [24]. EMA = Epithelial Membrane Antigen, PLAP = Placenta Alkaline Phosphatase, 
Panel (B) once the diagnosis of carcinoma is reached, the cytokeratin expression may be useful to further 
delineate the tissue or organ of origin. The differential expression of CK 7 and CK 20 is among the most 
relevant discriminants of carcinomas of epithelial origin. 

Neuroendocrine differentiation of lung tumors is orchestrated by complex pathways. Among 
them, INSM1 (Insulinoma-associated protein 1) is a zinc-finger transcriptional factor originally 
isolated from pancreatic insulinomas [25]. It is inactivated by HES1 (Hairy and Enhanced of Split-1) 
transcription factor and promotes the expression of three neuroendocrine molecules: chromogranine 
A (CHGA), synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1) via activation of  
transcription factors, such as Achaete-Scute family basic helix-loop-helix (bHLH) transcription factor 
1 (ASCL1) and neural transcription factor BRN2. INSM1 is emerging as a novel, sensitive and specific 
IHC marker that may serve as a first-line marker of neuroendocrine differentiation. Moreover, IHC 
is applied to detect protein expression levels resulting from several genetic alterations. In the case of 
primary lung cancer, they mainly affect tyrosine kinase rearrangements and immune checkpoints. 
Anaplastic lymphoma kinase (ALK)-rearranged lung cancers are most often TTF-1 positive tumors, 
characterized by an acinar pattern with mucin/signet-ring cell morphology. These tumors define the 
4–5% of ADC occurring in non-/light-smoker and young patients [26]. Immunohistochemistry is also 
a cost-efficient approach to detect ROS-rearrangements in non-small-cell lung cancer (NSCLC), 
although confirmation through fluorescent in situ hybridization (FISH) is required in positive 
samples. The lungs can also be site of growth of metastatic lesions of unknown primary origin. In this 
case, the conventional approach imposes to increase the diagnostic potential of finding a putative 
tissue of origin, by defining—in addition to immunostaining—the molecular profile of the lesion [27] 

with the underlying rationale of treating the lesions as a high-grade metastatic tumor of the predicted 
site of origin [28]. In this setting, the immunophenotype could be helpful in suggesting a probable 
lineage of origin of the metastatic mass [29].  Strictly speaking, CUPs are properly defined as 
carcinomas, the vast majority of which is represented by adenocarcinomas (90%), with squamous cell 
carcinomas and undifferentiated carcinomas being considerably less frequent. The inclusion of 
sarcomas, lymphomas and melanomas of unknown primary is sometimes reported, although in those 
cases the lineage of origin is clearly solved [30,31]. 

Figure 2. Immunohistochemical evaluation to detect the major origin of metastatic lesions: Panel (A)
key screening antibody panel to detect the lineage of origin. It should be noted that melanoma is
positive for vimentin but not for desmin, except for rare cases such as osteogenic melanoma which might
express desmin [22] and sinovial mucosal melanoma [23]. In sarcoma desmin is not always expressed.
For instance, solitary fibrous tumors and hemangioperycitoma like tumors are generally negative for
desmin, as well as epitheliod sarcomas [24]. EMA = Epithelial Membrane Antigen, PLAP = Placenta
Alkaline Phosphatase, Panel (B) once the diagnosis of carcinoma is reached, the cytokeratin expression
may be useful to further delineate the tissue or organ of origin. The differential expression of CK 7 and
CK 20 is among the most relevant discriminants of carcinomas of epithelial origin.

Neuroendocrine differentiation of lung tumors is orchestrated by complex pathways. Among them,
INSM1 (Insulinoma-associated protein 1) is a zinc-finger transcriptional factor originally isolated from
pancreatic insulinomas [25]. It is inactivated by HES1 (Hairy and Enhanced of Split-1) transcription
factor and promotes the expression of three neuroendocrine molecules: chromogranine A (CHGA),
synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1) via activation of transcription
factors, such as Achaete-Scute family basic helix-loop-helix (bHLH) transcription factor 1 (ASCL1) and
neural transcription factor BRN2. INSM1 is emerging as a novel, sensitive and specific IHC marker that
may serve as a first-line marker of neuroendocrine differentiation. Moreover, IHC is applied to detect
protein expression levels resulting from several genetic alterations. In the case of primary lung cancer,
they mainly affect tyrosine kinase rearrangements and immune checkpoints. Anaplastic lymphoma
kinase (ALK)-rearranged lung cancers are most often TTF-1 positive tumors, characterized by an acinar
pattern with mucin/signet-ring cell morphology. These tumors define the 4–5% of ADC occurring in
non-/light-smoker and young patients [26]. Immunohistochemistry is also a cost-efficient approach to
detect ROS-rearrangements in non-small-cell lung cancer (NSCLC), although confirmation through
fluorescent in situ hybridization (FISH) is required in positive samples. The lungs can also be site
of growth of metastatic lesions of unknown primary origin. In this case, the conventional approach
imposes to increase the diagnostic potential of finding a putative tissue of origin, by defining—in
addition to immunostaining—the molecular profile of the lesion [27] with the underlying rationale
of treating the lesions as a high-grade metastatic tumor of the predicted site of origin [28]. In this
setting, the immunophenotype could be helpful in suggesting a probable lineage of origin of the
metastatic mass [29]. Strictly speaking, CUPs are properly defined as carcinomas, the vast majority of
which is represented by adenocarcinomas (90%), with squamous cell carcinomas and undifferentiated
carcinomas being considerably less frequent. The inclusion of sarcomas, lymphomas and melanomas
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of unknown primary is sometimes reported, although in those cases the lineage of origin is clearly
solved [30,31].

3. The Pulmonary Metastatic Niche and Microenvironment

The process of metastatic dissemination may already begin before cells migrate from a primary
tumor mass and involves distinct steps. Genetic and phenotypic instability are among the earliest
characteristics of transformed cells. Cancer cells are more prone to mutate and undergo phenotypic drift
than their normal counterparts. Thus, genetic instability, coupled with a Darwinian type of selection—in
which only the fittest survive—results in populations resistant to normal homoeostatic growth controls,
immune attack, and environmental restraints. The rate of progression varies, and, within any neoplastic
mass, subpopulations with different malignant potential can be identified. Local smoke-induced
chronic inflammation may contribute to increased metastatic growth as has been demonstrated for
lung metastases from breast cancer both in mice and patients [32,33]. The pro-metastatic effect
played by smoking exposure is related to the activation of the ubiquitin- chemokine receptor type
4 (CXCR4) () pathway [34], high tissue levels of E-selectin [35], activation of the nuclear factor
kappa-light-chain-enhancer of activated B cells (NFκB) signaling in pneumocytes [36], increased
chemokine ligand 2 (CCL2) () expression and macrophage infiltration in the lung microenvironment [37].
Moreover, lung alveolar cells induce chemokine secretion, which recruit neutrophils. The latter, through
the synthesis of arachidonate 5-lypoxigenase (ALOX5)-dependent leukotriene, may promote survival
and proliferation of leukotriene B4-expressing metastatic clones [38]. Neutrophils can also secrete
cathepsin G and elastases which further facilitate metastatic growth [39]. Overall, these signaling
cascades allow the establishment of immunotolerant niches which promote the growth of neoplastic
masses. Indeed, not all tumors are metastatic, nor are all cells within so-called metastatic tumors
capable of metastatization. Recent evidence suggests that tumor cells might begin conditioning distant
tissues for colonization by establishing a so-called “pre-metastatic” niche [40]. The complex biological
program leading to lung metastatization is summarized in Figure 3. Since the new microenvironment of
the metastatic site differs from that of the primary mass, the cells can die or survive; in the latter case, if
proliferation is balanced by apoptosis, they remain clinically undetectable (dormant micrometastases);
more often they display a relentless growth activity. Disseminated cells which have reached the
lungs can undergo dormancy, mainly because they do not interact with the new parenchyma [41,42].
This behavior can occur even after a long period of latency after removal of the primary tumor. Different
cancer types exhibit a wide variability in the length of latency: typically, short for lung cancer (only
few weeks), while long for prostate and breast estrogen receptor (ER)-positive cancers (years/decades).
Growing efforts are now directed towards targeting dormancy as a novel potential therapeutic approach
to reduce the risk of cancer recurrence and dissemination [43]. Moreover, lung specific factors, stroma
cells, extracellular matrix (ECM), cytokines and growth factors may affect metastatic cell survival
and proliferation. To overcome the obstacles associated with the novel microenvironment, metastatic
cells use cell-autonomous traits that facilitate homing and survival by altering gene of Rous sarcoma
virus (SRC) tyrosine kinase signaling or the p38 and extracellular signal-regulated kinase-1 (ERK)
mitogen-activated protein kinase (MAP) kinase signaling pathways and acquire a stem-cell like genetic
profile, regulating the pre-metastatic lung niche. Tenascin C is another example of an ECM protein
secreted by breast cancer metastatic cells to create a supportive niche in the lungs [44]. Various
stroma cells, including fibroblasts, neutrophils and vascular endothelial growth factor receptor 1
(VEGFR1)-positive bone marrow-derived hematopoietic progenitor cells, also play a central role in niche
preparation. In a spontaneous prostate cancer metastasis model, mitogen-activated protein kinases 7
(MKK7) suppress formation of lung metastases by inhibiting the ability of disseminated cells to colonize
the distant tissue [45]. Factors secreted by the microenvironment, such bone morphogenetic proteins
(BMPs) and growth arrest-specific 6 (GAS6) produced by osteoblasts, can directly inhibit disseminated
tumor cell (DTC) proliferation. Single 4TO7 cells enter arrest immediately upon infiltrating the
lung and are therefore unable to form micrometastatic lesions [46]. Currently, cellular dormancy
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is mainly associated with solitary cells, while dormant macrometastatic lesions are considered to
consist of actively proliferating cells balanced by the same number of apoptotic cells. Stephen Paget’s
hypothesis formulated in 1889 according to which metastases development depends on crosstalk
between selected cancer cells (the “seed”) and the specific microenvironment (the “soil”) still holds
forth today. The metastatic potential arises from multiple biological processes that eventually instruct
cells to detach (EMT), migrate and evade cell death. During distant dissemination, cells acquire
metastatic competence defined by a mesenchymal gene expression pattern. This allows cells to
detach from the primary site of growth, invade blood vessels, cross their walls and colonize a distant
organ/tissue [47]. Morphogenesis and metastasis seem to arise from the same genetic program that
instructs cells to undergo a form of programmed cell death known as anoikis when they detach from
the surrounding extracellular matrix [48]. Metastatic cells more frequently migrate collectively to
form a structural and functional unit based on a strict cell-cell interaction and active crosstalk [49].
Moreover, it has been documented that some cancer types preferentially metastasize to specific
organs. The determinants of such a biological program include: (i) cell-intrinsic determinants, e.g.,
chemokines, cytokines; (ii) adhesion and extracellular matrix molecules, e.g., tenascin and periostin;
(iii) tumor-derived exosomes [50]. The latter are small membrane-bound vesicles of endocytic origin
that can transport molecules including proteins, DNA, RNA and non-coding RNA from one cell to
another, thus enhancing the horizontal exchange of genetic information [51]. In the cancer setting,
tumor-derived exosomes have been demonstrated to be taken up by organ-specific cells to prepare
the pre-metastatic niche, implying that the analysis of the expression of exosomal integrins could be
used to predict organ-specific metastases [52]. In detail, lung-tropic exosomes expressing the integrins
(ITG) such as ITGα6β4 and ITGα6β1 preferentially interact with S100A4-positive fibroblasts and
surfactant protein-positive pneumocytes [14]. Moreover, it has been experimentally demonstrated
that small nuclear RNAs enriched in tumor exosomes can activate toll-like receptor 3 in alveolar type
II cells and consequently induce chemokine secretion and neutrophil recruitment in the lung [53].
These steps are critical for initiating the formation of a metastatic niche in the lung and demonstrated
organ-site-specific tropisms of metastatic cells. In order to develop the metastatic mass, circulating
neoplastic cells need to adhere to endothelial walls and extravasate to reach the lung parenchyma.
Activation of VCAM1 has been reported in lung secondary masses from breast cancer. It is expressed
in endothelial cells and can initiate trans-endothelial migration by binding certain integrins such as
α4β1 and α4β7. The latter induce the activation of GTP-ase Ras-related c3 botulinum toxin substrate
1 (Ras-related C3 botulinum toxin substrate 1, RAC1) which subsequently induces modification of
the cytoskeleton network and facilitates cell migration [54]. The scaffold protein src-suppressed
C-kinase substrate/gravin/A-Kinase Anchoring Protein 12 (SSeCKS/Gravin/AKAP12) is known to
control metastasis-associated protein kinase C (PKC) and SRC signaling through direct scaffolding
activity. The SSeCKS complex is deregulated in lung metastases from melanoma [55]. Colony
stimulating factor 1 (CSF1) is known to act as mediator of lung metastases: those tumors developing
in CSF1-expressing mice have been shown to recruit macrophages and to feature a highly invasive
potential which enhances the formation of lung neoplastic colonies. This effect is mainly mediated
by epidermal growth factor (EGF) released by macrophages which induce CSF1 secretion by tumor
cells and recruit macrophages by interaction with colony stimulating factor 1 receptor (CSFR1) [56,57].
It has also been experimentally demonstrated that breast cancer cells that overexpress chemokine
(C-X-C motif) ligand 1 (CXCL1) and 2 by transcriptional hyperactivation or 4q21 amplification display
increased survival, the onset of lung metastases and enhanced chemoresistance through myeloid cell
recruitment [41]. The pulmonary extracellular matrix (ECM) determines the tissue architecture of the
lung and provides mechanical stability and elastic recoil, which are essential for physiological lung
function. Successful metastasis formation requires early remodeling of the lung ECM in the metastatic
niche. The correlation between expression of the extracellular matrix glycoprotein tenascin C and breast
cancer metastatization to the lung has been reported, with tumor-related tenascin C being essential
in early phases of metastatic onset [58]. Later, the tumor stroma becomes the source for tenascin C
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which maintains the metastatic growth. The extracellular matrix protein periostin is also involved
in lung metastatic development since periostin knock-out mice develop mammary tumors with a
reduced number of lung metastases compared to periostin wild-type animals [59]. Indeed, periostin
and tenascin C enhance the Wingless-related integration site (WNT) and NOTCH signaling. The latter
pathway is significant in maintaining stem/progenitor properties and in enhancing the viability of
cancer cells [60]. Tenascin C also increases the concentration of growth factors such as EGF, vascular
endothelial growth factor (VEGF), fibroblast growth factors (FGF) which capable of promoting growth
of metastatic masses [61]. Prior reports have documented the presence of metastasis-suppressive
niches. Metastatic cells might express the glycoprotein prosaposin, which, in turn, can reprogram
myeloid cells in the lungs to express thrombospondin-1 (TSP1), thereby generating suppressive niches
in animals [62]. These results unveiled the plasticity of myeloid cells, which, based on the context,
promote or inhibit metastases, and suggest that prosaposin could be a potential therapeutic agent
against metastatic cancer.
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Figure 3. The journey of metastatic clones towards the lungs. The growth of metastatic masses
into the lung parenchyma is orchestrated by tumor-derived signals (e.g., exosomes and genetic
signatures). Once detached from the primary mass, metastatic clones invade blood (or lymphatic)
vessels. Based on the interaction with adhesion molecules and based on the cross talk with chemokines
and cytokines, cells reach the lung parenchyma and extravasate and colonize the pre-metastatic niche.
Here, they undergo an epithelial-to-mesenchymal transition and interact with the surrounding stroma,
which contributes to cell survival and growth. Moreover, smoke-induced chronic inflammation and
hypoxia promote macrophage recruitment and immunotolerance.

A critical issue in cancer progression is related to intratumoral heterogeneity and hierarchical
organization. The tiny fraction of cancer stem cells (CSCs) have been reported to be the ones involved
in carcinogenesis, metastasis, recurrence, and treatment resistance [63]. The interaction between organs
that are targets for metastases and CSCs has been reported in a breast cancer study. The report showed
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that the bone morphogenic protein inhibitor COCO regulates the cycle of tumor dormancy and activity
in the lungs and promotes metastasis of breast CSCs to the lungs but not to the bone or brain [64].
Although the vast majority of circulating tumor cells may possess intrinsic defects that preclude them
from surviving or undergoing active proliferation in the lung, the ones that are fated to give rise to
clinical metastases, the metastasis-initiating cells, feature a stem-cell like phenotype and face strong
antimetastatic signals originating from the parenchyma of this organ [65]. Moreover, the specific
organ microenvironment influences CSC growth rate, as reported in in vivo models of lung and liver
metastases from pancreatic cancer [66]. It has been also demonstrated that subsets of CSC express
distinct markers confirming that different subpopulations have the potential to metastatize efficiently
in different target organs. Indeed, migrating CSC isolated from colorectal cancer patients had been
classified based on expression of two distinct surface markers CD110 and CDCP1 which specifically
promote adhesion to lung epithelium and liver cells respectively, giving rise to a highly organ-specific
pattern of dissemination [67].

4. Genetic Signature Associated to Metastatic Tropism to the Lungs

The process of metastatic dissemination begins when malignant cells leave the primary mass
and start to move. It is now accepted that neoplastic progression is associated with a combination
of genetic and epigenetic events. Cancer is a genetic disease and this pathogenic concept is the
basis for a new classification of tumors, based on the presence of definite genetic lesions to which
the clones are addicted [68]. The metastasis progression gene signatures emerge very early in the
tumor life. The possibility to analyze gene expression profiles in primary tumors and to compare
different signatures in various cancer types, has demonstrated that metastases rely—at least in part—on
gene mutation and gene regulation events that occur in the vast majority of cells which constitute
the primary tumor mass [69], with expression profiles from primary tumors being similar to those
derived from metastatic samples [70]. It has also been demonstrated that the signature derived from
lung metastases of breast cancer is not only related to the clinical outcome, but quite unexpectedly,
to the tumor size [71]. Thus, if the metastatic signature is associated with primary tumor growth,
the metastatic phenotype will not really derive from a selective advantage, but rather from the footprint
on gene expression left from metastatic population. Gene expression signature analysis describes
multiple tissue-specific metastatic programs. Interestingly Golub and colleagues [67] analyzed twelve
metastatic adenocarcinoma nodules of different origin (lung, breast, prostate, colorectal, uterus, ovary)
and compared them with the expression profiles of 64 primary ADCs, representing the same spectrum
of tumor types obtained from different individuals. This comparison allowed the identification of an
expression pattern of 128 genes that best distinguished primary and metastatic adenocarcinomas [67].
Moreover, a prognostic 28-gene signature has been identified by the analysis of microarray expression
data in primary cutaneous melanoma samples and has been validated as an independent predictor of
metastatic risk [72]. Similarly, the gene expression profile analysis of a subset of primary breast tumors
generated a unique 14-gene signature (WDR6, CDYL, ATP6V0A4, CHAD, IDUA, MYL5, PREP, RTN4IP1,
BTG2, TPRG1, ABHD14A, KIF18A, S100PBP and BEND3) able to predict the risk of development
of visceral organ metastases [73]. Interestingly, functional characterization of lung metastases gene
signatures reveals that they contain little information on growth factors and their receptors, that are
known to orchestrate metastatic growth [74]. Most of the products of genes that are differentially
expressed during tumor progression are defined as defense genes and extracellular matrix. This finding
confirms that metastatic growth derives from a complex tumor–host interaction. Notably, none of the
factors alone are sufficient to determine if the secondary mass will develop or not.

The evolution process is regulated by the following features: types of genetic aberrations
present; mutation rates; extent and intensity of selection; and finally, the heterogeneity of tumor cells
subclones [75]. Thus, the metastatic process, instead of being a unidirectional phenomenon, emerges
as a multidirectional process in which tumor cells can seed to distant sites and come back to the
primary site. The latter, namely the self-seeding process, is critical for both tumor and metastatic
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growth [76]. Limited data are available on specific neoplastic seeding in the lung parenchyma. It has
been shown that hypoxia in the primary tumor (breast cancer) associated with high levels of HIF1α
upregulates the expression of the lysil-oxidase gene; the encoded protein binds to collagen in the
lungs, thus promoting of myeloid cells to develop tolerant and pro-metastatic niches [77]. It has
been demonstrated that clusters of circulating tumor cells (CTCs) are oligoclonal precursors of breast
cancer metastases. Authors tagged breast and melanoma cell lines with fluorescent proteins and/or
luciferase. The MDA-MB-231 human breast carcinoma cell line (MDA231) and its variant, selected via
intravenous inoculations for enhanced lung colony formation (MDA231-LM2) [56], were primarily
used in reseeding or cross-seeding experiments. Tagged and untagged tumor cells were injected
separately into orthotopic contralateral sites. MDA231-LM2 cells were highly efficient in disseminating
and self-seeding a contralateral MDA231-LM2, but they were not reported to spontaneously seed to
lungs from the primary tumor. Authors concluded that spontaneous seeding of a tumor mass is less
restrictive than seeding of target organs. The interleukin 6 (IL-6) and interleukin 6 (IL-8) cytokines
produced by contralateral human tumors served as CTC attractants and this may explain the preferred
targeting of spontaneous tumors compared with the lungs. Alternatively, enhanced lung colonization
selected through forced intravenous inoculation [61] may exacerbate cell traits that do not entirely
recapitulate organ-specific metastases. Due to the rapid development of new and high-throughput
technologies, novel metastasis candidate genes will be identified with both clinical and therapeutic
implication. More recent gene expression analysis has allowed the identification of genetic signatures
associated with lung metastasization. Inhibitor of cell differentiation 1 (ID1), matrix metallo-proteinase
1 (MMP1), chemokine CXC motif ligand 1 (CXCL1), prostaglandin-endoperoxide synthase (PTGS2),
vascular cell adhesion molecule-1 (VCAM1), and epiregulin (EREG) were among the genes that promote
lung metastasis in animal models carrying breast carcinoma, and their differential expression was able
to differentiate among breast cancer patients, those with lung metastases vs those without. Notably,
gene expression of ID1 promotes formation of lung metastases by itself in animal models and is highly
expressed in samples from breast cancer patients with lung metastases. Indeed, the DNA-binding
protein inhibitor ID-1 is a protein that is encoded by the ID1 gene and its activation promotes breast
cancer dissemination by modulating S100A9 expression [78]. The latter is a calcium-binding protein
with multiple ligands and post-translational modifications that is involved in inflammatory events
and the initial development of metastatic disease [79]. With respect to the analysis of human cancer
samples, it has been shown that the comparison of lung and non-lung metastases from breast cancer
identified 21 differentially expressed genes [80] which mainly encode adhesion molecules, resulting
in cell to cell interactions and thus facilitating lung colonization. Among them are integrins (ITGB8),
cadherins (CDH3), desmosomal proteins (DSC2), and focal adhesion molecules (FERMT1).

Although a detailed description of the role of micro-RNAs (miRNAs) in the metastatic cascade
goes beyond the scope of this review, it should be noted that several in vitro and in vivo studies
have described metastases-associated miRNAs signatures. MiRNAs might act in each phase of
distant tumor spread by regulating cell invasion and migration capacity as well as growth of distant
masses [81]. With respect to the epithelial-to-mesenchymal transition (EMT), a step required for
metastatic dissemination, the miR-200 family has been reported as a key mediator in regulating the
expression of E-cadherin [82]. In detail, miR-200 family act by inhibiting the EMT and by maintaining
the epithelial phenotype through direct targeting of transcriptional repressors of E-cadherin, zinc finger
E-box binding homeobox 1 (ZEB1) and zinc finger E-box binding homeobox 2 (ZEB2) genes. Moreover,
many miRNAs control the angiogenic process. Among them, miRNA-29c overexpression is known to
inhibit angiogenesis by downregulating VEGF [83]; miRNA-519c is known to attenuate angiogenic
activity of endothelial cells and to suppress angiogenesis and metastasis formation by reducing HIF-1α
levels [84]. Interestingly, recent data suggest that miRNA signatures might display tissue/organ
specificity. Osaki et al. reported that miR-143-3p expression decreased in a metastatic osteosarcoma
cell line (143B) and primary osteosarcoma tissues with lung metastasis [85]. By comparing samples
from patients without metastases and sample from those with lung metastases, Sasaki et al. showed
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that increased expression of miR-27a and decreased miR-95-3p and miR-195 expression and miR-133
dysfunction are associated with which cancers develop lung metastasis [86]. In colorectal cancer,
the overexpression of miR-885-5p resulted in significantly induced cell migration, invasion, formation
of stress fiber in vitro and was associated with the development of liver and lung metastases in
in vivo models [87]. Finally, miRNA signatures have also been associated with the pattern of lung
metastatization, able to distinguish cancer progression with oligometastes vs. polymetastatic evolution
by modulating the axon guidance, cancer metastasis, and proteoglycan pathways [88].

5. Mechanical Interactions between Tumor Masses and Surrounding Microenvironment

Traditionally, cancer research has primarily focused on the biological characterization of the
processes involved in metastasization. In recent years however, concomitant marked alterations in
the mechanical phenotype of the cancer cells and the surrounding microenvironment have become
increasingly recognized as pivotal steps [89–93]]. In what Kumar et al. have dubbed a “force
journey” [94], there appears to be a dynamic mechanical reciprocity between the tumor cell and its
microenvironment governing the cell’s progression through the various stages, comprising detachment
from its neighboring cells, invasion of the surrounding parenchyma, intravasation into the vascular
system, survival while in circulation, extravasation and growth of a secondary mass at the distant
target site. Like metastases of known primary tumors, metastases in the context of CUP are expected
to continue, if not escalate, this mechanical interplay with their microenvironment, in turn enabling
metastatic cells to re-enter the circulation and seed new metastases or re-seed back to existing
metastases [95,96]. While a detailed discussion of the full repertoire of mechanical interactions during
the different phases of metastasization is beyond the scope of this review, we briefly discuss potential
ways of interaction between pulmonary metastatic masses and the surrounding extracellular matrix
(ECM). On a macroscopic level, local expansion of a tumor mass exerts compressive forces on the
ECM, thereby constricting flow in the vasculature, lymphatic system and interstitial space. The elastic
Young’s Modulus, a measure of deformability of a material in response to mechanical stress, can be used
to quantify the compliance of a tissue [97,98]. Lung tissue has been reported to have an approximate
bulk Young’s Modulus of 5–6 kPa, finding itself towards the lower end of the spectrum ranging
from highly-compliant brain tissue (0.3–0.5 kPa) to poorly-compliant skeletal muscle (50 kPa) [99].
Hence, in the setting of compliant pulmonary tissue, the outward projecting compression force due
to expansion of the tumor mass is thought to facilitate cell detachment and subsequent invasion
into the parenchyma [100]. Voutouri et al. estimated that tumors should be at least 1.5 times stiffer
than their surrounding normal tissue in order to exert a sufficient compressive force to overcome
confinement by the host tissue [101]. Such compression forces progressively shrink the surrounding
interstitial space, thereby concentrating tumor-promoting growth factors and cytokines shed into that
very space [102]. In addition, these stresses may play a role in tumor angiogenesis, either through
direct upregulation of VEGF secretion or indirectly as a result of induced tissue hypoxia [103–105].
The aforementioned compressive forces, and hence their effects, may be further exacerbated by
tumor-induced progressive stiffening of the adjacent ECM. Despite vast secretion of metalloproteinases
and matrix digestion, the ECM in the immediate vicinity of a tumor is typically rather dense due to
increased matrix deposition, collagen crosslinking through enzymes such as lysyl oxidase [106–108],
and an intense fibrotic response known as desmoplasia [109]. Pathological fibrosis, whether it be cancer
or otherwise, promotes cell invasion and migration by elevated tissue stiffness [110–113]. This stiffening
is routinely exploited clinically to detect tumors through physical palpation and by commonly used
imaging techniques, which derive their contrast from mechanical compliance differences within
tissue [114]. While a thorough characterization of ECM stiffness has not been reported for the lung, a 5-
to 20-fold increased stiffness compared with normal mammary gland has been quantified for breast
carcinomas [56]. Furthermore, occurrence of ECM stiffening around metastatic lesions at similar levels
to that around the primary tumor has been shown for pancreatic cancer [115]. ECM stiffening activates
mechano-transduction signaling pathways, which drive force-dependent integrin clustering [116]



Cancers 2019, 11, 1010 12 of 18

and subsequent increased focal adhesion assembly and ROCK-generated disruption of adherens
junctions [117,118] through enhanced ERK- and Rho-dependent cytoskeletal contractility [119–122].
Novel drugs targeting these pathways have sparked renewed enthusiasm for future treatments aimed
to tilt the balance in the battle against metastasization [123].

6. Concluding Remarks

Secondary neoplastic lesions commonly arise in the lung parenchyma: integration of histology,
immunohistochemistry and imaging can help in identifying the primary site of origin, on the one hand,
or in defining them as CUPs by ad excludendum diagnosis, on the other hand. The complex network
which regulates pulmonary metastatic growth is emerging as potential diagnostic and therapeutic
target. Particularly, this landscape is characterized by both a tumor-reprogrammed microenvironment
and the activation of immunosuppressive mechanisms. Moreover, the unique biophysical features of
the lung play a role in the expansion of secondary masses. Recent advances and emerging concepts,
coming from experience gathered from immunotherapy, have shed new light on the therapeutic
potential of targeting the so-called lung pre-metastatic niche. Overall, the clinical implications of these
approaches are represented by a better stratification of breast cancer patients and early identification of
those women at higher risk of developing secondary lung lesions. Further investigations are required
to address relevant questions, namely if all lung metastatic types behave in the same way and which
genetic elements define the lung tropism in circulating tumor cells.
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